共查询到20条相似文献,搜索用时 0 毫秒
1.
Jirawan Mongkolkajit Jiranan Pullsirisombat Savitree Limtong Muenduen Phisalaphong 《Biotechnology and Bioprocess Engineering》2011,16(3):505-512
Alumina-doped alginate gel (AEC) was developed as a new type of cell carrier to be used in ethanol fermentation. The presence of the alumina particles in alginate gel not only improved the porous structure of the carrier, but also provided many advantageous characteristics including good mechanical strength, high stability, and high immobilization yield. The attachment of alumina particles and yeast cells by electrostatic attraction was shown to promote cell growth and increase ethanol productivity. The AEC carrier was found to be more effective for the immobilization of Saccharomyces cerevisiae M30 than the conventional Ca-alginate bead. Ethanol productivities of 1.4 and 7.9 ∼ 12.6 g/(L/h) were obtained using the AEC cultures in batch and continuous modes of operation, respectively, with an ethanol yield of 43.9 ∼ 46.7% and an immobilized yield of 81.4 ∼ 84.5%. Ethanol fermentation in a continuous packed-bed reactor using the AEC carrier was stable for > 30 days. 相似文献
2.
In this work the growth of Gibberella fujikuroi and gibberellic acid (GA3) production were studied using coffee husk and cassava bagasse as substrates in a packed-bed column bioreactor connected to a gas chromatograph for exit gas analysis. With the respirometric data, a logarithmic correlation between accumulated CO2 and biomass production was determined, and the kinetics of the fungal growth was compared for estimated and experimental data. The solid medium consisted of coffee husk (pretreated with alkali solution), mixed with cassava bagasse (7:3 dry weight basis), with a substrate initial pH of 5.2 and moisture of 77%. Cultivation was carried out in glass columns, which were packed with preinoculated substrate and with forced aeration of 0.24 L of air/[h (g of substrate)] for the first 3 days, and 0.72 L of air/[h (g of substrate)] for the remaining period. The maximum specific growth rate (microm) obtained was 0.052 h(-1) (between 24 and 48 h of fermentation). A production of 0.925 g of GA3/kg of substrate was achieved after 6 days of fermentation. 相似文献
3.
Ho Nam Chang Byoung Jin Kim Jong Won Kang Chang Moon Jeong Nag-Jong Kim Joong Kon Park 《Biotechnology and Bioprocess Engineering》2008,13(2):123-135
An upflow packed-bed cell recycle bioreactor (IUPCRB) is proposed for obtaining a high cell density. The system is comprised
of a stirred tank bioreactor in which cells are retained partially by a packed-bed. A 1.3 cm (ID) × 48 cm long packed-bed
was installed inside a 2 L bioreactor (working volume 1 L). Continuous ethanol fermentation was carried out using a 100 g/L
glucose solution containing Saccharomyces cerevisiae (ATCC 24858). Cell retention characteristics were investigated by varying the void fraction (VF) of the packed bed by packing
it with particles of 0.8∼2.0 mm sized stone, cut hollow fiber pieces, ceramic, and activated carbon particles. The best results
were obtained using an activated carbon bed with a VF of 30∼35%. The IUPCRB yielded a maximum cell density of 87 g/L, an ethanol
concentration of 42 g/L, and a productivity of 21 g/L/h when a 0.5 h−1 dilution rate was used. A natural bleeding of cells from the filter bed occurred intermittently. This cell loss consisted
of an average of 5% of the cell concentration in the bioreactor when a high cell concentration (approximately 80 g/L) was
being maintained. 相似文献
4.
Rodríguez-Durán LV Contreras-Esquivel JC Rodríguez R Prado-Barragán LA Aguilar CN 《Journal of microbiology and biotechnology》2011,21(9):960-967
Tannin acyl hydrolase, also known as tannase, is an enzyme with important applications in the food, feed, pharmaceutical, and chemical industries. However, despite a growing interest in the catalytic properties of tannase, its practical use is very limited owing to high production costs. Several studies have already demonstrated the advantages of solid-state fermentation (SSF) for the production of fungal tannase, yet the optimal conditions for enzyme production strongly depend on the microbial strain utilized. Therefore, the aim of this study was to improve the tannase production by a locally isolated A. niger strain in an SSF system. The SSF was carried out in packed-bed bioreactors using polyurethane foam as an inert support impregnated with defined culture media. The process parameters influencing the enzyme production were identified using a Plackett–Burman design, where the substrate concentration, initial pH, and incubation temperature were determined as the most significant. These parameters were then further optimized using a Box-Behnken design. The maximum tannase production was obtained with a high tannic acid concentration (50 g/l), relatively low incubation temperature (30°C), and unique low initial pH (4.0). The statistical strategy aided in increasing the enzyme activity nearly 1.97-fold, from 4,030 to 7,955 U/l. Consequently, these findings can lead to the development of a fermentation system that is able to produce large amounts of tannase in economical, compact, and scalable reactors. 相似文献
5.
Dr. W. Wöhrer 《Bioprocess and biosystems engineering》1989,4(1):35-41
Continuous ethanol production in a three stage horizontal tank bioreactor (HTR) by yeast cells entrapped in Ca-alginate was about 30% higher than in a vertical type of bioreactor and reached 31 kg/(m3 · h) at 95% glucose utilization. Maximum ethanol productivity obtained was 41.2 kg/(m3 · h), however, with 38% of the glucose fed to the HTR being wasted. The higher performance of the HTR had been mainly accounted for the reduction of the adverse CO2 gas phase effect and the more pronounced plug-flow character. Glucose and ethanol profiles along the HTR revealed that 50–80% of the overall fermentation activity was present in the first stage. Within a test period of 23 d the HTR showed an excellent operational stability.Compared to other continuous ethanol production processes using entrapped yeast cells the HTR presented here belongs to the top ones. 相似文献
6.
W. Wöhrer 《Bioprocess and biosystems engineering》1989,4(3):105-111
A mathematical model which describes ethanol formation in a horizontal tank reactor containing Saccharomyces cerevisiae immobilized in small beads of calcium alginate has been developed. The design equations combine flow dynamics of the reactor as well as product formation kinetics. The model was verified for 11 continuous experiments, where dilution rate, feed glucose concentration and bead volume fraction were varied. The model predicts effluent ethanol concentration and CO2 production rate within the experimental error. A simplification of the model is possible, when the feed glucose concentration does not exceed 150 kg/m3. The simplification results in an analytical solution of the design equation and hence can easily be applied for design purposes as well as for optimization studies. 相似文献
7.
Dr. W. Wöhrer 《Bioprocess and biosystems engineering》1989,4(2):57-61
The one-parameter-tanks-in-series model was found to be an adequate model for the characterization of flow dynamics in a horizontal immobilized cell reactor, when blue dextran was used as tracer. Isobutanol proved to be inadequate, because it diffused inside the beads and thus caused tailing in RTD. The CO2 evolution rate displayed the most pronounced effect on axial liquid dispersion. At high CO2 production rates and low dilution rates each stage of the reactor behaved like a well-mixed reactor. At lower CO2 evolution rates the number of tanks (N) related to the reactor increased up to 10. The medium flow rate affects axial dispersion to a minor degree. An increase of the dilution rate from 0.328 to 1.34 h?1 resulted in a slight rise of N from 3.5 to 5 at high CO2 production and from 4 to 7 at medium CO2 production rates. Variation in the bead hold up showed the same characteristic axial mixing behavior as reflected by changing the medium flow rate. The quantitative correlation between axial mixing and the most significant fermentation parameters (dilution rate, CO2 evolution rate and bead hold up) allow to develop an overall model, which besides kinetic expressions also contains terms related to the flow dynamics of the reactor. In the third part of this communication such a model will be presented and compared with actual fermentation data. 相似文献
8.
Lee CC Chen HC Ju HY Chen JH Kuo CH Chung YL Liu YC Shieh CJ 《Journal of industrial microbiology & biotechnology》2012,39(4):655-660
A solvent-free system to produce octyl hydroxyphenylpropionate (OHPP) from p-hydroxyphenylpropionic acid (HPPA) and octanol using immobilized lipase (Novozym® 435) as a catalyst in an ultrasound-assisted packed-bed bioreactor was investigated. Response-surface methodology (RSM) and a three-level-three-factor Box-Behnken design were employed to evaluate the effects of reaction temperature (x 1), flow rate (x 2) and ultrasonic power (x 3) on the percentage of molar production of OHPP. The results indicate that the reaction temperature and flow rate were the most important variables in optimizing the production of OHPP. Based on a ridge max analysis, the optimum conditions for OHPP synthesis were predicted to consist of a reaction temperature of 65°C, a flow rate of 0.05 ml/min and an ultrasonic power of 1.74 W/cm2 with a yield of 99.25%. A reaction was performed under these optimal conditions, and a yield of 99.33 ± 0.1% was obtained. 相似文献
9.
Karel Melzoch Mojmír Rychtera Nikolay S. Markvichov Věra Pospíchalová Gabriela Basařová Michail N. Manakov 《Applied microbiology and biotechnology》1991,34(4):469-472
Summary A series of continuous fermentations were carried out with a production strain of the yeast Saccharomyces cerevisiae in a membrane bioreactor. A membrane separation module composed of ultrafiltration tubular membranes retained all biomass in a fermentation zone of the bioreactor and allowed continuous removal of fermentation products into a cell-free permeate. In a system with total (100%) cell recycle the impact of fermentation conditions [dilution rate (0.03–0.3 h–1); substrate concentration in the feed (50–300 g·1–1); biomass concentration (depending on the experimental conditions)] was studied on the behaviour of the immobilized cell population and on ethanol formation. Maximum ethanol productivity (15 g·1–1·h–1) was attained at an ethanol concentration of 81 g·1–1. The highest demands of cells for maintenance energy were found at the maximum feed substrate concentration (300 g·1–1) and at very low concentrations of cells in the broth. 相似文献
10.
Continuous D-tagatose production by immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor 总被引:2,自引:0,他引:2
D-Tagatose was continuously produced using thermostable L-arabinose isomerase immobilized in alginate with D-galactose solution in a packed-bed bioreactor. Bead size, L/D (length/diameter) of reactor, dilution rate, total loaded enzyme amount, and substrate concentration were found to be optimal at 0.8 mm, 520/7 mm, 0.375 h(-1), 5.65 units, and 300 g/L, respectively. Under these conditions, the bioreactor produced about 145 g/L tagatose with an average productivity of 54 g tagatose/L x h and an average conversion yield of 48% (w/w). Operational stability of the immobilized enzyme was demonstrated, with a tagatose production half-life of 24 days. 相似文献
11.
Xylitol production by immobilized recombinant Saccharomyces cerevisiae in a continuous packed-bed bioreactor 总被引:2,自引:0,他引:2
Continuous xylitol production with two different immobilized recombinant Saccharomyces cerevisiae strains (H475 and S641), expressing low and high xylose reductase (XR) activities, was investigated in a lab-scale packed-bed bioreactor. The effect of hydraulic residence time (HRT; 1.3-11.3 h), substrate/cosubstrate ratio (0.5 and 1), recycling ratio (0, 5, and 10), and aeration (anaerobic and oxygen limited conditions) were studied. The cells were immobilized by gel entrapment using Ca-alginate as support and the beads were treated with Al(3+) to improve their mechanical strength. Xylose was converted to xylitol using glucose as cosubstrate for regeneration of NAD(P)H required in xylitol formation and for generation of maintenance energy. The stability of the recombinant strains after 15 days of continuous operation was evaluated by XR activity and plasmid retention analyses. Under anaerobic conditions the volumetric xylitol productivity increased with decreasing HRT with both strains. With a recycling ratio of 10, volumetric productivities as high as 3.44 and 5.80 g/L . h were obtained with the low XR strain at HRT 1.3 h and with the high XR strain at HRT 2.6 h, respectively. However, the highest overall xylitol yields on xylose and on cosubstrate were reached at higher HRTs. Lowering the xylose/cosubstrate ratio from 1 to 0.5 increased the overall yield of xylitol on xylose, but the productivity and the xylitol yield on cosubstrate decreased. Under oxygen limited conditions the effect of the recycling ratio on production parameters was masked by other factors, such as an accumulation of free cells in the bioreactor and severe genetic instability of the high XR strain. Under anaerobic conditions the instability was less severe, causing a decrease in XR activity from 0.15 to 0.10 and from 3.18 to 1.49 U/mg with the low and high XR strains, respectively. At the end of the fermentation, the fraction of plasmid bearing cells in the beads was close to 100% for the low XR strain; however, it was significantly lower for the high XR strain, particularly for cells from the interior of the beads. (c) 1996 John Wiley & Sons, Inc. 相似文献
12.
Rhizopus oryzae NBRC 4697 was selected from among promising candidates as a biocatalyst for biodiesel production. This microorganism was immobilized on to polyurethane foam coated with activated carbon for reuse, and, for biodiesel production. Vacuum drying of the immobilized cells was found to be more efficient than natural or freeze-drying processes. Although the immobilized cells were severely inhibited by a molar ratio of methanol to soybean oil in excess of 2.0, stepwise methanol addition (3 aliquots at 24-h feeding intervals) significantly prevented methanol inhibition. A packed-bed bioreactor (PBB) containing the immobilized whole cell biocatalyst was then operated under circulating batch mode. Stepwise methanol feeding was used to mitigate methanol inhibition of the immobilized cells in the PBB. An increase in the feeding rate (circulating rate) of the reaction mixture barely affected biodiesel production, while an increase in the packing volume of the immobilized cells enhanced biodiesel production noticeably. Finally, repeated circulating batch operation of the PBB was carried out for five consecutive rounds without a noticeable decrease in the performance of the PBB for the three rounds. 相似文献
13.
A continuous bioreactor packed with a fibrous matrix was set up. Cells of Pediococcus acidilactici PO2 were inoculated and MRS broth was fed gradually until cell growth and immobilization were achieved. Kinetics of fermentation and production of bacteriocin were investigated at dilution rates ranging from 0.63 day-1 to 1.58 day-1 and at pH values that varied between 4.0 and 5.5. A maximum bacteriocin activity of 6400 AU/ml was detected when the medium was fermented at dilution rates of at least 1.19 day-1 and the pH controlled at 4.5. The maximum bacteriocin productivity was 1.0×107 AUl-1 day-1 at a dilution rate of 1.58 day-1 and pH 4.5. At this high dilution rate, 1.21 g cells/l medium was produced, 95.9% of the glucose in MRS broth was utilized, and 15.1 g lactic acid/l accumulated in the bioreactor effluent. The bioreactor was operated continuously for 3 months without encountering any clogging, degeneration, or contamination problems, indicating good long-term stability of the bioreactor for bacteriocin production. About 94% of the cells in the bioreactor were immobilized, and the remainder were suspended in the medium. According to scanning electron microscopic observations, cell immobilization in the fibrous matrix was attained by natural attachment to fiber surfaces and entrapment in the void volume within the fibrous matrix. In conclusion, conditions for the optimum continuous production of pediocin were defined; this may facilitate the development of large-scale industrial processes for production of this bacteriocin. Received: 25 September 1995/Received revision: 30 November 1995/Accepted: January 1996 相似文献
14.
Estimation of Chinese hamster ovary cell density in packed-bed bioreactor by lactate production rate
A method is described for estimating recombinant Chinese hamster ovary (rCHO) cell density in a packed-bed bioreactor by lactate production rate. The lactate production rate, which depended on both the cell numbers and cell growth rate, was modeled by segregating the cell population into two parts: one growing at a maximum specific growth rate and another non-growing. The individual cell in each part had the same lactate production rate. The established rate equation of lactate production matched the experimental data reasonably well and could be used to estimate the cell growth in the batch culture with microcarriers. Furthermore, in the perfusion culture of rCHO cells in a packed-bed bioreactor, the final cell density, 1.3×1010 cells l–1, estimated by lactate production rate, was comparable to the direct sample counting of 1.2×1010 cells l–1, showing that lactate production rate method would be useful in tracing the cell growth in packed-bed bioreactors. 相似文献
15.
Martins VG Kalil SJ Bertolin TE Costa JA 《Zeitschrift für Naturforschung. C, Journal of biosciences》2006,61(9-10):721-726
Biosurfactants are surface active substances which reduce interfacial tension and are produced or excreted at the microbial cell surface. We evaluated the biosurfactant production by Aspergillus fumigatus and Phialemonium sp. in solid state processes using fixed-bed column reactors. We evaluated two media, rice husks alone (simple support) and rice husks plus defatted rice bran (complex support), both enriched with either soy oil or diesel oil. The highest water-in-oil emulsifying activity (EAw/o) obtained was 7.36 EU g(-1) produced by A. fumigatus growing on complex support enriched with soy oil and supplied with air at a rate of 60 mL g(-1) h(-1), while Phialemonium sp. had a maximum production of 6.11 EU g(-1) using the simple support with diesel oil and an aeration rate of 120 mL g(-1) h(-1). The highest oil-in-water emulsifying activity (EAo/w) was 12.21 EU g(-1) produced by Phialemonium sp. on the complex support enriched with diesel oil and at an aeration rate of 60 mL g(-1) h(-1), while A. fumigatus produced a maximum EAo/w of 10.98 EU g(-1) when growing on the complex support with no additional carbon source and an aeration rate of 60 mL g(-1) 1 h(-1). 相似文献
16.
N. K. Veenanadig M. K. Gowthaman N. G. K. Karanth 《Bioprocess and biosystems engineering》2000,22(2):95-99
Biosurfactants capable of emulsifying pesticides have great potential to assist in microbial degradation of the pesticides. Solid State Fermentation (SSF) due to several advantages, is one of the efficient ways of producing these surfactants and seldom receives attention for commercial exploitation. In this study, a packed column bioreactor with wheat bran as the raw material and Bacillus subtilis has been used to produce a biosurfactant specific to disperse Fenthion, an organophosphrous pesticide. The emulsifier activity (EA) and surface tension from the packed column bioreactor were compared with flask fermentation experiments, which served as control. Airflow rate in the packed column bioreactor was varied from 10-20 l/min. Maximum EA and minimum surface tension occurred at airflow rate of 20 l/min. Peak EA in the control was 1.2 at 29 h while it was 1.9 in the bioreactor. The least surface tension of 24 dynes/cm was noticed at 54 h in the bioreactor, which was 33% better than the control at the same time period. The results indicate that the packed column bioreactor can become a more acceptable solid state fermentation system for commercial exploitation of Fenthion specific biosurfactant production. 相似文献
17.
18.
A 20-l packed-bed reactor filled with foamed glass beads was tested for the treatment of acetonitrile HPLC wastes. Aeration was provided by recirculating a portion of the reactor liquid phase through an aeration tank, where the dissolved oxygen concentration was kept at 6 mg/l. At a feeding rate of 0.77 g acetonitrile l–1 reactor day–1, 99% of the acetonitrile was removed; and 86% of the nitrogen present in acetonitrile was released as NH3, confirming that acetonitrile volatilization was not significant. Increasing the acetonitrile loading resulted in lower removal efficiencies, but a maximum removal capacity of 1.0 g acetonitrile l–1 reactor day–1 was achieved at a feeding rate of 1.6 g acetonitrile l–1 reactor day–1. The removal capacity of the system was well correlated with the oxygenation capacity, showing that acetonitrile removal was likely to be limited by oxygen supply. Microbial characterization of the biofilm resulted in the isolation of a Comamonas sp. able to mineralize acetonitrile as sole carbon, nitrogen and energy source. This organism was closely related to C. testosteroni (91.2%) and might represent a new species in the Comamonas genus. This study confirms the potential of packed-bed reactors for the treatment of a concentrated mixture of volatile pollutants. 相似文献
19.
A packed bed bioreactor, with 170 ml glass bead carriers and 130 ml medium, was tested for the removal of the endocrine disrupter, nonylphenol, with a Sphingomonas sp. The bioreactor was first continuously fed with medium saturated with nonylphenol in an attempt to simulate groundwater pollution. At best, nonylphenol was degraded by 99.5% at a feeding rate of 69 ml h–1 and a removal rate of 4.3 mg nonylphenol day–1, resulting in a 7.5-fold decrease in effluent toxicity according to the Microtox. The bioreactor was then fed with soil leachates at 69 ml h–1 from artificially contaminated soil (1 g nonylphenol kg–1 soil) and a real contaminated soil (0.19 g nonylphenol kg–1 soil). Nonylphenol was always completely removed from the leachates of the two soils. It was removed by 99% from the artificial soil but only 62% from real contaminated soil after 18 and 20 d of treatment, respectively, showing limitation due to nonylphenol adsorption. 相似文献
20.
A feasible enzymatic process for D-tagatose production by an immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor 总被引:3,自引:0,他引:3
To develop a feasible enzymatic process for d-tagatose production, a thermostable l-arabinose isomerase, Gali152, was immobilized in alginate, and the galactose isomerization reaction conditions were optimized. The pH and temperature for the maximal galactose isomerization reaction were pH 8.0 and 65 degrees C in the immobilized enzyme system and pH 7.5 and 60 degrees C in the free enzyme system. The presence of manganese ion enhanced galactose isomerization to tagatose in both the free and immobilized enzyme systems. The immobilized enzyme was more stable than the free enzyme at the same pH and temperature. Under stable conditions of pH 8.0 and 60 degrees C, the immobilized enzyme produced 58 g/L of tagatose from 100 g/L galactose in 90 h by batch reaction, whereas the free enzyme produced 37 g/L tagatose due to its lower stability. A packed-bed bioreactor with immobilized Gali152 in alginate beads produced 50 g/L tagatose from 100 g/L galactose in 168 h, with a productivity of 13.3 (g of tagatose)/(L-reactor.h) in continuous mode. The bioreactor produced 230 g/L tagatose from 500 g/L galactose in continuous recycling mode, with a productivity of 9.6 g/(L.h) and a conversion yield of 46%. 相似文献