首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monensin, a univalent ionophore, is a carboxylic acid produced by Streptomyces cinnamonensis. It will complex various alkali-metal ions, but most readily binds Na+. Because of interest in the possible role of Na+ in the regulation of insulin secretion, we examined its effects on several aspects of the metabolism of isolated rat islets of Langerhans. The ionophore inhibited glucose-stimulated insulin release in a concentration-dependent manner, completely inhibiting secretion evoked by 20 mM-glucose at concentrations as low as 0.1 microM in static incubations. In perifusion experiments, both phases of insulin release were equally affected. Monensin (0.1 microM) had no significant effect on glucose oxidation as measured by the generation of 14CO2 from [14C]glucose. Monensin increased the rate of 22Na+ efflux from preloaded islets and net 22Na+ uptake over 30 min, in the absence of changes in islet volume or extracellular space. The ionophore increased the Rb+/K+ permeability of islet cells, as shown by its inhibition of 86Rb+ retention and stimulation of 86Rb+ efflux. At 0.1 microM, monensin abolished glucose-stimulated 45Ca2+ uptake by islets during 5 min incubations, and stimulated 45Ca2+ efflux from preloaded islets perifused with Ca2+-free medium, even in the complete absence of extracellular Na+. Studies of the uptake of 14C-labelled 5,5-dimethyloxazolidine-2,4-dione showed that 0.1 microM-monensin increased net intracellular pH from 7.05 to 7.13. 7 Monensin has widespread, complex, effects on the secretory responses and ion handling by the B cells, which are difficult to interpret in terms solely of actions as a Na+ ionophore.  相似文献   

2.
Maitotoxin (MTX) provoked a dose-dependent increase in both 45Ca efflux and insulin release from rat pancreatic islets perifused in the presence or absence of glucose, provided that Ca2+ was present in the perifusate. The stimulatory effect of MTX on 45Ca outflow was enhanced by CGP 28392. The toxin did not reduce 86Rb outflow and 86Rb inflow. It is suggested that the secretory response to MTX is mediated by direct activation of voltage-dependent Ca2+ channels.  相似文献   

3.
The rate of insulin secretion from isolated rat islets of Langerhans was affected by a number of dihydropyridine derivatives known to interact with voltage-sensitive Ca2+ channels in excitable cells. The channel antagonists nifedipine and nitrendipine were potent inhibitors of glucose-induced insulin secretion in response to both 8 mM- and 20 mM-glucose, although they did not lower the basal secretion rate observed in the presence of 4 mM-glucose. The Ca2+-channel agonist, CGP 28392, also failed to alter the basal rate of insulin secretion. In the presence of 8 mM-glucose, however, 1 microM-CGP 28392 enhanced the insulin-secretion rate to a value approximately double that with 8 mM-glucose alone. This effect was dose-dependent, with half the maximal response elicited by 0.1 microM-CGP 28392, and full enhancement at 10 microM. The response was rapid in onset, with an increase in insulin secretion evident within 2 min of CGP 28392 infusion in perifused islets. Stimulation of insulin secretion by CGP 28392 was correlated with a rapid enhancement of glucose-stimulated 45Ca2+ uptake into islets cells, and with a transiently increased rate of 45Ca2+ efflux from pre-loaded islets. Stimulation of insulin secretion by CGP 28392 was abolished in the presence of noradrenaline, although under these conditions the rapid stimulation of 45Ca2+ influx induced by CGP 28392 was only partially inhibited. In contrast with these results, when islets were incubated in the presence of 20 mM-glucose, CGP 28392 caused a dose-dependent inhibition of insulin secretion. Half-maximal inhibition required approx. 0.2 microM-CGP 28392, with maximal effects observed at 10 microM. Under these conditions, however, the extent of insulin secretion was still only decreased by about 50%, to a value which was similar to that seen in the presence of 8 mM-glucose and CGP 28392. These results suggest that dihydropyridine derivatives can alter the activity of voltage-dependent Ca2+ channels in islet cells, and are consistent with the possibility that gating of these channels plays an important role in regulating the rate of insulin secretion after glucose stimulation.  相似文献   

4.
The mechanisms whereby activation of the cyclic AMP-dependent protein kinase A or the Ca2+-phospholipid-dependent protein kinase C amplifies insulin release were studied with mouse islets. Forskolin and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) were used to stimulate adenylate cyclase and protein kinase C respectively. The sulphonylurea tolbutamide was used to initiate insulin release in the presence of 3 mM-glucose. Tolbutamide alone inhibited 86Rb+ efflux, depolarized beta-cell membrane, triggered electrical activity, accelerated 45Ca2+ influx and efflux and stimulated insulin release. Forskolin alone only slightly inhibited 86Rb+ efflux, but markedly increased the effects of tolbutamide on electrical activity, 45Ca2+ influx and efflux, and insulin release. In the absence of Ca2+, only the inhibition of 86Rb+ efflux persisted. TPA (100 nM) alone slightly accelerated 45Ca2+ efflux and insulin release without affecting 45Ca2+ influx or beta-cell membrane potential. It increased the effects of tolbutamide on 45Ca2+ efflux and insulin release without changing 86Rb+ efflux, 45Ca2+ influx or electrical activity. Omission of extracellular Ca2+ suppressed all effects due to the combination of TPA and tolbutamide, but not those of TPA alone. Though ineffective alone, 10 nM-TPA amplified the releasing action of tolbutamide without affecting its ionic and electrical effects. In conclusion, the two amplification systems of insulin release involve at least partially distinct mechanisms. The cyclic AMP but not the protein kinase C system initiating signal (Ca2+ influx) triggered by the primary secretagogue.  相似文献   

5.
Mouse islets were used to define the glucose-dependence and extracellular Ca2+ requirement of muscarinic stimulation of pancreatic beta-cells. In the presence of a stimulatory concentration of glucose (10 mM) and of Ca2+, acetylcholine (0.1-100 microM) accelerated 3H efflux from islets preloaded with myo-[3H]inositol. It also stimulated 45Ca2+ influx and efflux, 86Rb+ efflux and insulin release. In the absence of Ca2+, only 10-100 microM-acetylcholine mobilized enough intracellular Ca2+ to trigger an early but brief peak of insulin release. At a non-stimulatory concentration of glucose (3 mM), 1 microM- and 100 microM-acetylcholine increased 45Ca2+ and 86Rb+ efflux in the presence and absence of extracellular Ca2+. However, only 100 microM-acetylcholine marginally increased 45Ca2+ influx and caused a small, delayed, stimulation of insulin release, which was abolished by omission of Ca2+. At a maximally effective concentration of glucose (30 mM), 1 microM- and 100 microM-acetylcholine increased 45Ca2+ influx and efflux only slightly, but markedly amplified insulin release. Again, only 100 microM-acetylcholine mobilized enough Ca2+ to trigger a peak of insulin release in the absence of Ca2+. The results thus show that only high concentrations of acetylcholine (greater than or equal to 10 microM) can induce release at low glucose or in a Ca2+-free medium. beta-Cells exhibit their highest sensitivity to acetylcholine in the presence of Ca2+ and stimulatory glucose. Under these physiological conditions, the large amplification of insulin release appears to be the result of combined effects of the neurotransmitter on Ca2+ influx, on intracellular Ca2+ stores and on the efficiency with which Ca2+ activates the releasing machinery.  相似文献   

6.
In rat pancreatic islets the effects of cholecystokinin-8 (CCK8) on glucose-mediated insulin release, 45Ca2+ net uptake, 45Ca2+ efflux, 86Rb+ efflux, cAMP- and cGMP levels were studied. In the presence of a substimulatory glucose concentration (3 mM) CCK8 concentrations of up to 1 microM had no effect on insulin release, but CCK8 at 10 nM potentiated the stimulatory effect of glucose (11.1 mM). 10 nM CCK8 enhanced glucose-stimulated 45Ca2+ net uptake but was ineffective at substimulatory glucose levels. CCK8 had no effect on cAMP and cGMP levels in the presence of 11.1 mM glucose, CCK8 increased 86Rb+ (a measure of K+) in the presence of both 3 and 11.1 mM glucose. This effect was abolished when Ca2+ was omitted from the perifusion medium. CCK8 did not alter glucose (11.1 mM)-stimulated 45Ca2+ efflux rate. These data indicate that (1) CCK8 potentiates glucose-stimulated insulin secretion possibly via an effect on Ca2+ uptake, 2) by affecting Ca2+ uptake, CCK8 enhances K+ efflux, and 3) CCK8 does not mediate its effect via cAMP or cGMP. With respect to 86Rb+ efflux the mechanism of CCK8 action appears to be different from that of glucose. When the mechanism of CCK action on islets is compared with that on exocrine pancreas (data from others) there are similarities (importance of Ca2+ uptake and non-importance of cAMP and cGMP).  相似文献   

7.
In pancreatic islets of fetal rats the effect of glucose (3 and 16.7 mM), glyceraldehyde (10 mM), leucine (20 mM), b-BCH (20 mM), tolbutamide (100 micrograms/ml), glibenclamide (0.5 and 5.0 micrograms/ml) arginine (20 mM), KCl (20 mM) and theophylline (2.5 mM) on 45Ca2+ net uptake and secretion of insulin was studied. All compounds tested failed to stimulate 45Ca2+ net uptake. However, in contrast to glucose and glyceraldehyde, leucine, b-BCH, tolbutamide, glibenclamide, arginine, KCl and theophylline significantly stimulated release of insulin. This effect could not be inhibited by the calcium antagonist verapamil (20 microM). Elevation of the glucose concentration from 3 to 5.6 mM did not alter 86Rb+ efflux of fetal rat islets but inhibited 86Rb+ efflux of adult rat islets. Stimulation of 86Rb+ efflux with tolbutamide (100 micrograms/ml), leucine (20 mM) or b-BCH (20 mM) in the presence of 3 mM glucose was also ineffective in fetal rat islets. Our data suggest that stimulation of calcium uptake via the voltage dependent calcium channel is not possible in the fetal state. They also provide evidence that stimulators of insulin release which are thought not to act through their metabolism, initiate insulin secretion from fetal islets by a mechanism which is different from stimulation of calcium influx.  相似文献   

8.
Glucose (20 mM) and carbachol (1 mM) produced a rapid increase in [3H]inositol trisphosphate (InsP3) formation in isolated rat islets of Langerhans prelabelled with myo-[3H]inositol. The magnitude of the increase in InsP3 formation was similar when either agent was used alone and was additive when they were used together. In islets prelabelled with 45Ca2+ and treated with carbachol (1 mM), the rise in InsP3 correlated with a rapid, transient, release of 45Ca2+ from the cells, consistent with mobilization of 45Ca2+ from an intracellular pool. Under these conditions, however, insulin secretion was not increased. In contrast, islets prelabelled with 45Ca2+ and exposed to 20mM-glucose exhibited a delayed and decreased 45Ca2+ efflux, but released 7-8-fold more insulin than did those exposed to carbachol. Depletion of extracellular Ca2+ failed to modify the increase in InsP3 elicited by either glucose or carbachol, whereas it selectively inhibited the efflux of 45Ca2+ induced by glucose in preloaded islets. Under these conditions, however, glucose was still able to induce a small stimulation of the first phase of insulin secretion. These results demonstrate that polyphosphoinositide metabolism, Ca2+ mobilization and insulin release can all be dissociated in islet cells, and suggest that glucose and carbachol regulate these parameters by different mechanisms.  相似文献   

9.
The secretion of insulin from perifused rat pancreatic islets was stimulated by raising the glucose concentration from 5.6 to 20 mM or by exposure to tolbutamide. The addition of sodium lactate (40 mM) to islets perifused in the presence of glucose (5.6 mM) resulted in a small, transient, rise in the rate of secretion. The subsequent removal of lactate, but not glucose or tolbutamide, from the perifusate produced a dramatic potentiation of insulin release. The rate of efflux of 45Ca2+ was also increased when islets were exposed to a high concentration of glucose or lactate or to tolbutamide, and again subsequently upon withdrawal of lactate. Efflux of 86Rb+ was modestly inhibited upon addition of lactate and markedly enhanced by the subsequent withdrawal of lactate from islets. The output of [14C]lactate from islets incubated in the presence of [U-14C]glucose increased linearly with increasing concentrations of glucose (1-25 mM). It is proposed that the activation of islets by the addition or withdrawal of lactate is not due to increased oxidative flux, but occurs as a result of the electrogenic passage of lactate ions across the plasma membrane, resulting in islet-cell depolarization, Ca2+ entry and insulin secretion. The production of lactate via the glycolytic pathway, and the subsequent efflux of lactate from the islet cells with concomitant exchange of H+ for Na+, could be a major determinant of depolarization and hence insulin secretion, in response to glucose.  相似文献   

10.
Poorly metabolized hexoses, such as 3-O-methyl-D-glucose, 2-deoxy-D-glucose and D-galactose failed to reproduce the inhibition of 86Rb outflow, the early inhibition and secondary rise in 45Ca efflux and the stimulation of insulin release evoked by D-glucose in perifused rat islets. Insulin release induced by either D-glucose or 2-ketoisocaproate was also unaffected by 3-O-methyl-D-glucose. It is concluded that hexose transport in islet cells does not represent in itself a significant determinant of the cationic and secretory response to D-glucose.  相似文献   

11.
Cs+ decreases K+ permeability in nerve and muscle cells. Its effects on the pancreatic B-cell function were studied with mouse islets. In the presence of 3 mM glucose, Cs+ substitution for K+ steadily inhibited 86Rb+ efflux and hyperpolarized the B-cell membrane. Addition of Cs+ to a K+-medium also inhibited 86Rb+ efflux, but depolarized the B-cell membrane. None of these changes altered insulin release. Substitution of Cs+ for K+ in a medium containing 10 mM glucose caused a Ca2+-dependent stimulation of insulin release and 45Ca2+ efflux, produced an initial fall and a secondary rise in 86Rb+ efflux and augmented the electrical activity in B-cells. Reintroduction of K+ to the medium was followed by a marked and transient inhibition of insulin release, that was blocked by ouabain and accompanied by an inhibition of 45Ca2+ and 86Rb+ efflux and by a hyperpolarization of the B-cell membrane. Addition of Cs+ to a K+ medium containing 10 mM glucose stimulated insulin release, 45Ca2+ efflux and 86Rb+ efflux. It also increased the electrical activity in B-cells. In the absence of Ca2+, however, Cs+ addition decreased the rate of 86Rb+ efflux. The effects of Cs+ on the B-cell function may be explained by its ability to decrease K+ permeability of the plasma membrane, by its inability to activate the sodium pump, and by a third unidentified effect likely brought about by the accumulation of intracellular Cs+.  相似文献   

12.
1. In isolated pancreatic islets, pyruvate causes a shift to the left of the sigmoidal curve relating the rate of insulin release to the ambient glucose concentration. The magnitude of this effect is related to the concentration of pyruvate (5--90 mM) and, at a 30 mM concentration, is equivalent to that evoked by 2 mM-glucose. Pyruvate also enhances insulin release in the presence of fructose, leucine and 4-methyl-2-oxopentanoate. 2. In the presence of glucose 8 mM), the secretory response to pyruvate is an immediate process, displaying a biphasic pattern. 3. The insulinotropic action of pyruvate coincides with an inhibition of 45Ca efflux and a stimulation of 45Ca net uptake. The relationship between 45Ca uptake and insulin release displays its usual pattern in the presence of pyruvate. 4. Exogenous pyruvate rapidly accumulates in the islets in amounts close to those derived from the metabolism of glucose. The oxidation of [2-14C]pyruvate represents 64% of the rate of [1-14C]pyruvate decarboxylation and, at a 30 mM concentration, is comparable with that of 8 mM-[U-14C]glucose. 5. When corrected for the conversion of pyruvate into lactate, the oxidation of 30 mM-pyruvate corresponds to a net generation of about 314 pmol of reducing equivalents/120 min per islet. 6. Pyruvate does not affect the rate of glycolysis, but inhibits the oxidation of glucose. Glucose does not affect pyruvate oxidation. 7. Pyruvate (30 mM) does not affect the concentration of ATP, ADP and AMP in the islet cells. 8. Pyruvate (30 mM) increases the concentration of reduced nicotinamide nucleotides in the presence but not in the absence of glucose. A close correlation is seen between the concentration of reduced nicotinamide nucleotides and the net uptake of 45Ca. Menadione inhibits the effect of pyruvate on insulin release, without altering its rate of oxidation. 9. Pyruvate, like glucose, modestly stimulates lipogenesis. 10. Pyruvate, in contrast with glucose, markedly inhibits the oxidation of endogenous nutrients. The latter effect accounts for the apparent discrepancy between the rate of pyruvate oxidation and the magnitude of its insulinotropic action. 11. Dichloroacetate fails to affect glucose oxidation and glucose-stimulated insulin release. 12. It is concluded that the effect of pyruvate to stimulate insulin release depends on its ability to increase the concentration of reduced nicotinamide nucleotides in the islet cells.  相似文献   

13.
The effects of acute omission of extracellular Na+ on pancreatic B-cell function were studied in mouse islets, using choline and lithium salts as impermeant and permeant substitutes, respectively. In the absence of glucose, choline substitution for Na+ hyperpolarized the B-cell membrane, inhibited 86Rb+ and 45Ca2+ efflux, but did not affect insulin release. In contrast, Li+ substitution for Na+ depolarized the B-cell membrane and caused a Ca2+-independent, transient acceleration of 45Ca2+ efflux and insulin release. Na+ replacement by choline in the presence of 10 mM glucose and 2.5 mM Ca2+ again rapidly hyperpolarized the B-cell membrane. This hyperpolarization was then followed by a phase of depolarization with continuous spike activity, before long slow waves of the membrane potential resumed. Under these conditions, 86Rb+ efflux first decreased before accelerating, concomitantly with marked and parallel increases in 45Ca2+ efflux and insulin release. In the absence of Ca2+, 45Ca2+ and 86Rb+ efflux were inhibited and insulin release was unaffected by choline substitution for Na+. Na+ replacement by Li+ in the presence of 10 mM glucose rapidly depolarized the B-cell membrane, caused an intense continuous spike activity, and accelerated 45Ca2+ efflux, 86Rb+ efflux and insulin release. In the absence of extracellular Ca2+, Li+ still caused a rapid but transient increase in 45Ca2+ and 86Rb+ efflux and in insulin release. Although not indispensable for insulin release, Na+ plays an important regulatory role in stimulus-secretion coupling by modulating, among others, membrane potential and ionic fluxes in B-cells.  相似文献   

14.
The effect of amiloride, an inhibitor of Na+-H+ exchange, on intracellular pH (pHi), 86Rb outflow, 45Ca outflow and insulin release from pancreatic rat islets was examined. In the 0.1-1 mM range, amiloride transiently reduced pHi of glucose-deprived islets and allowed glucose to induce a sustained decrease in pHi of the islet cells. Amiloride reproduced the effect of glucose to decrease 86Rb and 45Ca outflow. In the presence of glucose (5.6 mM or more), amiloride (100 microM) acted synergistically with the sugar to reduce K+ outflow, and to stimulate 40Ca inflow and insulin release from perifused islets. These results add strong support to the view that the generation of protons through the metabolism of glucose represents an important step in the process of glucose-induced release. The stimulation by glucose of Na+-H+ exchange apparently masks and even overcomes the glucose-induced decrease in pHi otherwise expected from the increase in catabolic fluxes.  相似文献   

15.
In isolated rat pancreatic islets maintained at a physiologic glucose concentration (5.6 mM) the effect of glucose on parameters which are known to be involved in the insulin secretion coupling such as NADPH, reduced glutathione (GSH), 86Rb+ efflux, and 45Ca++ net uptake were investigated. The insulinotropic effect of 16.7 mM glucose was decreased with the period of culturing during the first 14 days being significant after 2 days though in control experiments both protein content and ATP levels per islet were not affected and insulin content was only slightly decreased. Both NADPH and GSH decreased with time of culture. 86Rb+ efflux which is decreased by enhancing the glucose concentration from 3 to 5.6 mM in freshly isolated islets was not affected by culturing whatsoever, even not after 14 days of culture when there was no longer any insulin responsiveness to glucose. The 45Ca++ net uptake was decreased during culturing. The data indicate (1) that the diminished glucose-stimulated release of insulin during culturing is not due to cell loss or simple energy disturbances, (2) that more likely it is the result of a diminished 45Ca++ net uptake as a consequence of the inability of islet cells to maintain proper NADPH and GSH levels, and (3) that potassium (86Rb+) efflux may not be related to changes of NADPH and GSH.  相似文献   

16.
M A Wahl  R G Waldner  H P Ammon 《Life sciences》1992,51(21):1631-1637
Potassium channels of fetal rat islets have been recently reported to be inadequately regulated by stimulation with glucose when compared to islets of adult rats. Though in patch clamp experiments the properties of their KATP-channels were shown to be comparable to those from adult rats, until now no closure could be demonstrated with the technique measuring the 86Rb+ efflux. Using this technique, in the presence of a basal (3 mM) glucose concentration the 86Rb+ efflux was completely insensitive to a stimulation with glucose (5.6 mM) or tolbutamide. In contrast, in islets perifused in the absence of glucose the introduction of a low glucose concentration (3 mM) or stimulation with tolbutamide alone inhibited the 86Rb+ efflux, confirming the presence of functioning KATP-channels. The absolute value of the 86Rb+ efflux rate in the absence of glucose was, however, much lower in fetal rat islets as normally observed in adult rat islets. Apart from this, the ATP content of fetal rat islets remained unchanged at either glucose concentration tested. It is suggested that in islets of fetal rats a K+ permeability is present and can be inhibited by glucose and tolbutamide but in contrast to islets of adult rats the K+ efflux is already maximally inhibited in the presence of 3 mM glucose. This may be one reason why pancreatic islets of fetal rats do not respond to glucose-stimulation with an adequate calcium uptake and insulin release.  相似文献   

17.
In perifused tumoral islet cells (RINm5F line), which were prelabelled with either [32P]orthophosphate, 86Rb+ or 45Ca2+, the administration of D-glucose (1.4, 2.8 or 16.7 mM) increased the efflux of 32P, decreased the outflow of 86Rb, increased slightly the efflux of 45Ca from cells perifused in the presence of Ca2+, and decreased modestly the outflow of 45Ca from cells perifused in the absence of Ca2+. D-glucose also stimulated the net uptake of 45Ca2+. When Ba2+ (2 mM) was used, in the absence of Ca2+, instead of D-glucose as an insulin secretagogue, the efflux of 32P was little affected, but the outflow of 45Ca was dramatically increased. These changes are qualitatively similar to those occurring in normal islet cells. Nevertheless, the ionic response to D-glucose appeared, as a rule, less marked in tumoral than normal islet cells. Moreover, the concentration-response relationship was shifted to a lower range of hexose concentrations in the RINm5F cells.  相似文献   

18.
Muscarinic stimulation of pancreatic B-cells markedly amplifies insulin secretion through complex mechanisms which involve changes in membrane potential and ionic fluxes. In this study, normal mouse islets were used to evaluate the role of Cl- ions in these effects of acetylcholine (ACh). Whatever the concentration of glucose, the rate of 36Cl- efflux from islet cells was unaffected by ACh. Replacement of Cl- by impermeant isethionate in a medium containing 15 mM glucose did not affect, or only slightly decreased, the ability of ACh to depolarize the B-cell membrane and increase electrical activity, to accelerate 45Ca2+ and 86Rb+ efflux from islet cells, and to amplify insulin release. In the absence of extracellular Ca2+, a high concentration of ACh (100 microM) mobilized intracellular Ca2+ and caused a transient release of insulin and a sustained acceleration of 86Rb+ efflux. None of these effects was affected by Cl- omission or by addition of furosemide, a blocker of the Na+, K+, 2Cl- cotransport. Isethionate substitution for Cl- in a medium containing a nonstimulatory concentration of glucose (3 mM) barely reduced the depolarization of B-cells by ACh, but inhibited the concomitant increase in 86Rb+ efflux. We have no explanation for the latter effect that was not mimicked by furosemide. In conclusion, ACh stimulation of pancreatic B-cells, unlike that of exocrine acinar cells, is largely independent of Cl- and is insensitive to furosemide. The acceleration of ionic fluxes produced by ACh does not involve the Na+, K+, 2Cl- cotransport system.  相似文献   

19.
The effect of glucose on the Ca2+-activated K+ permeability in pancreatic islet cells was investigated by measuring the rate of 86Rb efflux, 45Ca efflux and insulin release from perifused rat pancreatic islets exposed to step-wise increased in glucose concentration. When the glucose concentration was raised from intermediate (8.3 or 11.1 mM) to higher values, a rapid and sustained increase in 86Rb outflow, 45Ca outflow and insulin release was observed. Likewise, in the presence of 8.3 or 16.7 mM glucose, tolbutamide increased 86Rb and 45Ca efflux, as well as insulin release. In the two series of experiments, a tight correlation was found between the magnitude of the changes in 86Rb and 45Ca outflow, respectively. It is concluded that, at variance with current ideas, glucose does not inhibit the response to cytosolic Ca2+ of the Ca2+-sensitive modality of K+ extrusion. On the contrary, as a result of its effect upon Ca2+ handling, glucose stimulates the Ca2+-activated K+ permeability.  相似文献   

20.
The venom from the Israeli scorpion Leiurus quinquestriatus failed to affect 86Rb and 45Ca outflow from rat pancreatic islets perifused in the presence of tetrodotoxin and stimulated by the Ca2+-ionophore A23187 or the hypoglycaemic sulfonylurea tolbutamide. In non-stimulated islets, the venom components whose effects are insensitive to tetrodotoxin did not affect 45Ca and 86Rb outflow. Last, the venom did not alter 86Rb inflow. These findings suggest that 86Rb, 45Ca fluxes and more specifically the Ca2+-activated K+ permeability in the pancreatic B-cell are insensitive to the venom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号