首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The activation of bypass signals, such as MET and AXL, has been identified as a possible mechanism of EGFR-TKI resistance. Because various oncoproteins depend on HSP90 for maturation and stability, we investigated the effects of AUY922, a newly developed non-geldanamycin class HSP90 inhibitor, in lung cancer cells with MET- and AXL-mediated resistance. We established resistant cell lines with HCC827 cells harboring an exon 19-deletion mutation in of the EGFR gene via long-term exposure to increasing concentrations of gefitinib and erlotinib (HCC827/GR and HCC827/ER, respectively). HCC827/GR resistance was mediated by MET activation, whereas AXL activation caused resistance in HCC827/ER cells. AUY922 treatment effectively suppressed proliferation and induced cell death in both resistant cell lines. Accordingly, the downregulation of EGFR, MET, and AXL led to decreased Akt activation. The inhibitory effects of AUY922 on each receptor were confirmed in gene-transfected LK2 cells. AUY922 also effectively controlled tumor growth in xenograft mouse models containing HCC827/GR and HCC827/ER cells. In addition, AUY922 reduced invasion and migration by both types of resistant cells. Our study findings thus show that AUY922 is a promising therapeutic option for MET- and AXL-mediated resistance to EGFR-TKI in lung cancer.  相似文献   

2.
EGFR-TKI靶向治疗在非小细胞肺癌(non-small cell lung cancer, NSCLC)综合治疗中显示出重要作用;然而,耐药性却极大限制其临床治疗效果。受体酪氨酸激酶样孤儿受体(receptor tyrosine kinase-like orphan receptor 1, ROR1)是I型受体酪氨酸激酶家族中的成员,在肿瘤发生发展中发挥重要作用。本研究拟探讨ROR1介导非小细胞肺癌吉非替尼耐药的作用及机制。采用吉非替尼反复诱导非小细胞肺癌HCC827细胞,建立吉非替尼耐药细胞株HCC827/GR。应用荧光定量PCR和Western 印迹检测HCC827/GR内ROR1的表达。采用shRNA的方法体外检测ROR1敲除前后HCC827/GR对吉非替尼耐药的变化,采用体外检测ROR1过表达前后HCC827对吉非替尼耐药的变化。体内检测ROR1敲除前后HCC827/GR对吉非替尼耐药的变化。Western 印迹检测HCC827/GR内ROR1下游信号分子的活化。实时荧光定量PCR及Western 印迹结果显示,HCC827/GR耐药细胞中的ROR1 mRNA和蛋白质表达水平显著高于HCC827敏感细胞。体外干扰ROR1表达,可明显增强HCC827/GR耐药细胞对吉非替尼的敏感性 (IC50 15.3±3.69 vs. 4.2±1.38),增加吉非替尼诱导的细胞凋亡 (20.5±2.52 vs. 41.8±3.74)。体外过表达ROR1显著增强HCC827敏感细胞对吉非替尼的耐药性(IC50 0.8±0.52 vs. 2.2±0.87)。体内裸鼠移植瘤实验同样发现,干扰ROR1能增强HCC827/GR移植瘤对吉非替尼的敏感性。进一步研究发现,AKT/FOXO1信号在HCC827/GR耐药细胞中异常活化,而干扰ROR1能够抑制AKT的磷酸化,并上调FOXO1的表达。上述结果表明,ROR1参与非小细胞肺癌吉非替尼耐药,抑制ROR1能够逆转吉非替尼耐药,其机制与ROR1调控AKT/FOXO1信号有关。  相似文献   

3.
4.
The potential benefits of drugs directly targeting the ErbB receptors for cancer therapy have led to an extensive development within this field. However, the clinical effects of ErbB receptor-targeting drugs in cancer treatment are limited due to a high frequency of resistance. It has been reported that, when inhibiting the epidermal growth factor receptor (EGFR) with the tyrosine kinase inhibitor gefitinib, increased activation of ErbB3 via MET, or by re-localization of ErbB3 mediates cell survival. Here we show further evidence that members of the ErbB receptor family facilitate resistance to EGFR inhibitor treatment in ErbB2 overexpressing breast cancer cells. We found that gefitinib treatment increased ErbB3 expression, both at protein and mRNA levels. ErbB3 expression was upregulated not only by gefitinib but also by a panel of different EGFR inhibitors, suggesting that inhibition of EGFR in general affects ErbB3 expression. In addition, we found that gefitinib treatment increased ErbB2 expression levels while EGFR inhibitors decreased the activity of ErbB2. Concentrations of gefitinib that decreased phospho-ErbB2 reversely increased ErbB3 levels. We further examined changes induced by gefitinib treatment on mRNA levels of the most common genes known to be involved in breast cancer. As expected, we found that gefitinib downregulated genes whose functions were linked to cellular proliferation, such as Ki-67, topoisomerase II alpha and cyclins, and surprisingly downregulated gene expression of FAS which is involved in apoptotic signaling. Together, our data strongly suggest that resistance to EGFR inhibitors may result from the compensation of other family members and that combinations of anti-cancer drugs are required to increase the sensitivity of these treatments.  相似文献   

5.

Background

The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer progression and may promote resistance to therapy. An analysis of patients (n = 71) profiled with both gene expression and a global microRNA assessment (∼415 miRs) identified miR-147 as highly anti-correlated with an EMT gene expression signature score and postulated to reverse EMT (MET).

Methods and Findings

miR-147 was transfected into colon cancer cells (HCT116, SW480) as well as lung cancer cells (A-549). The cells were assessed for morphological changes, and evaluated for effects on invasion, motility, and the expression of key EMT markers. Resistance to chemotherapy was evaluated by treating cells with gefitinib, an EGFR inhibitor. The downstream genes regulated by miR-147 were assayed using the Affymetrix GeneChip U133 Plus2.0 platform. miR-147 was identified to: 1. cause MET primarily by increasing the expression of CDH1 and decreasing that of ZEB1; 2. inhibit the invasion and motility of cells; 3. cause G1 arrest by up-regulating p27 and down-regulating cyclin D1. miR-147 also dramatically reversed the native drug resistance of the colon cancer cell line HCT116 to gefitinib. miR-147 significantly repressed Akt phosphorylation, and knockdown of Akt with siRNA induced MET. The morphologic effects of miR-147 on cells appear to be attenuated by TGF-B1, promoting a plastic and reversible transition between MET and EMT.

Conclusion

miR-147 induced cancer cells to undergo MET and induced cell cycle arrest, suggesting a potential tumor suppressor role. miR-147 strikingly increased the sensitivity to EGFR inhibitor, gefitinib in cell with native resistance. We conclude that miR-147 might have therapeutic potential given its ability to inhibit proliferation, induce MET, as well as reverse drug sensitivity.  相似文献   

6.
Triple negative breast cancer (TNBC) patients cannot benefit from EGFR-targeted therapy even though the EGFR is highly expressed, because patients exhibit resistance to these drugs. Unfortunately, the molecular mechanisms remain relatively unknown. ANXA2, highly expressed in invasive breast cancer cells, is closely related with poor prognosis, and acts as a molecular switch to EGFR activation. In this study, MDA-MB-231 cells and MCF7 cells were used. Our results showed that ANXA2 expression is inversely correlated with cell sensitivity to gefitinib. Knockdown of ANXA2 expression in MDA-MB-231 cells increased the gefitinib induced cell death. When ANXA2 was overexpressed in MCF7 cells, the gefitinib induced cell death was decreased. Furthermore, we demonstrated that phosphorylation of ANXA2 at Tyr23 is negatively correlated with the sensitivity of TNBC to gefitinib. Altogether, our results suggest a new role of ANXA2 in regulating sensitivity of TNBC MDA-MB-231 cells to the EGFR inhibitor gefitinib.  相似文献   

7.
Receptor down-regulation is the most prominent regulatory system of EGF receptor (EGFR) signal attenuation and a critical target for therapy against colon cancer, which is highly dependent on the function of the EGFR. In this study, we investigated the effect of ultraviolet-C (UV-C) on down-regulation of EGFR in human colon cancer cells (SW480, HT29, and DLD-1). UV-C caused inhibition of cell survival and proliferation, concurrently inducing the decrease in cell surface EGFR and subsequently its degradation. UV-C, as well as EGFR kinase inhibitors, decreased the expression level of cyclin D1 and the phosphorylated level of retinoblastoma, indicating that EGFR down-regulation is correlated to cell cycle arrest. Although UV-C caused a marked phosphorylation of EGFR at Ser-1046/1047, UV-C also induced activation of p38 MAPK, a stress-inducible kinase believed to negatively regulate tumorigenesis, and the inhibition of p38 MAPK canceled EGFR phosphorylation at Ser-1046/1047, as well as subsequent internalization and degradation, suggesting that p38 MAPK mediates EGFR down-regulation by UV-C. In addition, phosphorylation of p38 MAPK induced by UV-C was mediated through transforming growth factor-β-activated kinase-1. Moreover, pretreatment of the cells with UV-C suppressed EGF-induced phosphorylation of EGFR at tyrosine residues in addition to cell survival signal, Akt. Together, these results suggest that UV-C irradiation induces the removal of EGFRs from the cell surface that can protect colon cancer cells from oncogenic stimulation of EGF, resulting in cell cycle arrest. Hence, UV-C might be applied for clinical strategy against human colon cancers.  相似文献   

8.
BackgroundAdenosine receptors are involved in tumor growth, progression, and response to therapy. Among them, A2B receptor is highly expressed in various tumors. Furthermore, ionizing radiation induces translocation of epidermal growth factor receptor (EGFR), which promotes DNA repair and contributes to radioresistance. We hypothesized that A2B receptor might be involved in the translocation of EGFR.MethodsWe investigated whether A2B receptor is involved in EGFR translocation and DNA damage response (γH2AX/53BP1 focus formation) of lung cancer cells by means of immunofluorescence studies. Radiosensitivity was evaluated by colony formation assay after γ-irradiation.ResultsA2B receptor was expressed at higher levels in cancer cells than in normal cells. A2B receptor antagonist treatment or A2B receptor knockdown suppressed EGFR translocation, γH2AX/53BP1 focus formation, and colony formation of lung cancer cell lines A549, calu-6 and NCI-H446, compared with a normal cell line (beas-2b). γ-Irradiation-induced phosphorylation of src and EGFR was also attenuated by suppression of A2B receptor expression.ConclusionActivation of A2B receptor mediates γ-radiation-induced translocation of EGFR and phosphorylation of src and EGFR, thereby promoting recovery of irradiated lung cancer cells from DNA damage.General significanceOur results indicate that A2B receptors contribute to radiation resistance in a cancer-cell-specific manner, and may be a promising target for radiosensitizers in cancer radiotherapy.  相似文献   

9.
Members of the EGFR/ErbB family of tyrosine kinases are found to be highly expressed and deregulated in many cancers, including head and neck squamous cell carcinoma (HNSCC). The ErbB family, including EGFR, has been demonstrated to play key roles in metastasis, tumorigenesis, cell proliferation, and drug resistance. Recently, these characteristics have been linked to a small subpopulation of cells classified as cancer stem cells (CSCs) which are believed to be responsible for tumor initiation and maintenance. In this study, we investigated the possible role of EGFR as a regulator of "stemness" in HNSCC cells. Activation of EGFR by the addition of EGF ligand or ectopic expression of EGFR in two established HNSCC cell lines (UMSCC-22B and HN-1) resulted in the induction of CD44, BMI-1, Oct-4, NANOG, CXCR4, and SDF-1. Activation of EGFR also resulted in increased tumorsphere formation, a characteristic ability of cancer stem cells. Conversely, treatment with the EGFR kinase inhibitor, Gefinitib (Iressa), resulted in decreased expression of the aforementioned genes, and loss of tumorsphere-forming ability. Similar trends were observed in a 99.9% CD44 positive stem cell culture derived from a fresh HNSCC tumor, confirming our findings for the cell lines. Additionally, we found that these putative cancer stem cells, when treated with Gefitinib, possessed a lower capacity to invade and became more sensitive to cisplatin-induced death in vitro. These results suggest that EGFR plays critical roles in the survival, maintenance, and function of cancer stem cells. Drugs that target EGFR, perhaps administered in combination with conventional chemotherapy, might be an effective treatment for HNSCC.  相似文献   

10.
Although cancers can be initially treated with the epidermal growth factor receptor (EGFR) inhibitor, gefitinib, continued gefitinib therapy does not benefit the survival of patients due to acquired resistance through EGFR mutations, c-MET amplification, or epithelial-mesenchymal transition (EMT). It is of further interest to determine whether mesenchymal-like, but not epithelial-like, cancer cells can become resistant to gefitinib by bypassing EGFR signaling and acquiring alternative routes of proliferative and survival signaling. Here we examined whether gefitinib resistance of cancer cells can be caused by transmembrane 4 L six family member 5 (TM4SF5), which has been shown to induce EMT via cytosolic p27Kip1 stabilization. Gefitinib-resistant cells exhibited higher and/or sustained TM4SF5 expression, cytosolic p27Kip1 stabilization, and mesenchymal phenotypes, compared with gefitinib-sensitive cells. Conversion of gefitinib-sensitive to -resistant cells by introduction of the T790M EGFR mutation caused enhanced and sustained expression of TM4SF5, phosphorylation of p27Kip1 Ser10 (responsible for cytosolic location), loss of E-cadherin from cell-cell contacts, and gefitinib-resistant EGFR and survival signaling activities. Additionally, TM4SF5 overexpression lessened the sensitivity of NSCLC cells to gefitinib. Suppression of TM4SF5 or p27Kip1 in gefitinib-resistant cells via the T790M EGFR mutation or TM4SF5 expression rendered them gefitinib-sensitive, displaying more epithelial-like and less mesenchymal-like characteristics. Together, these results indicate that TM4SF5-mediated EMT may have an important function in the gefitinib resistance of cancer cells.  相似文献   

11.
Epidermal growth factor receptor (EGFR) is highly expressed in certain cancer types and is involved in regulating the biological characteristics of cancer progression, including proliferation, metastasis, and drug resistance. Various medicines targeting EGFR have been developed and approved for several cancer types, such as lung and colon cancer. To date, however, EGFR inhibitors have not achieved satisfactory clinical results in breast cancer, which continues to be the most serious malignant tumor type in females. Therefore, clarifying the underlying mechanisms related to the ineffectiveness of EGFR inhibitors in breast cancer and developing new EGFR-targeted strategies (e.g., combination therapy) remain critical challenges. Various studies have demonstrated aberrant expression and maintenance of EGFR levels in breast cancer. In this review, we summarize the regulatory mechanisms underlying EGFR protein expression in breast cancer cells, including EGFR mutations, amplification, endocytic dysfunction, recycling acceleration, and degradation disorders. We also discuss potential therapeutic strategies that act directly or indirectly on EGFR, including reducing EGFR protein expression, treating the target protein to mediate precise clearance, and inhibiting non-EGFR signaling pathways. This review should provide new therapeutic perspectives for breast cancer patients with high EGFR expression.  相似文献   

12.
Epidermal growth factor receptor (EGFR), member of the human epidermal growth factor receptor (HER) family, plays a critical role in regulating multiple cellular processes including proliferation, differentiation, cell migration and cell survival. Deregulation of the EGFR signaling has been found to be associated with the development of a variety of human malignancies including lung, breast, and ovarian cancers, making inhibition of EGFR the most promising molecular targeted therapy developed in the past decade against cancer. Human non small cell lung cancers (NSCLC) with activating mutations in the EGFR gene frequently experience significant tumor regression when treated with EGFR tyrosine kinase inhibitors (TKIs), although acquired resistance invariably develops. Resistance to TKI treatments has been associated to secondary mutations in the EGFR gene or to activation of additional bypass signaling pathways including the ones mediated by receptor tyrosine kinases, Fas receptor and NF-kB. In more than 30–40% of cases, however, the mechanisms underpinning drug-resistance are still unknown. The establishment of cellular and mouse models can facilitate the unveiling of mechanisms leading to drug-resistance and the development or validation of novel therapeutic strategies aimed at overcoming resistance and enhancing outcomes in NSCLC patients. Here we describe the establishment and characterization of EGFR TKI-resistant NSCLC cell lines and a pilot study on the effects of a combined MET and EGFR inhibitors treatment. The characterization of the erlotinib-resistant cell lines confirmed the association of EGFR TKI resistance with loss of EGFR gene amplification and/or AXL overexpression and/or MET gene amplification and MET receptor activation. These cellular models can be instrumental to further investigate the signaling pathways associated to EGFR TKI-resistance. Finally the drugs combination pilot study shows that MET gene amplification and MET receptor activation are not sufficient to predict a positive response of NSCLC cells to a cocktail of MET and EGFR inhibitors and highlights the importance of identifying more reliable biomarkers to predict the efficacy of treatments in NSCLC patients resistant to EGFR TKI.  相似文献   

13.
14.
Epidermal growth factor (EGF) and their receptor (EGFR) play an important role in the development of cancer proliferation, and metastasis, although the mechanism remains unclear. The present study aimed at investigating the role of EGF‐EGFR signalling pathway in the development of human hepatocellular carcinoma (HCC) inflammatory environment. Gene profiles of inflammatory cytokines from HCC were measured. Cell bio‐behaviours of HCC with low or high metastasis were detected by the live cell monitoring system. Cell proliferation was measured by CCK8. The protein level of CXCL5 and CXCL8 was measured by ELISA. The phosphorylation of PI3K, ERK, MAPK was measured by western blot. EGF significantly induced cell proliferation in HepG2 cells, but not in HCCLM3 cells. EGF prompted the cell movement in both HepG2 and HCCLM3 and regulated the production of CXCL5 and CXCL8 from HCC, which were inhibited by EGFR inhibitor, Erk inhibitor (U0126), or PI3K inhibitors (BEZ‐235 and SHBM1009). HCC proliferation, metastasis and production of inflammatory cytokines were regulated via EGF‐EGFR signal pathways. CXCL5 could interact with CXCL8, possibly by CXCR2 or the cross‐talk between CXCR2 and EGFR. EGF‐EGFR signaling pathway can be the potential target of therapies for HCC.  相似文献   

15.
Lin F  Li Y  Cao J  Fan S  Wen J  Zhu G  Du H  Liang Y 《Molecular biology reports》2011,38(8):5205-5210
Osteopontin (OPN) plays an important role in metastasis and relapse of human cancer. However, the whole story of OPN relating to cancer has been far from clear untill now. To investigate the expression of OPN in hepatocellular carcinoma (HCC) and its relationships with recurrence and metastasis of HCC, normal and malignant liver tissues from patients with HCC were analyzed using immunohistochemical staining. OPN expression was inhibited by small interfering RNA (siRNA) in HCC cells lines, and then colony formation and matrigel invasion were examined. The results showed that expression of OPN was associated with metastasis of HCC with a positive rate of OPN in the tissue of HCC (70.00%), which was highly more obvious than those in paracarcinoma tissue and normal liver tissue (P < 0.01). In HCC cell lines, OPN depletion could reduce formed colony and metastasizing numbers in vitro. In conclusion, Expression of OPN in the tissue of HCC is related to metastasis or metastases. Specific siRNA could decrease expressions of OPN at both mRNA and protein levels, and abates the invasiveness of hepatocellular carcinoma cells, suggesting that OPN might be a promising agent for treatment of metastasis and recurrence of HCC.  相似文献   

16.
Hepatocellular carcinoma (HCC) is the major form of primary liver cancer which accounts for more than half million deaths annually worldwide. While the incidence of HCC is still on the rise, options of treatment are limited and the overall survival rate is poor. The acquisition of cancer drug resistance remains one of the key hurdles to successful treatment. Clearly, a thorough understanding of the underlying mechanisms is needed for new strategies to design novel treatments and/or to improve the current therapies. In the present study, we examined the expression of cancer stem cell (CSC) marker CD133, the activation of insulin-like growth factor 1 receptor (IGF-1R) signaling, and the nuclear translocation of IGF-1R in HCC Mahlavu cells under the treatment of gefitinib, a cancer drug that inhibits epidermal growth factor receptor (EGFR) pathway. Our results demonstrated that Mahlavu cells exhibited strong gefitinib resistance and the CD133 expression level was dramatically increased (from 3.88% to 32%) after drug treatment. In addition, the gefitinib treated cells displayed increased levels of phosphorylation in IGF-1R and Akt, indicating the intensified activation of this cancer-associated signaling pathway. Moreover, we revealed that IGF-1R underwent nuclear translocation in gefitinib treated cells using confocal microscopy. The IGF-1R nuclear translocation was enhanced under gefitinib treatment and appeared in a dose-dependent manner. Our findings suggest that increased IGF-1R nuclear translocation after gefitinib treatment may contribute to the drug resistance and IGF1-R activation, which might also associate with the upregulation of CD133 expression.  相似文献   

17.
Acquired chemoresistance not only blunts anticancer therapy but may also promote cancer cell migration and metastasis. Our previous studies have revealed that acquired tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance in lung cancer cells is associated with Akt-mediated stabilization of cellular caspase 8 and Fas-associated death domain (FADD)-like apoptosis regulator-like inhibitory protein (c-FLIP) and myeloid cell leukemia 1 (Mcl-1). In this report, we show that cells with acquired TRAIL resistance have significantly increased capacities in migration and invasion. By gene expression screening, tissue transglutaminase (TGM2) was identified as one of the genes with the highest expression increase in TRAIL-resistant cells. Suppressing TGM2 dramatically alleviated TRAIL resistance and cell migration, suggesting that TGM2 contributes to these two phenotypes in TRAIL-resistant cells. TGM2-mediated TRAIL resistance is likely through c-FLIP because TGM2 suppression significantly reduced c-FLIP but not Mcl-1 expression. The expression of matrix metalloproteinase 9 (MMP-9) was suppressed when TGM2 was inhibited, suggesting that TGM2 potentiates cell migration through up-regulating MMP-9 expression. We found that EGF receptor (EGFR) was highly active in the TRAIL-resistant cells, and suppression of EGFR dramatically reduced TGM2 expression. We further determined JNK and ERK, but not Akt and NF-κB, are responsible for EGFR-mediated TGM2 expression. These results identify a novel pathway that involves EGFR, MAPK (JNK and ERK), and TGM2 for acquired TRAIL resistance and cell migration in lung cancer cells. Because TGM2 couples TRAIL resistance and cell migration, it could be a molecular target for circumventing acquired chemoresistance and metastasis in lung cancer.  相似文献   

18.
Mucosal melanoma (MM) is a very rare and aggressive type of cancer for which immunotherapy or targeted therapy such as BRAF/MEK inhibitors, used in cutaneous melanoma, usually fail. Due to our earlier experience showing the high effectiveness of epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (MET) inhibitors in reducing the activation of the MAPK and PI3K/AKT signalling pathways, we aim to test whether these drugs would also be effective for mucosal melanoma. Cells representing two commercially available mucosal melanoma cell lines (GAK and HMVII) and one cell line obtained from a patient's vaginal melanoma were treated with MET or EGFR inhibitors, or combinations of these agents. The dual-inhibitor treatment strategy resulted in a decrease of cell proliferation, migration and invasion. Moreover, combinations of inhibitors led to reduction of pEGFR/EGFR and pMET/MET ratio and downregulation of PI3K/AKT and MEK/ERK1/2-based signalling pathways. Our findings indicate a potential therapeutic strategy based on EGFR and MET inhibitors in mucosal melanoma, which should be further evaluated in vivo and in clinical experiments. They also suggest that targeting multiple receptor tyrosine kinases may block signalling crosstalk and possibly delay the appearance of resistance to kinase inhibitors in mucosal melanoma cells.  相似文献   

19.
High expression of ecto-5′-nucleotidase (CD73) has been reported in a number of epithelium origin malignancies. Here, we hypothesize that CD73 promotes hepatocellular carcinoma (HCC) growth and metastasis and that the effect is mediated by epithelial growth factor receptor (EGFR). HCC cells with different malignancies and Tissue microarrays of the tumor and peritumoral liver tissues from 30 independent patients were used to examine CD73 and EGFR expression. Then, MTT and Ki67 detection, together with cell adhesion, invasion, and migration assays were used to evaluate the effects of CD73 on cell growth and metastasis. The expression of EGFR in HCC cells was also tested after suppressing or overexpressing CD73. Lastly, tumor tissues from nude mice, which had been injected subcutaneously with HCC cells, were transplanted subcutaneously into CD73−/− and wild-type (WT) C57 mice. CD73 expression was higher in HCC cells with greater metastatic potentials and tumor tissues compared with low metastatic cells and peritumor tissues. CD73 and EGFR were coexpressed and positively correlated in tumor and peritumor liver tissues in HCC tissue microarrays. Up-regulationof CD73 by plasmid transfection or by pharmacological agents promoted EGFR expression in HCC cells, whereas suppression of CD73 inhibited these effects. The growth of transplanted tumor tissues was dramatically slower in CD73−/− mice than in WT type mice in the in vivo experiments. CD73 promotes HCC growth and metastasis and upregulated the expression of EGFR in HCC. Thus, CD73 and EGFR are potential targets in the treatment of HCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号