首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluxes of dissolved inorganic carbon and oxygen at the water-sediment interface were measured at eight coral reef stations (Indian Ocean) in summer and winter. The dark fluxes provided the community respiratory quotient (CRQ = dissolved inorganic carbon release / oxygen uptake) and the diurnal fluxes corrected from the dark fluxes gave the community photosynthetic quotient (CPQ = oxygen gross release / dissolved inorganic carbon gross uptake). The CRQ and the winter CPQ were not significantly different from 1. Summer CPQ (0.79; SD 0.02) was significantly lower than 1 due to the combined effect of the daily evolution of the community respiration and the discrepancy between the daily evolution in community oxygen respiration and community carbon respiration. These results highlight the importance of measuring simultaneously the benthic community production and respiration for long term integrated data sets, instead of the traditional daily or seasonal budget calculations from limited measures of community respiration. To cite this article: D. Taddei et al., C. R. Biologies 331 (2008).  相似文献   

2.
The marine, non-heterocystous, filamentous cyanobacterium Trichodesmium shows a distinct diurnal pattern of nitrogenase activity. In an attempt to reveal the factors that control this pattern, a series of measurements were carried out using online acetylene reduction assay. Light response curves of nitrogenase were recorded applying various concentrations of oxygen. The effect of oxygen depended on the irradiance applied. Above a photon irradiance of 16 mumol m(-2) s(-1) nitrogenase activity was highest under anoxic conditions. Below this irradiance the presence of oxygen was required to achieve highest nitrogenase activity and in the dark 5% oxygen was optimal. At any oxygen concentration a photon irradiance of 100 mumol m(-2) s(-1) was saturating. When Trichodesmium was incubated in the dark, nitrogenase activity gradually decreased and this decline was higher at higher levels of oxygen. The activity recovered when the cells were subsequently incubated in the light. This recovery depended on oxygenic photosynthesis because it did not occur in the presence of DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea]. Recovery of nitrogenase activity in the light was faster at low oxygen concentrations. The results showed that under aerobic conditions nitrogenase activity was limited by the availability of reducing equivalents suggesting a competition for electrons between nitrogenase and respiration.  相似文献   

3.
All oxygen levels are detrimental to the nitrogenase activity ofSynechococcus RF-1 cells. In continuous light, cultures maintain a high dissolved oxygen concentration and a continuous but usually low rate of nitrogenase activity.Cultures adapted to a light-dark regimen will reduce acetylene almost exclusively during the dark periods. When switched to continuous light, they continue to exhibit a diurnal rhythm in nitrogenase activity. While in continuous light, each upsurge of nitrogenase activity coincides with a marked drop in the net oxygen production rate; this drop is due largely to a concomitant increase in the dark respiration rate of the culture.The endogenous nitrogenase activity rhythm can be induced in continuous light by periodically lowering the oxygen concentration of the culture by either bubbling nitrogen through it or by treating the culture with 3(3,4-dichlorophenol)-1,1-dimethylurea (DCMU or diuron).  相似文献   

4.
Heterotrophic activity in macroalgae has been little studied, but the red macroalga Grateloupia doryphora is known to grow in light at a higher rate in a glycerol-containing medium than in seawater. The effects of 0·1 M exogenous glycerol in seawater (SW90-gly) on the respiration rate of G. doryphora and the role played by light were investigated. The algae pretreated for 2 h in the light and in SW90-gly evolved oxygen and fixed carbon dioxide (H14CO3 ?), but also evolved radioactive 14CO2 from [14C]glycerol. The rate of oxygen evolution was lower than that of samples in seawater, due to a high respiration rate and/or a partial inhibition of photosynthesis induced by glycerol. In contrast, the rate of inorganic carbon fixation was higher in SW90-gly than in control samples in seawater, suggesting that non-photosynthetic patterns were operating. In darkness, after pretreatment in the light in SW90-gly, samples showed a high oxygen uptake rate just after the light was turned off. Twenty minutes of darkness were enough to decrease this high respiration rate to that of samples in seawater. The oxygen uptake observed in all experiments with glycerol was mitochondrial as it was inhibited by potassium cyanide and salicylhydroxamic acid (SHAM). Pretreatment of samples in the light in SW90-gly with the photosynthetic inhibitor DCMU did not inhibit ensuing dark respiration, thus providing evidence for a non-photosynthetic effect of the light. The highest dark respiration rate was observed after the samples were pretreated in monochromatic blue light in glycerol-containing media.  相似文献   

5.
Development and acclimation of energy transduction were studied in seedlings of Chenopodium rubrum L. ecotype selection 184 (50° 10' N; 105° 35' W) in response to photomorphogenic and photoperiodic treatments. Dark respiration and photosynthetic capacity [nmol O2 (pair of cotyledons)−1 h−1] were measured with an oxygen electrode. Changes in chloroplast ultrastructure were analyzed concomitantly. After germination, seedlings were grown at constant temperature either in darkness or in continuous light (white, red, far-red and blue) or were subjected to diurnal cycles of light/dark or changes in light quality. Dark respiration was low in far-red light treated seedlings. In red light treated seedlings dark respiration was high and the mean value did not depend on fluence rate or photoperiod. Blue light stimulated transitorily and modulated dark respiration in photoperiodic cycles. Photosynthetic capacity was reduced by far-red light and increased by red light. In response to blue light photosynthetic capacity increased, with indications of a requirement for continuous energy input. Phytochrome and a separate blue light receptor seemed to be involved. In continuous red light a clear cut circadian rhythm of dark respiration was observed. Blue light had a specific effect on chloroplast structure.  相似文献   

6.
1. Phytoplankton carbon assimilation and losses (exudation, dark carbon losses) as well as oxygen release and dark community respiration were measured regularly for 2 years at four stations along the lower Spree (Germany). Carbon balance of river phytoplankton was estimated using measured assimilation, metabolic losses and variations in algal carbon along a stretch of river. 2. The light/dark bottle method was modified to simulate vertical mixing. 3. Waxing and waning of phytoplankton populations dominated the load of particulate organic carbon as well as the oxygen budget of the river. 4. Phytoplankton assimilated 310–358 g C m?2 yr?1. A mean value of 586 mg C m?3 day?1 was fixed in photosynthesis, with 16.7 mg C being exuded during the day and 20.1 mg lost at night. The measured dark respiration was equivalent to only 28% of the daily gross oxygen production of the plankton community. Phytoplankton washed from upstream lakes and reservoirs was not measurably damaged by turbulent transport. 5. In spring, 18–22% of assimilated carbon was used for net biosynthesis of phytoplankton along the river course. At this time, the carbon balance of this part of the Spree was dominated by autochthonous net production. During summer, however, total carbon losses exceeded the intensive carbon assimilation. The decline of algal biomass along the river course in summer was not explicable by measurable physiological losses. The importance of sedimentation and grazing losses is discussed.  相似文献   

7.
Abstract Rates of oxygen uptake were measured in leaves of Saxifraga cernua which had been exposed to an 18-h photoperiod. These rates were compared to those in plants which had been exposed to continuous light. Rates of total dark respiration and alternative pathway respiration measured at the end of the photoperiod gradually decreased over the initial 3 d of exposure to an 18-h photoperiod. Thereafter, respiratory rates were constant. Rates of total dark respiration and alternative pathway respiration decreased during the 6h dark period. Rates of normal and alternative pathway respiration are equally affected during the dark period. The respiratory rates had reached a new minimum level 3 d after the initiation of a dark period. These results suggest that respiration rates in arctic plants are high because of the long photoperiod in the arctic. The kinetics of photoperiod induced changes in respiration are slow enough to suggest the involvement of the biological clock in setting respiration rates. Indeed, total dark respiration and alternative pathway respiration show a definite circadian rhythm. Free-running experiments show that normal respiration changes much less (has a smaller amplitude of variation) than alternative pathway respiration and that alternative pathway respiration accounts for most of the rhythmicity of respiration.  相似文献   

8.
The rates of canopy and individual leaf photosynthesis, ratesof growth of shoots and roots, and the extinction coefficientfor light of eight temperate forage grasses were determinedin the field during early autumn. Canopy gross photosynthesiswas calculated as net photosynthesis plus dark respiration adjustedfor temperature using a Q10 = 2. The relationships between canopygross photosynthesis and light intensity were hyperbolic, andthe initial slopes of these curves indicated that light wasbeing utilized efficiently at low light intensities. The initialslope depended on the distribution of light in the canopy andthe quantum efficiency of the individual leaves. The maximumrate of canopy gross photosynthesis reflected the maximum rateof individual leaf photosynthesis. Although the maximum rateof canopy gross photosynthesis was correlated with crop growthrate, there was no significant relationship between daily grossphotosynthesis and crop growth rate. Indeed, daily gross photosynthesisvaried by only 22 per cent, whereas the daily growth of shootsand roots varied by 120 per cent. This poor correlation is influencedby a negative correlation (P < 0.01) between the maximumrate of canopy gross photosynthesis and the initial slope ofthe curve relating canopy gross photosynthesis and light intensity.Difficulties in the interpretation of measurements of dark respirationappeared to confound attempts to relate daily net photosynthesisto crop growth rate, individual leaf photosynthesis, and theextinction coefficient for light.  相似文献   

9.
Wennicke H  Schmid R 《Plant physiology》1987,84(4):1252-1256
During growth, Acetabularia mediterranea requires the action of blue light to maintain high rates of photosynthesis. In the present study, blue light-dependent alterations of the photosynthetic apparatus, which can be detected by analysis of light-saturation curves and by measurements of partial reactions of the photosynthetic electron transport chain, are described. Light-saturation curves of photosynthesis in vivo were measured with a new closed oxygen electrode system after culture of Acetabularia in continuous red or blue light. These curves were compared to those of 2,6-dichlorophenol-indophenol reduction by isolated chloroplast membranes. The analysis lead to the following statements: (a) only one reaction limits electron transport rates in vitro (dichlorophenol-indophenol reduction) at all light intensities irrespective of the light quality during growth, and (b) the limiting step is light driven and located in the reaction center of photosystem II. Presumably, this same reaction determines the flow of electrons under low light intensities in vivo in cells from white, blue, and red light. In addition to photosynthesis, the rates of dark respiration changed due to the action of blue light. Concomitantly, the light compensation point of apparent photosynthesis was shifted during monochromatic irradiations.  相似文献   

10.
The effects of variable daylength and temperature on net rates of photosynthesis, dark respiration, and excretion of a unicellular marine haptophyte, Isochrysis galbana Parke, were examined and related to division rates. Six combinations of daylength (18:6, 12:12, 6:18 light:dark, LD) and temperature (20, 25 C) were used. Daily rates of net photosynthesis were closely correlated to division rates, suggesting a direct relationship, and were maximal when cells were grown at 12:12 LD at both temperatures and 18:6 LD at 20 C. A daylength of 6 hours decreased daily rates by decreasing the time for carbon uptake. Further, cells grown with this daylength had maximal chlorophyll a contents, suggesting a physiological adaptation by photosynthetic units to short light periods. A photoperiod of 18:6 LD at 25 C decreased daily rates of net photosynthesis by reducing the hourly rate of net photosynthesis via an unidentified mechanism. The importance of rates of net dark respiration in controlling daily net photosynthesis was small, with carbon lost during dark periods varying between 4 and 14% of that gained during light periods. Also, the influence of net excretion was small, varying between 1.0 and 5.5% of daily net photosynthesis.  相似文献   

11.
We studied the effect of NaCl salinity on the development of cellular photosynthesis using a green, photomixotrophic, cell-suspension culture of Alternanthera philoxeroides (Mart.) Griseb. For these cells, increasing the concentration of sucrose in the media produces a rapid drop in net photosynthetic rate, which recovers as sucrose is depleted from the media. This predictable recovery provides a simple system to examine cellular photosynthetic development. Cells, unadapted to high salinity, were transferred to nutrient media with 30 mM sucrose (Control) or nutrient media with 30 mM sucrose and 100 mM NaCl (Salt). A dramatic increase in the dark respiration rate of Control and Salt cells during the first 6 d of the experiment produced net oxygen consumption in the light. The high dark respiration rates during this period were accompanied by a decline in total Chl and the amounts of two photosynthetic proteins, the light harvesting Chl a/b binding protein of photosystem II (LHCP) and the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco SSU). The dark respiration rate of Salt cells was greater than that of Control cells on days 4–8. After day 4, dark respiration rates decreased and net photosynthesis increased to stable values in both treatments at day 11 after media sucrose concentration reached a minimum. As dark respiration rates decreased and net photosynthetic rates increased, total Chl and the amounts of LHCP and rubisco SSU increased in both Control and Salt cells. The slower development of photosynthetic capacity in salt cells was correlated with a fresh weight that was 20% lower than that of control cells at the end of the experiment.  相似文献   

12.
The effect of oxygen concentration on the rate of CO2-uptake in continuous and intermittent light was studied as well as the CO2-fixation during a short dark period after light was turned off. In addition the dark respiration and the CO2-compensation point of attached and detached corn leaves were determined. Leaves of 4 to 22-day old plants were used as experimental material. A closed circuit system of an infrared carbon dioxide analyzer was employed to measure the rate of CO2-exchange. It was found that in an atmosphere consisting of 100 % oxygen, there was about 50 per cent inhibition of the rate of CO2-uptake in continuous and intermittent light compared to that in an atmosphere consisting of 21% oxygen. The same was true of the rate of CO2-fixation in darkness during a short period after the light was turned off. Since the response to oxygen concentration of the CO2-uptake in light and of the CO2-fixation in darkness after the light was turned off were similar, it is concluded that the fixation of CO2 in the short dark period represents an over- shoot of photosynthesis. The rate of dark respiration was little affected by the oxygen concentration in the ranges used in the experiments. The carbon dioxide compensation point which has been observed in leaves of 4 to 14-day old plants was not influenced by either oxygen concentration or light intensity. Since the changes in the rate of CO2-uptake due to changes in the concentration of oxygen and light intensity had no effect on the CO2-compensation point, it is concluded that a reabsorption of respiratory CO2 by photosynthesis could not account for the low value of this point. These results are interpreted as a further corroboration of the statement that the leaves of corn lack the process of photorespiration and that dark respiration is inhibited in light. It was observed that the rate of the CO2-uptake gradually increased in plants which were from 4 to 22-days old. The inhibitory effect of high concentration of oxygen on the rate of CO2-uptake was relatively higher in old plants than in young ones.  相似文献   

13.
Villar R  Held AA  Merino J 《Plant physiology》1995,107(2):421-427
Dark respiration in light as well as in dark was estimated for attached leaves of an evergreen (Heteromeles arbutifolia Ait.) and a deciduous (Lepechinia fragans Greene) shrub species using an open gas-exchange system. Dark respiration in light was estimated by the Laisk method. Respiration rates in the dark were always higher than in the light, indicating that light inhibited respiration in both species. The rates of respiration in the dark were higher in the leaves of the deciduous species than in the evergreen species. However, there were no significant differences in respiration rates in light between the species. Thus, the degree of inhibition of respiration by light was greater in the deciduous species (62%) than in the evergreen species (51%). Respiration in both the light and darkness decreased with increasing leaf age. However, because respiration in the light decreased faster with leaf age than respiration in darkness, the degree of inhibition of respiration by light increased with leaf age (from 36% in the youngest leaves to 81% in the mature leaves). This suggests that the rate of dark respiration in the light is related to the rate of biosynthetic processes. Dark respiration in the light decreased with increasing light intensity. Respiration both in the light and in the dark was dependent on leaf temperature. We concluded that respiration in light and respiration in darkness are tightly coupled, with variation in respiration in darkness accounting for more than 60% of the variation in respiration in light. Care must be taken when the relation between respiration in light and respiration in darkness is studied, because the relation varies with species, leaf age, and light intensity.  相似文献   

14.
J. Coombs  C. Spanis    B. E. Volcani 《Plant physiology》1967,42(11):1607-1611
Rates of photosynthesis, measured by oxygen electrode or by 14CO2 fixation, dark respiration and 32P-phosphate incorporation are reported for the silicon-starvation synchrony of the fresh water diatom Navicula pelliculosa. During late exponential growth the rates were consistent with increase in carbon mass. During silicon starvation, rates of carbon dioxide fixation, oxygen evolution and 32P incorporation fell, and the saturating light intensity decreased from 27,000 lux to 5000 lux. Reintroduction of silicon led to immediate transients in all parameters studied, followed by a prolonged increase in rate of dark respiration and a gradual increase in apparent photosynthesis. During release of daughter cells, the rates of dark respiration decreased as photosynthesis and 32P incorporation increased. These results are discussed in relation to effects of silicon on the energy metabolism of the diatom.  相似文献   

15.
The photosynthetic performance of the cyanobacterium Synechocystis sp. PCC 6803 exposed to intermittent light was studied by measuring oxygen evolution, respiration and the fluorescence parameters for maximum efficiency of excitation energy capture by photosystem II (PSII) reaction centres ( F v/ F m), PSII quantum yield (ΔF/ F m 1) and non-photochemical quenching (NPQ). Cultures were pre-acclimated to constant light conditions. Block and sinusoidal light regimes were tested using four photon-flux densities (PFDs) applied in light/dark intervals of 1:1, 5:5 and 10:10 min. Light use was higher under the sinusoidal light regime compared with the block regime. The accumulated gross photosynthesis of the cyanobacterium was lower under intermittent light conditions compared with predictions from the photosynthesis-irradiance curve (PI curve). The respiration rates were similar for all light/dark intervals tested. However, the respiration slightly increased with increasing oxygen production for both block and sinusoidal light regime. NPQ, ΔF/ F m' and F v/ F m depended on the PFD rather than on the duration of the light/dark intervals tested, and there was no detected influence of the two applied light regimes.  相似文献   

16.
14CO2 evolution of prelabeled Scenedesmus obliquus Kütz, has been followed in the dark and in the light. In the light, no carbon dioxide is evolved. Addition of unlabeled NaHCO, leads to 14CO2 release attaining 20 to 30% of the dark rate. Double-reciprocal plots of NaHCO3 concentrations vs 14CO2 release results in a straight line, indicative of competition between exogenously supplied bicarbonate and endogenously evolved carbon dioxide. With this method, it is possible to measure CO2 evolved by respiration in the light and to show that true photoinhibition of respiration occurs in Scenedesmus . In the light. DCMU substantially increases 14CO2 evolution; in the presence of the uncoupler carbonyl cyanide- m -chlorophenylhydrazone. 14CO2 evolution is comparable to that in the dark. 14CO2 release and oxygen uptake in the dark are only slightly affected by cyanide, indicative of a cyanide-resistant respiration and/or fermentation as the essential CO2-yielding processes in the presence of cyanide. These results, compared with concurrent ATP levels, lead us to assume that energy charge is not the only factor responsible for photoinhibition of respiration.  相似文献   

17.
The linear response of photosynthesis to light at low photon flux densities is known to change abruptly in the vicinity of the light compensation point so that the quantum yield seems to decrease as radiation increases. We studied this `Kok effect' in attached sunflower (Helianthus annuus L. cv IS894) leaves using gas exchange techniques. The effect was present even though respiration was constant in the dark. It was observed at a similar photon flux density (7 to 11 micromole photons per square meter per second absorbed photosynthetically active radiation) despite a wide range of light compensation points as well as rates of photosynthesis. The effect was not apparent when photorespiration was inhibited at low pO2 (1 kilopascal), but this result was complicated because dark respiration was quite O2-sensitive and was partially suppressed under these conditions. The Kok effect was observed at saturating pCO2 and, therefore, could not be explained by a change in photorespiration. Instead, the magnitude of the effect varied as dark respiration varied in a single leaf, and was minimized when dark respiration was minimized, indicating that a partial suppression of dark respiration by light is responsible. Quantum yields measured at photon flux densities between 0 and 7 to 11 micromole photons per square meter per second, therefore, represent the combined yields of photosynthesis and of the suppression of a component of dark respiration by light. This leads to an overestimate of the quantum yield of photosynthesis. In view of these results, quantum yields of photosynthesis must be measured (a) when respiration is constant in the dark, and (b) when dark respiration has been inhibited either at low pO2 to eliminate most of the light-induced suppression of dark respiration or at photon flux densities above that required to saturate the light-induced suppression of dark respiration. Significant errors in quantum yields of photosynthesis can result in leaves exhibiting this respiratory behavior if these principles are not followed.  相似文献   

18.
When nitrogen fixing cell cultures of Synechococcus RF-1 were subjected to an alternating lightdark regime (12 h:12 h), a cyclic decrease in the photosynthetic oxygen evolution potential was observed during the dark periods. This rhythm of net photosynthesis rate was maintained for at least two days after transition to continuous light. The decrease in net photosynthesis was accompanied by a stimulation of dark respiration. However, the magnitude of oxygen uptake was considerably smaller than the observed decrease in oxygen evolution. The photosynthetic activity of cells taken from the dark period was characterized by (i) a significantly lower quantum yield and (ii) a strong reduction in the light-saturated rate of photosynthesis. Growing the cultures on nitrate or under continuous light completely suppressed this rhythm. Protein synthesis was not necessary for the recovery of the light-saturated rate of photosynthesis during the light period. The cellular content of chlorophyll a and of phycobiliproteins did not vary between light and dark period, indicating that quantitative changes in the composition of the photosynthetic apparatus are not the basis for the observed oscillations. Regulatory modifications of the photosynthetic efficiency are proposed as an adaptation mechanism to adjust the intracellular oxygen concentration to the needs for nitrogenase activity.Abbreviation Chl chlorophyll  相似文献   

19.
《Aquatic Botany》1986,24(2):103-114
Dissolved oxygen measurements of respiratory and photosynthetic gas exchanges of the aquatic angiosperm Egeria densa Planch. and vesicles of the macroalga Carpophyllum maschalocarpum (Turn.) Grev. were made using a Clark-type oxygen electrode in a well-stirred closed chamber. Comparisons were made of dark—light and light—dark transients and light and dark oxygen exchanges for intact material and the same material with the internal airspaces flooded.For Egeria, there was an apparently greater gas exchange (up to 17% for photosynthesis and 50% for respiration) for infiltrated material. The duration of transient lags following light and dark treatments remained unchanged by infiltration, indicating that the storage error could not be detected from lag duration. The storage error during photosynthesis agreed closely with theoretical predictions based on oxygen solubility, but additional factors contribute to the dark error. Carpophyllum results were unpredictable from solubility calculations as the thick vesicle walls restricted exchange between the internal and external phases, allowing internal oxygen storage only at high external partial pressures.The widespread assumption that short lag phases indicate negligible internal oxygen storage in the gas spaces is questioned on the basis of these results. Solutions to the storage error are proposed.  相似文献   

20.
Summary Dark respiration and photosynthetic carbon dioxide refixation in purple and green Picea abies cones were investigated from budbreak to cone maturity. The rate of dark respiration per unit dry weight and CO2 refixation capacity decreased during cone maturation. At the beginning of the growing season, photosynthetic CO2 refixation could reduce the amount of CO2 released by respiration in green and purple cones by 50% and 40%, respectively. The seasonal performance of the components of the cone carbon balance was calculated using information on the seasonal course of respiration, refixation capacity and the light response curves of cone photosynthesis, as well as the actual light and temperature regime in the field. The daily gain of CO2 refixation reached 28%–34% of respiration in green and 22%–26% in purple cones during the first month of their growth, but decreased later in the season. Over the entire growth period refixation reduced carbon costs of cone production in both cone colour polymorphs by 16%–17%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号