首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
鄱阳湖四种水鸟的栖息地利用与水深和食物的关系   总被引:2,自引:0,他引:2  
为了了解水深和食物资源对水鸟栖息地利用的影响,2012 ~ 2013年越冬期,采用样方法,对鄱阳湖沙湖的白鹤 (Grus leucogeranus)、小天鹅 (Cygnus columbianus)、东方白鹳 (Ciconia boyciana) 和白琵鹭 (Platalea leucorodia) 4种水鸟的数量、觅食地和休息地的水深以及主要食物——沉水植物冬芽的密度和生物量进行了调查。每个样方为150 m? 150 m的栅格,全湖共设置152个样方。结果显示,10月份沉水植物冬芽的平均水深为 (124.2 ± 12.0) cm。4种水鸟觅食地的水深均显著高于其休息地的水深 (白鹤:Z = 11.96, 小天鹅:Z = 4.69, 东方白鹳:Z = 14.44, 白琵鹭:Z = 29.33, 所有P < 0.01);对于2种食冬芽的水鸟,白鹤觅食地的水深、冬芽生物量、取食深度以及休息地水深均显著低于小天鹅 (觅食地水深: Z = 8.56, 冬芽生物量: Z = 2.93, 取食深度: Z = 14.69, 休息地水深: Z = 4.34, 所有P < 0.05),但两者觅食地的冬芽密度差异不显著 (Z = 0.6, P = 0.55);对于2种食鱼性水鸟,东方白鹳觅食地水深、取食深度和休息地水深均显著大于白琵鹭 (觅食地水深: Z = 10.60; 取食深度: Z = 9.35; 休息地水深: Z = 8.47, 所有P < 0.01)。回归分析表明,白鹤、东方白鹳、白琵鹭的觅食个体数量均与水深呈二次项关系,个体数量最大的觅食地水深分别为23.9 cm,33.0 cm和22.6 cm;白鹤、小天鹅的觅食个体数量均与冬芽生物量呈线性关系。3种涉禽均只能分布在一定的水深范围内,且同种食性的水鸟利用不同的水深从而减少在空间生态位的重叠。  相似文献   

2.
Many environmental variables that are important for the development of chironomid larvae (such as water temperature, oxygen availability, and food quantity) are related to water depth, and a statistically strong relationship between chironomid distribution and water depth is therefore expected. This study focuses on the distribution of fossil chironomids in seven shallow lakes and one deep lake from the Plymouth Aquifer (Massachusetts, USA) and aims to assess the influence of water depth on chironomid assemblages within a lake. Multiple samples were taken per lake in order to study the distribution of fossil chironomid head capsules within a lake. Within each lake, the chironomid assemblages are diverse and the changes that are seen in the assemblages are strongly related to changes in water depth. Several thresholds (i.e., where species turnover abruptly changes) are identified in the assemblages, and most lakes show abrupt changes at about 1–2 and 5–7 m water depth. In the deep lake, changes also occur at 9.6 and 15 m depth. The distribution of many individual taxa is significantly correlated to water depth, and we show that the identification of different taxa within the genus Tanytarsus is important because different morphotypes show different responses to water depth. We conclude that the chironomid fauna is sensitive to changes in lake level, indicating that fossil chironomid assemblages can be used as a tool for quantitative reconstruction of lake level changes.  相似文献   

3.
X Li  B Cui  Q Yang  H Tian  Y Lan  T Wang  Z Han 《PloS one》2012,7(7):e42042
Macrophyte decomposition is important for carbon and nutrient cycling in lake ecosystems. Currently, little is known about how this process responds to detritus quality and water nutrient conditions in eutrophic shallow lakes in which incomplete decomposition of detritus accelerates the lake terrestrialization process. In this study, we investigated the effects of detritus quality and water nutrient concentrations on macrophyte decomposition in Lake Baiyangdian, China, by analyzing the decomposition of three major aquatic plants at three sites with different pollution intensities (low, medium, and high pollution sites). Detritus quality refers to detritus nutrient contents as well as C∶N, C∶P, and N∶P mass ratios in this study. Effects of detritus mixtures were tested by combining pairs of representative macrophytes at ratios of 75∶25, 50∶50 and 25∶75 (mass basis). The results indicate that the influence of species types on decomposition was stronger than that of site conditions. Correlation analysis showed that mass losses at the end of the experimental period were significantly controlled by initial detritus chemistry, especially by the initial phosphorus (P) content, carbon to nitrogen (C∶N), and carbon to phosphorus (C∶P) mass ratios in the detritus. The decomposition processes were also influenced by water chemistry. The NO(3)-N and NH(4)-N concentrations in the lake water retarded detritus mass loss at the low and high pollution sites, respectively. Net P mineralization in detritus was observed at all sites and detritus P release at the high pollution site was slower than at the other two sites. Nonadditive effects of mixtures tended to be species specific due to the different nutrient contents in each species. Results suggest that the nonadditive effects varied significantly among different sites, indicating that interactions between the detritus quality in species mixtures and site water chemistry may be another driver controlling decomposition in eutrophic shallow lakes.  相似文献   

4.
SUMMARY. The benthos of a heterogeneous series of lakes was sampled in late winter-spring (before insect emergence) to determine species composition, community structure and standing crops. Nearly 50 species were found, with an average of only 12.4 per lake. Fifteen species occurred widely, with the same few species (Limnodrilus hoffmeisteri, Potamopyrgus antipodarum and sometimes Chironomus and Macropelopia spp.) often dominant. All taxonomic groups were of limited diversity; for instance, the maximum number of chironomids per lake was 8, with an average of 4.7 species. There were no chaoborids or mayflies, and very few isopods, amphipods, ceralopogonids and water mites. Niches of common species were broad.
Species composition and dominance were not related to lake trophic status; hence there were no indicator organisms. Standing crops varied only broadly with lake trophic status, probably because of the differential influence of extraneous factors such as relative depth and input of allochthonous organic matter and silt. Depth: biomass profiles were also variable and only partly correlated with trophic status. Instead, many lakes were grouped on the basis of geographical area and the influence of extraneous factors; species were grouped according to the relative extent of their distribution.  相似文献   

5.
In 2002, periphyton samples were collected 14 times from six stations within a floating vegetation mat in Lake Lunzer Obersee, a small mountain lake in Austria. Water temperature, conductivity, pH, alkalinity, Ca2+- and total-hardness were measured and quantitative samples were taken for algal biomass and chlorophyll-a analysis. Algal biomass results clearly indicated the dominance of green algae. Cluster analyses were carried out, based on both algal data and environmental parameters. The algal data separated sites, whereas the abiotic clustering revealed a temporal aspect. An indicator species analysis determined the characteristic taxa for each species group. Indicator species were then related to environmental factors using a redundancy analysis (RDA). Both pH and conductivity were significant factors, whereas water temperature, alkalinity, Ca2+- and total-hardness were not. The results of the RDA show that three species groups could be identified along a gradient of pH. One group was positively correlated with high alkalinity and another group occurred at higher values of conductivity.  相似文献   

6.
1. Until recently, the distribution of diatom species assemblages and their attributes (e.g. species richness and evenness) in relation to water depth have been identified but not quantified, especially across several lakes in a region. Here, we examined diatom assemblages in the surface sediment across a water‐depth gradient in eight small, boreal lakes in north‐western Ontario, minimally disturbed by human activities. 2. Surface‐sediment diatom assemblages were collected within each lake along a gentle slope from near‐shore to the centre deep basin of the lake, at a resolution of ~1 m water depth. Analysis of sedimentary samples provided an integrated view of assemblages that were living in the lake over several years and enabled a high‐resolution analysis of many lakes. The study lakes ranged in water chemistry, morphology and size and are located along an east–west transect approximately 250 km long in north‐western Ontario (Canada). 3. The majority of diatom species were distributed along a continuum of depth, with those taxa having similar habitat requirements forming distinct, though overlapping, assemblages. Three major zones of diatom assemblages in each lake were consistently identified: (i) a near‐shore assemblage of Achnanthes (sensu lato), Nitzschia, Cymbella (sensu lato) and other benthic species; (ii) a mid‐depth assemblage of small Fragilaria (sensu lato)/small Aulacoseira and various Navicula taxa; and (iii) a deep‐water assemblage of planktonic origin (mainly Discotella spp.). 4. The depth of the transition between assemblage zones varied between the eight lakes. The boundary between the deep‐water planktonic zone and the mid‐depth benthic zone varied according to water chemistry and was probably related to light attenuation. The boundary was deeper in lakes with the lower dissolved organic carbon and total phosphorus (TP) (i.e. less light attenuation) and vice versa. 5. Generally, species richness, species evenness and turnover rate of species as a function of depth were significantly lower in the planktonic assemblage zone in comparison with the two zones nearer the shore. Reproducibility of species and assemblage distributions across the depth gradient of the lakes illustrated that, despite potential for sediment transport, detailed ecological characterisation of diatom species can be gleaned from sedimentary data. Such data are often lacking, particularly for near‐shore benthic species.  相似文献   

7.
Physiological responses of the Crassulacean acid metabolism (CAM) plant Opuntia ficus-indica (Cactaceae) were studied on a commercial plantation in central Chile. Young cladodes (flattened stems) and flower buds exhibited daytime stomatal opening, whereas mature cladodes and fruit exhibited the nocturnal stomatal opening characteristic of CAM plants. Severe water stress suppressed the nocturnal stomatal opening by mature cladodes, but their high water vapor conductance occurring near dawn was not affected. Nocturnal acidity increases were not as sensitive to water stress as was the nocturnal stomatal opening. The magnitude of the nocturnal acidity increases depended on the total daily photosynthetically active radiation (PAR), being 90% PAR-saturated at 27 moles per square meter per day for a mean nighttime air temperature of 5°C and at 20 moles per square meter per day for 18°C. Inasmuch as the PAR received on unshaded vertical surfaces averaged about 21 moles per square meter per day, nocturnal acidity increases by the cladodes were on the verge of being PAR-limited in the field. The net assimilation rate, which was positive throughout the year, annually averaged 3.4 grams per square meter per day for 1.0- and 2.0-year-old plants. Plants that were 5.4 years old had 7.2 square meters of cladode surface area (both sides) and an annual dry weight productivity of 13 megagrams (metric tons) per hectare per year when their ground cover was 32%. This substantial productivity for a CAM plant was accompanied by the highest nocturnal acidity increase so far observed in the field, 0.78 mole H+ per square meter.  相似文献   

8.
9.
Diatom associations from the aufwuchs of inundated trees and under-water leaves of Salvinia communities in open and in enclosed transitional and semi-riverine water of the drowned upper Mwenda river area, lake Kariba were examined in relation to seasonal changes in lake and river, to species of host plant and to decreasing light quality to a depth of 3 m. The flora remained fairly stable in the summer months, changes in the relative percentage composition of the major and minor associations occurred from scouring floodwaters to stagnation in the semi-riverine areas from limited flow and extensive growth of Salvinia. The percentage frequency of occurrence remained high. The flora was less stable in the winter; some species were slow to recolonise tree areas exposed during down-draw of lake water in summer, especially at the lake face. A few species increased in relative percentage value in winter but the percentage frequency of occurrence in the minor association was poor. Achnanthes minutissima dominated particularly in the enclosed water where it was the cause of serious space competition especially to the larger species of diatom. Highest values throughout were obtained from the area of greatest change viz. the transitional water between riverine and lake conditions.Local environment was of greater significance in relative percentage abundance of diatoms than was the species of host plant. A few species showed ambivalency, becoming planktonic or epiphytic with changes in the environment. Epiphytes taken at increasing depth of water showed that 50% of them occurred in the first 1.5 m, some increased with depth, notably Rhopalodia rhopala and a few appeared to be tolerant of light changes.  相似文献   

10.
1. We tested the degree to which a lake's landscape position constrains the expression of limnological features and imposes a characteristic spatial pattern in a glacial lake district, the Northern Highland Lake District in north‐central Wisconsin. 2. We defined lake order as a metric to analyze the effect of landscape position on limnological features. Lake order, analogous to stream order, is based solely on geographical information and is simple to measure. 3. We examined the strength of the relationship between lake order and a set of 25 variables, which included measures of lake morphometry, water optical properties, major ions, nutrients, biology, and human settlement patterns. 4. Lake order explained a significant fraction of the variance of 21 of the 25 variables tested with ANOVA. The fraction of variance explained varied from 12% (maximum depth) to 56% (calcium concentration). The variables most strongly related to lake order were: measures of lake size and shape, concentrations of major ions (except sulfate) and silica, biological variables (chlorophyll concentration, crayfish abundance, and fish species richness), and human‐use variables (density of cottages and resorts). Lake depth, water optical properties, and nutrient concentrations (other than silica) were poorly associated with lake order. 5. Potential explanations for a relationship with lake order differed among variables. In some cases, we could hypothesize a direct link. For example, major ion concentration is a function of groundwater input, which is directly related to lake order. We see these as a direct influence of the geomorphic template left by the retreat of the glacier that led to the formation of this lake district. 6. In other cases, a set of indirect links was hypothesized. For example, the effect of lake order on lake size, water chemistry, and lake connectivity may ultimately explain the relation between lake order and fish species richness. We interpret these relationships as the result of constraints imposed by the geomorphic template on lake development over the last 12 000 years. 7. By identifying relationships between lake characteristics and a measure of landscape position, and by identifying geomorphologic constraints on lake features and lake evolution, our analysis explains an important aspect of the spatial organization of a lake district.  相似文献   

11.
Aim  To assess the relative impacts of spatial, local environmental and habitat connectivity on the structure of aquatic macrophyte communities in lakes designated for their conservation value. Location  Selected lakes of conservation importance all over Scotland, representing a wide variety of lake habitat types and associated macrophyte communities. Methods  Local environmental variables and species occurrence were measured in the field. Spatial variables were generated using principal coordinates of neighbour matrices (PCNM) analysis. Connectivity between each lake and its neighbours was defined as either (i) all lakes within a radius of 5, 10, 25, 50, 75 or 100 km; (ii) all lakes in same river system; or (iii) all lakes in the same catchment and upstream of the lake. Using variance partitioning within canonical correspondence analysis, the relative impact of E = local environment, S = space and C = lake connectivity was compared on submerged (n = 119 lakes) and emergent (n = 96 lakes) macrophyte assemblages. Results  Local environmental conditions, such as total phosphorus, alkalinity/conductivity and the presence of invasive species, as well as spatial gradients were key drivers of observed variation in macrophyte communities; e.g., for submerged macrophytes, a combination of local to moderate factors relating to water chemistry and broad‐scale gradients reflecting elevation and climate are important. Spatially structured environmental variables explained a large portion of observed variation. Main conclusions  Our findings confirmed the need to manage local environmental pressures such as eutrophication, but suggested that the traditional catchment approach was insufficient. The spatial aggregation of environmental and connectivity factors indicated that a landscape scale approach should be used in lake management to augment the risk assessment to conservation species from the deterioration of suitable lake sites over broad biogeographic areas.  相似文献   

12.
Water quality and mollusc communities have been declining in Lake Winnipeg., the tenth largest freshwater lake in the world. Ninety sites were surveyed in the southern half of the lake. Nitrate and total dissolved solids were found to be significantly higher on the west side, while cadmium, copper and lead were higher on the east side. Agriculture, urban effluent, and recreational development were major factors directly affecting nearshore water quality. Human impacts were sporadically aggravated by Red River floodwaters entering the lake. A total of 26 gastropod were currently found in the lake, but 16 of them were found at 5 or fewer sites. Only 6 unionid species were found, compared to at least 11 historical species records. Species richness of both gastropods and unionids was positively correlated with total dissolved solids, and inversely with lead. Gastropod and unionid species richness were also mutually positively correlated. Catchment basin and shoreline management policies affecting Lake Winnipeg need to be reexamined to reduce further habitat decline.  相似文献   

13.
Ostracods are important members of the benthos and littoral communities of lake ecosystems. Ostracods respond to hydrochemistry (water chemistry) which is influenced by climatic factors such as water balance, temperature, and chemicals in rainfall runoff from the land. Thus, at local scales, environmental preferences of ostracods and characteristics of lakes are used to infer changes in climate, hydrology, and erosion of lake catchments. This study addresses potential drivers of ostracod community structure and biodiversity at multiple spatial scales using NMS, CART?, and multiple regression models. We identified 23 ostracod species from 12 lake sites. Lake area, maximum depth, spring conductivity, chlorophyll a, pH, dissolved oxygen, sedimentary carbonate, and organic matter all influence ostracod community structure based on our NMS. Based on regression analysis, lake depth, chlorophyll a, and total dissolved solids best explained ostracod richness and abundance. Land uses are also important community structuring elements that varied with scale; locally and regionally agriculture, wetlands, and grasslands were important. Nationally, using regression tree analysis of lakes sites in the North American Non-marine ostracod database (NANODe), row-crop agriculture was the most important predictor of biodiversity. Low agriculture corresponded to low species richness but greater landscape heterogeneity produced sites of high ostracod richness.  相似文献   

14.
SUMMARY 1. The summertime phytoplankton assemblage in abysmally deep (Zmax: 589 m) Crater Lake, Oregon, consists of over 100 species, which are variously distributed in the upper 200 m of the vertical water column. The depth distribution of the lake's three most prevalent species follows a predictabk pattern: Nitzschia gracilis in the 0–20 m stratum, Tribonema sp. at mid–depth (80–20 m), and Stephanodiscus hantzschii in the lowermost stratum (160–200 m). These major species, which account for approximately 80% or more of the lake's total phytoplankton biomass and primary production, exist under atypical temperature, light, and nutrient conditions.
2. The spatial distribution of phytoplankton in Crater Lake resembles a three-tier structure. Unlike most lakes, where the entire phytoplankton communities exist in less disparate environmental conditions, or are vertically mixed periodically by storm events and seasonal lake turnover. the Crater Lake community is partitioned into stratified environments.
5. The disparate and unusual characteristics of these environments, and the hydrological and limnological stability of the lake basin, are perhaps important factors regulating the diversity, dominance. and partitioning of the lake's phytoplankton populations.  相似文献   

15.
Total pollen production per inflorescence and per square meter were studied in anemophilous species of the Poaceae family, to determine the relative contribution of each species to the total load of pollen released and to identify the species with the highest potential pollen emission. This was done by calculating the number of pollen grains per flower and per inflorescence and by estimating the density of inflorescences in an area of one square meter. Pollen production per inflorescence varied between 12,000 and 15 million grains, often being higher in the perennial species. Mountainous, grassland, riverside, and littoral areas contributed similarly to the amount of pollen grain production per square meter. Species such as Gaudinia fragilis, Hordeum murinum, Lolium rigidum, and Trisetaria panicea, with high pollen records, were found in all the studied areas. Aerobiological analysis will be undertaken to determine the main pollen season of Poaceae species. The results obtained are of great importance for respiratory health management in this region.  相似文献   

16.
Microhabitat selectivity, resource partitioning, and niche shifts in five species of grazing caddisfly larvae (Glossosoma califica, G. penitum, Dicosmoecus gilvipes, Neophylax rickeri, and N. splendens) were quantified by underwater measurement of microhabitat availability and utilization in three northern California streams. The microhabitat parameters water depth and velocity and rock size, roughness, and slope were measured. Comparisons of habitat available to habitat used revealed significant selection for at least two microhabitat parameters by each population, with depth and velocity being the most important. Comparisons of habitat used by different species showed significant partitioning of at least two microhabitat parameters at each site, with depth being partitioned at all sites. Non-parametric discriminant analysis revealed significant microhabitat partitioning on a multivariate level at two sites. Comparisons of habitat used at different sites quantified a major niche shift by D. gilvipes in its preference for riffles versus pools. Size-selective predation by dippers (Cinclus mexicanus) and steelhead (Salmo gairdneri gairdneri) is proposed as a hypothesis to explain the observed resource partitioning and niche shift.  相似文献   

17.
Epiphytic diatoms in two freshwater maritime Antarctic lakes   总被引:1,自引:0,他引:1  
SUMMARY.
  • 1 An ecological study of two small maritime Antarctic lakes on Signy Island, South Orkney Islands, was undertaken from January 1986 to March 1987. Analysis of diatom counts from the lakes provided examples of oligotrophic and mesotrophic ecosystems.
  • 2 A diverse community of 104 epiphytic taxa was identified. Twenty-eight taxa had a percentage abundance greater than 1% in both lakes. Distinctive dominant taxa were identified from each lake.
  • 3 A variety of ordination techniques was performed on the abundance data and a principal components analysis demonstrated differences in the diatom assemblages between the two lakes. Clear separations of sites and species were evident between the lakes, and accounted for the greatest percentage variance.
  • 4 Species composition varied with depth within each lake and was also important in influencing changes in assemblage composition between sites.
  • 5 A redundancy analysis indicated that species composition was correlated to concentrations of nitrogen and phosphorus but the total variance accounted for by the four physical and chemical factors measured was low (24%).
  相似文献   

18.
The objective of this study was to quantify differences in recruitment potential (seed production, seed presence in the soil) for two congeneric perennial grasses (Bouteloua gracilis, Bouteloua eriopoda [Poaceae]) that dominate adjacent arid and semiarid grassland biomes. It was hypothesized that these species have different recruitment strategies at the biome transition zone that are related to differences in their growth form and longevity. Recruitment potential for each Bouteloua species was compared in patches dominated by one or both species or codominated by the invasive shrub, Larrea tridentata (Zygophyllaceae). Regional variation in recruitment was examined for B. gracilis for cases in which comparable data were available in the literature for a site located within the semiarid grassland biome. The short-lived stoloniferous species B. eriopoda produced more seeds per plant than the long-lived bunchgrass B. gracilis, yet seed viability (<60%) and presence in the soil were lower. Mean viability of B. gracilis was higher (>90%) than that of B. eriopoda, and a greater percentage of seeds produced on a square meter basis was found in the soil (10-25%). Similar patterns were found for both species in all grass-dominated patches. Bouteloua eriopoda plants growing in patches codominated by L. tridentata produced fewer seeds per plant with lower viability, and fewer seeds were found in the soil compared to grass-dominated patches. Regional comparisons found greater seed production per square meter and more seeds in the soil for B. gracilis at the transitional site compared with a cooler, wetter site located within the semiarid grassland biome. These differences in recruitment potential along with published differences in rates of seedling establishment and vegetative spread may explain, at least in part, localized patterns in species dominance.  相似文献   

19.
Aims Conduct a quantitative, but rapid, regional-level assessment of the alpine flora across northwest Yunnan (NWY) to provide a broad-based understanding of local and regional patterns of the composition, diversity and health of alpine ecosystems across NWY.Methods A stratified random sampling design was employed to select sites across the different mountain ranges of NWY. Vegetation was sampled by stratifying each site by the three major alpine vegetation community types: meadow, dwarf shrub and scree. Two 50-m transects were randomly located within each community type at each sampling site with 10 1-m 2 subplots systematically placed along each transect. Environmental variables were recorded at each transect. Multivariate analyses were used to classify the major plant community assemblages and link community patterns to environmental and habitat variables.Important findings Forb species richness varied from 19 to 105 species per site (21 sites total) with an average of 59 species per site (60 m 2 sampled per site). Most species were patchily distributed with narrow distributions and/or small population sizes; over half the species occurred at only one or two sites. Distinct species assemblages were identified in the meadow vegetation that was strongly aggregated by geographic location suggesting the presence of distinct phytogeographic zones of the meadow alpine flora. Elevation and geographic location were the dominant environmental gradients underlying the variations in species composition. Jaccard's coefficient of similarity averaged only 10% among sites indicating there was little similarity in the alpine flora across the region. The alpine vegetation is highly heterogeneous across the complex landscape of the Hengduan Mountains of NWY. Conservation strategies need to take into account the large geographic differences in the flora to maximize protection of biodiversity.  相似文献   

20.
The growth and tuberization of potatoes (Solanum tuberosum L.) maintained for 6 weeks under four different regimes of continuous irradiance were compared to plants given 12 hours light and 12 hours dark. Treatments included: (a) continuous photosynthetic photon flux of 200 micromoles per square meter per second cool-white fluorescent (CWF); (b) continuous 400 micromoles per square meter per second CWF; (c) 12 hours 400 micromoles per square meter per second CWF plus 12 hours dim CWF at 5 micromoles per square meter per second; (d) 12 hours micromoles per square meter per second CWF plus 12 hours dim incandescent (INC) at 5 micromoles per square meter per second and a control treatment of 12 hours light at 400 micromoles per square meter per second CWF and 12 hours dark. The study included five cultivars ranging from early- to late-season types: `Norland,' `Superior,' `Norchip,' `Russet Burbank,' and `Kennebec.' Tuber development progressed well under continuous irradiation at 400 micromoles per square meter per second and under 12 hours irradiance and 12 hours dark, while tuber development was suppressed in all other light treatments. Continuous irradiation at 200 or 400 micromoles per square meter per second resulted in severe stunting and leaf malformation on `Superior' and `Kennebec' plants, but little or no injury and vigorous shoot growth in the other cultivars. No injury or stunting were apparent under 12-dim light or 12-dark treatments. Plants given 12 hours dim INC showed significantly greater stem elongation but less total biomass than plants in other treatments. The continuous light encouraged shoot growth over tuber growth but this trend was overridden by providing a high irradiance level. The variation among cultivars for tolerance to continuous lighting indicates that potato may be a useful species for photoinhibition studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号