首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of thermo- and photoperiodicity on elongation growth and on endogenous level of gibberellins (GAs) in Begonia x hiemalis during various phases of the day-night cycle have been studied. Plant tissue was harvested during the day and night cycle after temperature and photoperiodic treatments and analyzed for endogenous GAs using combined gas chromatography and mass spectrometry. Elongation growth increased when the difference between day and night temperature (DIF = DT − NT) increased from a negative value (−9.0 and −4.5°C) to zero and with increasing photoperiod from 8 to 16 h. When applied to the youngest apical leaf, gibberellins A1, A4, and A9 increased the elongation of internodes and petioles. GA4 had a stronger effect on elongation growth than GA1 and GA9. In relative values, the effect of these GAs decreased when DIF increased from −9 to 0°C. The time of applying the GAs during a day and night cycle had no effect on the growth responses. In general, endogenous levels of GA19 and GA20 were higher under negative DIF compared with zero DIF. The level of endogenous GA1 in short day (SD)-grown plants was higher under zero DIF than under negative DIF, but this relationship did not appear in long day (LD)-grown plants. The main effects of photoperiod seem to be a higher level of GA19 and GA1 at SD compared with LD, whereas GA20 and GA9 show the opposite response to photoperiod. No significant differences in endogenous level of GA1, GA9, GA19, and GA20 were found for various time points during the diurnal day and night cycle. Endogenous GA20 was higher in petiole and leaf compared with stem, whereas there were no differences of GA1, GA9, and GA19 between plant parts. No clear relationship was found between elongation of internodes and petioles and levels of endogenous GAs. Received December 26 1996; accepted July 1, 1997  相似文献   

2.
Kuwabara A  Ikegami K  Koshiba T  Nagata T 《Planta》2003,217(6):880-887
In this study, we examined the effects of ethylene and abscisic acid (ABA) upon heterophyllous leaf formation of Ludwigia arcuata Walt. Treatment with ethylene gas resulted in the formation of submerged-type leaves on terrestrial shoots of L. arcuata, while treatments with ABA induced the formation of terrestrial-type leaves on submerged shoots. Measurement of the endogenous ethylene concentration of submerged shoots showed that it was higher than that of terrestrial ones. In contrast, the endogenous ABA concentration of terrestrial shoots was higher than that of submerged ones. To clarify interactions of ethylene and ABA, simultaneous additions of these two plant hormones were examined. When L. arcuata plants were treated with these two plant hormones, the effects of ABA dominated that of ethylene, resulting in the formation of terrestrial-type leaves. This suggests that ABA may be located downstream of ethylene in signal transduction chains for forming heterophyllous changes. Further, ethylene treatment induced the reduction of endogenous levels of ABA in tissues of L. arcuata, resulting in the formation of submerged-type leaves. Thus the effects of ethylene and ABA upon heterophyllous leaf formation are discussed in relationship to the cross-talk between signaling pathways of ethylene and ABA.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - L/W ratio ratio of leaf length to width - LN leaf number - GAs gibberellins  相似文献   

3.
Talon M  Zeevaart JA 《Plant physiology》1990,92(4):1094-1100
Stem growth and flowering in the long-day plant Silene armeria L. are induced by exposure to a minimum of 3 to 6 long days (LD). Stem growth continues in subsequent short days (SD), albeit at a reduced rate. The growth retardant tetcyclacis inhibited stem elongation induced by LD, but had no effect on flowering. This indicates that photoperiodic control of stem growth in Silene is mediated by gibberellins (GA). The objective of this study was to analyze the effects of photoperiod on the levels and distribution of endogenous GAs in Silene and to determine the nature of the photoperiodic after-effect on stem growth in this plant. The GAs identified in extracts from Silene by full-scan combined gas chromatography-mass spectrometry (GC-MS), GA12, GA53, GA44, GA17, GA19, GA20, GA1, GA29, and GA8, are members of the early 13-hydroxylation pathway. All of these GAs were present in plants under SD as well as under LD conditions. The GA53 level was highest in plants in SD, and decreased in plants transferred to LD conditions. By contrast, GA19, GA20, and GA1 initially increased in plants transferred to LD, and then declined. Likewise, when Silene plants were returned from LD to SD, there was an increase in GA53, and a decrease in GA19, GA20, and GA1 which ultimately reached levels similar to those found in plants kept in SD. Thus, measurements of GA levels in whole shoots of Silene as well as in individual parts of the plant suggest that the photoperiod modulates GA metabolism mainly through the rate of conversion of GA53. As a result of LD induction, GA1 accumulates at its highest level in shoot tips which, in turn, results in stem elongation. In addition, LD also appear to increase the sensitivity of the tissue to GA, and this effect is presumably responsible for the photoperiodic after-effect on stem elongation in Silene.  相似文献   

4.
Aharoni N 《Plant physiology》1978,62(2):224-228
Levels of gibberillins (GAs) and of abscisic acid (ABA) in attached leaves of romaine lettuce (Lactuca sativa L.) declined as the leaf became older. The time course of changes in hormone levels, determined in detached lettuce leaves kept in darkness, revealed that a sharp decline in GAs accompanied by a moderate rise in ABA occurred before the onset of chlorophyll degradation. As senescence advanced, no GAs could be detected and a considerable rise of ABA was observed. A similar sequence of hormonal modifications, but more pronounced, was observed in the course of accelerated senescence induced by either Ethephon or water stress. When kinetin or GA3 was applied to detached leaves, the loss of chlorophyll and the rise in ABA were reduced. Bound GAs were detected in senescent leaves. They were not found in the kinetin-treated leaves, which contained a relatively high level of free GAs. The results suggest that senescence in detached romaine lettuce leaves is connected with a depletion of free GAs and cytokinins, which is thereafter followed by a great surge in ABA.  相似文献   

5.
The role of gibberellins (GAs) in photoperiodic control of leaf elongation in Poa pratensis was studied by both application of exogenous GAs and analysis of endogenous GAs. Leaf elongation was strongly increased under long day (LD, 24 h) conditions at both 9 and 21°C, leaf length at 9°C LD being similar to that in plants grown in short days (SD, 8 h) at 21°C. However, even at 21°C leaf elongation was enhanced by LD. Exogenous GA1 could completely compensate for LD at both 9 and 21°C. Gibberellins A20, A19 and A44 could also partly replace LD, but they were significantly less active than GA1, GA53 was inactive when applied to plants grown at 9°C in SD and exhibited only marginal activity at 9°C LD and 21°C SD. The total level of GAs of the early 13-hydroxylation pathway (A53, A44, A19, A20 and A1) increased rapidly when plants were transferred from SD to LD at 9°C. After transfer from 9 to 21°C, there was an increase in GA levels at both LD and SD, followed by a decrease under LD conditions. In all cases, GA19 was the predominant GA, accounting for 60 to 80% of the analysed GAs. Levels of the bioactive GA1 were low and increased transiently by LD four days after transfer from SD to LD. At both temperatures, the ratio GA19 to GA20 and GA20 to GA1 at 9°C was enhanced by LD compared with SD. Taken together, these results support the hypothesis that photoperiodic regulation of leaf elongation in Poa pratensis is GA-mediated, and they indicate a photoperiodic control of oxidation of GA53 to GA44 and GA19 to GA20, and perhaps also of 3β-hydroxylation of GA20 to GA1.  相似文献   

6.
The effects of differential photoperiodic treatments applied to shoot tips and mature leaves of the long-day (LD) plant Silene armeria L. on growth and flowering responses, and on the levels of endogenous gibberellins (GAs), were investigated. Gibberellins were analyzed by gaschromatography-mass spectrometry and the use of internal standards. Exposure of mature leaves to LD, regardless of the photoperiodic conditions of the shoot tips, short days (SD), LD, or darkness, promoted elongation of the stems and of the immature leaves. Long-day treatment of the mature leaves modified the levels of endogenous GAs in shoot tips kept under LD, SD, or darkness. In shoot tips kept in LD or darkness the levels of GA53 were reduced, whereas the levels of GA19 and GA20 were increased. The contents of GA1 were increased in all three types of shoots: SD twofold, LD fivefold, and darkness eightfold. Dark treatment of the shoot tips on plants of which the mature leaves were grown in SD promoted elongation of the immature etiolated leaves and increased the GA1 content of the shoot tips threefold. However, this treatment did not cause stem elongation. The different photoperiodic treatments applied to the shoot tips did not change the levels of GAs in mature leaves. These results indicate that both LD and dark treatments result in an increase in GA1 in shoot tips. In addition, it is proposed that LD treatment induces the formation of a signal that is transmitted from mature leaves to shoot tips where it enhances the effect of GA on stem elongation.Abbreviations GAn gibberellin An - LD long day(s) - SD short day(s) We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]-gibberellins and Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility, East Lansing, for advice with mass spectrometry. This work was supported, in part, by a fellowship from the Spanish Ministry of Agriculture (Instituto Nacional de Investigaciones Agrarias) to M.T., by the U.S. Department of Energy grant No. DE-FG02-91ER20021, and by the U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

7.
In alstroemeria (Alstroemeria hybrida), leaf senescence is retarded effectively by the application of gibberellins (GAs). To study the role of endogenous GAs in leaf senescence, the GA content was analyzed by combined gas chromatography and mass spectrometry. Five 13-hydroxy GAs (GA19, GA20, GA1, GA8, and GA29) and three non-13-hydroxy GAs (GA9 and GA4) were identified in leaf extracts by comparing Kováts retention indices (KRIs) and full scan mass sprectra with those of reference GAs. In addition, GA15, GA44, GA24, and GA34 were tentatively identified by comparing selected ion monitoring results and KRIs with those of reference GAs. A number of GAs were detected in conjugated form as well. Concentrations of GAs in alstroemeria changed with the development of leaves. The proportion of biologically active GA1 and GA4 decreased with progressive senescence and the fraction of conjugated GAs increased. Received May 26, 1997; accepted August 12, 1997  相似文献   

8.
Oat seeds are susceptible to high temperature dormancy. Dormant grainsdo not germinate at 30 °C unless afterripened, dry, for severalweeks. Isolated embryos of dormant grains do germinate, especially ifGA3 is added to the germination medium. ABA inhibits germinationproportionally to the concentration applied and GA3 can overcome theABA inhibitory effect. Measurements of endogenous ABA and several GAs revealedthat the initial levels of ABA in dormant and non-dormant grains were quitesimilar. But, endogenous ABA in non-dormant seeds almost disappeared within thefirst 16 h of imbibition, while the amount in dormant grains haddecreased by less than 24%. The level of GA19 in non-dormant seedswas higher, and GA19 appears to be converted to GA20 within the first 16h. The GA20 was converted to GA1 at leastduring the first 48 h of the germination process. Bothphytohormones thus appear to be involved in the germination process ofnon-dormant seeds. ABA first declines, while GA1 is producedduring the first 16 h of imbibition to allow proper germination.Indormant grains the level of ABA remained high enough to prevent germinationduring at least a week and precursor GAs were not converted to GA1.  相似文献   

9.
Summary The level of endogenous gibberellins (GAs) in leaf tissue of Taraxacum officinale was high during leaf growth and expansion but declined progressively during leaf senescence. In the chromatographic system used, most of the GA from Taraxacum leaves moves with the Rf of GA3. However, several other GAs were also effective in retarding senescence in Taraxacum leaves. It is concluded that ageing of dandelion leaves is associated with a deficiency of endogenous GA.  相似文献   

10.
In G2 peas (Pisum sativum L.) apical senescence occurs only in long days (LD), and indeterminate growth is associated with elevated gibberellin (GA) levels in the shoot in short days (SD). Metabolism of GA12 aldehyde was investigated by feeding shoots grown in SD or LD with [14C]GA12 aldehyde through the cut end of the stem for 0.5 to 6 hours in the light and analyzing the tissue extract by high performance liquid chromatography. More radioactive products were detected than can be accounted for by the two GA metabolic pathways previously known to be present in peas. Three of the major products appear to be GA conjugates, but an additional pathway(s) of GA metabolism may be present. The levels of putative C20 GAs, [14C]GA53, [14C]GA44, [14C]GA19, and/or [14C] GA17, were all elevated in SD as compared to LD. Putative [14C]GA, was slightly higher in LD than in SD. Putative [14C]GA53 was a major metabolite after 30 minutes of treatment in SD but had declined after longer treatment times to be replaced by elevated levels of putative [14C] GA44 and [14C]GA19/17. Metabolism of GA20 was slow in both photoperiods. Although GA20 and GA19 are the major endogenous GAs as determined by gas chromatography-mass spectrometry, putative [14C]GA20 and [14C]GA19 were never major products of [14C]GA12 aldehyde metabolism. Thus, photoperiod acts in G2 peas to change the rate of GA53 production from GA12 aldehyde, with the levels of the subsequent GAs on the 13-OH pathway being determined by the amount of GA53 being produced.  相似文献   

11.
The experiment was conducted to study the relationship between stem-swelling and photoperiod and growth hormones by comparing stem swelling with non-stem-swelling stem mustard (Brassica juncea var. tsatsai) plants about their growth characteristics and levels of endogenous gibberellin and cytokinin under different photoperiods. The results here showed that plant biomass was higher in 12-h photoperiod compared to that in long day (LD) and short day (SD), whereas stem growth was much stronger in LD compared to 12-h photoperiod and SD. Exogenous application of 1.0 mM gibberellic acid (GA3) accelerated stem elongation in SD, but 8.9 μM benzyladenine (BA) failed. The shape of the swollen stem was also found to be associated with day length: a LD promoted stem elongation, while a 12-h photoperiod made the stem oval swollen. Also, stem was shown to have no sign of swelling in plants in SD with a relatively poor growth. The further studies showed that the largest proportion of 14C photosynthate was allocated to the swelling stems in stem-swelling plants, but to expanded leaves in non-stem-swelling plants, and endogenous gibberellin A1 (GA1) and zeatin + zeatin riboside (ZRs) were higher in LD compared to 12-h photoperiod and SD. These results from this experiment indicate that stem growth and swelling is a physiological process of hormonal control, and the photoperiod possibly exerts its influence by altering the balance between the levels of endogenous gibberellins and cytokinins.  相似文献   

12.
为了探索杜梨组培复幼变化规律,对10年生杜梨进行连续继代培养,统计不同继代次数杜梨丛生芽繁殖系数和生根率,观察记录叶片形态变化并测定内源激素含量。结果表明:(1)通过连续继代培养,杜梨丛生芽生根率由0提升到66.70%,繁殖系数由第1代的2.13提升到第10代的4.20。(2)叶片在继代第3次时出现裂刻且随后裂刻程度逐代加深;在继代过程中,丛生芽叶面积和叶脉数显著降低,叶周长和叶形指数呈先下降后上升的变化趋势。(3)丛生芽叶片内源IAA含量在继代第6次时达到46.39 ng·g-1,且显著高于初代丛生芽;随着继代次数的增加,叶片内源ZR呈先上升后下降的变化趋势,内源GA3含量没有发生显著性变化,而内源ABA含量逐渐降低;叶片IAA/ABA和IAA/ZR的值随着继代次数的增加而增加。(4)丛生芽叶片ABA含量和IAA/ZR与其生根率分别呈显著负相关和显著正相关关系,叶片裂刻数和IAA/ABA与生根率均呈现极显著正相关关系,而叶脉数与生根率则呈现极显著负相关关系。研究认为,连续继代培养可显著提高杜梨丛生芽的生根能力,并且与丛生芽叶形和激素含量及其比值有密切的关系,该研究结果为难生根植物无性繁殖以及树木复幼提供了重要技术借鉴。  相似文献   

13.
Evidence has been reported that bulb development in onion plants (Allium cepa L.) is controlled by endogenous bulbing and anti-bulbing hormones, and that gibberellin (GA) is a candidate for anti-bulbing hormone (ABH). In this study, we identified a series of C-13-H GAs (GA12, GA15, GA24, GA9, GA4, GA34, and 3-epi-GA4) and a series of C-13-OH GAs (GA44, GA20, GA1 and GA8) from the leaf sheaths including the lower part of leaf blades of onion plants (cv. Senshu-Chuko). These results suggested that two independent GA biosynthetic pathways, the early-non-hydroxylation pathway to GA4 (active GA) and early-13-hydroxylation pathway to GA1 (active GA), exist in onion plants. It was also suggested that GA4 and GA1 have almost the same ability to inhibit bulb development in onion plants induced by treatment with an inhibitor of GA biosynthesis, uniconazole-P. The endogenous levels of GA1 and GA4, and their direct precursors, GA20 and GA9, in leaf blades, leaf sheaths, and roots of 4-week-old bulbing and non-bulbing onion plants were measured by gas chromatography/selected ion monitoring with the corresponding [2H]labeled GAs as internal standards. In most cases, the GA levels in long-day (LD)-grown bulbing onion plants were higher than those of short-day (SD)-grown non-bulbing onion plants, but the GA1 level in leaf blades of SD-grown onion plants was rather higher than that of LD-grown onion plants. Relationship between the endogenous GAs and bulb development in onion plants is discussed.  相似文献   

14.
Apple (Malus domestica Borkh.) trees were propagated by budding from selected fully grown hybrids that ranged in height from 1.5 to 8 m. The growth and development of the selected budded trees after 7 years in the orchard was similar to that of the parent trees. Additional grafting studies showed that the dwarfism was not associated with the roots. Differences in photosynthetic activity and associated processes were not related to the size difference between tissue culture-propagated orchard-grown standard cv. Golden Delicious and dwarf hybrid trees. Applications of GA3 did not stimulate elongation of shoots of dwarf trees. Shoots of both standard and dwarf trees started to develop in mid-April when they contained nearly the same amounts of GA1, GA3 and GA8, but standard shoots contained higher concentrations of GA19, GA20 and GA29. On 2 June standard shoots were almost three times the length of dwarf shoots, but the number of leaves and area per leaf were nearly the same. The relative amounts of GAs on 12 May and 2 June for both plant types were similar to those on 20 April, except that GA19, GA20, GA1 and GA29 levels had declined. Gibberellin levels in standard shoots declined further between 2 and 22 June, after which there was no further shoot elongation or production of new leaves. Between 2 June and the end of the growing season, when summer temperatures were high, dwarf shoots continued to elongate slowly and to develop new leaves, which expanded little. During this time, the GA19 content of dwarf shoots nearly doubled, whereas the amounts of GA20, GA1, GA29 and GA8 declined. By the end of the season, standard shoots were 40 cm in length with 20 leaves and dwarf shoots were 28 cm in length, but with 36 leaves. High summer temperatures appear to induce loss of GA-responsiveness in orchard-grown dwarf trees and to cause a reduced rate of conversion of GA19 to GA20 in these genotypes.  相似文献   

15.
Plant hormones play important roles in regulating developmental processes and signaling networks involved in plant responses to biotic and abiotic stresses. We comparatively studied the growth and endogenous hormonal levels in leaves and roots in two Malus species (M. sieversii and M. hupehensis) differing in hypoxia tolerance under normoxic and hypoxia stress. The results showed that hypoxia stress inhibited growth of seedlings of both Malus species, but with significant differences in intensity. Exposure to hypoxia altered the levels of endogenous hormones in leaves and roots in both Malus seedlings. Leaf and root abscisic acid (ABA) contents increased in response to hypoxia stress in both genotypes despite different extents. Compared with M. hupehensis, M. sieversii was more responsive to hypoxia stress, resulting in larger increases in leaf and root ABA contents. The changes in leaf and root ABA contents correlating with the different tolerance levels of the genotypes confirm the involvement of this hormone in plant responses to hypoxia stress. Gibberellins (GAs; GA1 + GA4) continuously increased in leaves and roots during the whole period of stress, whereas indole-3-acetic acid (IAA) showed a sharp increase at the early stage in both Malus seedlings. In addition, zeatin riboside (ZR), dihydrozeatin riboside (DHZR), and isopentenyl adenine (IPA) differed in their pattern of changes in both Malus seedlings under hypoxia stress. Based on variations in endogenous hormonal levels in both Malus species that differ in their ability to tolerate hypoxia, we conclude that not a single hormone but multiple hormones and their interplay are responsible for hypoxia tolerance.  相似文献   

16.
The maize orange leafhopper Cicadulina bipunctata (Hemiptera: Cicadellidae) induces galls characterized by growth stunting and severe swelling of leaf veins on various plants of Poaceae. Previous studies revealed that galls are induced not on feeding site but on distant, newly extended leaves during the feeding, and strongly suggested that some chemicals injected by the leafhopper affect at the leaf primordia. To approach the mechanism underlying gall induction by C. bipunctata, we examined physiological response of plants to feeding by the leafhopper. We performed high-throughput and comprehensive plant hormone analyses using LC-ESI-MS/MS. Galled maize leaves contained higher contents of abscisic acid (ABA) and trans-Zeatin (tZ) and lower contents of gibberellins (GA1 and GA4) than ungalled maize leaves. Leafhopper treatment significantly increased ABA and tZ contents and decreased GA1 and GA4 contents in extending leaves. After the removal of leafhoppers, contents of tZ and gibberellins in extending leaves soon became similar to the control values. ABA content was gradually decreased after the removal of leafhoppers. Such hormonal changes were not observed in leafhopper treatment on leaves of resistant maize variety. Water contents of galled leaves were significantly lower than control leaves, suggesting water stress of galled leaves and possible reason of the increase in ABA content. These results imply that ABA, tZ, and gibberellins are related to gall induction by the leafhopper on susceptible variety of maize.  相似文献   

17.
Recognizing the physiological diversity of different plant organs, studies were conducted to investigate the distribution of endogenous gibberellins (GAs) in Brassica (canola or oilseed rape). GA1 and its biosynthetic precursors, GA20 and GA19, were extracted, chromatographically purified, and quantified by gas-chromatography-selected ion monitoring (GC-SIM), using [2H2]GAs as internal standards. In young (vegetative) B. napus cv. Westar plants, GA concentrations were lowest in the roots, increased acropetally along the shoot axis, and were highest in the shoot tips. GA concentrations were high but variable in leaves. GA1 concentrations also increased acropetally along the plant axis in reproductive plants. During early silique filling, GA1 concentrations were highest in siliques and progressively lower in flowers, inflorescence stalks (peduncles plus pedicels), stem, leaves, and roots. Concentrations of GA19 and GA20 showed similar patterns of distribution except in leaves, in which concentrations were higher, but variable. Immature siliques were qualitatively rich in endogenous GAs and GA1, GA3, GA4, GA8, GA9, GA17, GA19, GA20, GA24, GA29, GA34, GA51, and GA53 were identified by GC-SIM. In whole siliques, GA19, GA20, GA1, and GA8 concentrations declined during maturation due to declining levels in the maturing seeds; their concentrations in the silique coats remained relatively constant and low. These studies demonstrate that GAs are differentially distributed in Brassica with a general pattern of acropetally increasing concentration in shoots and high concentration in actively growing and developing organs.  相似文献   

18.
以1年生紫斑牡丹幼苗为试验材料,采用不同浓度(0、100、300、500 mg/L)赤霉素(GA_3)喷施叶片处理,通过透射电镜、扫描电镜、光学显微镜观察幼苗叶片解剖结构,光合仪测定幼苗光合参数并以酶联免疫吸附法测叶片内源激素含量,探究外源GA_3对紫斑牡丹幼苗叶片解剖结构、光合特性和内源激素水平的影响。结果表明:(1)低浓度GA_3处理的紫斑牡丹叶肉细胞增大,栅栏组织外层细胞中叶绿体数量增加,高浓度GA_3处理则与之相反;GA_3处理叶片的栅栏组织/海绵组织比值(P/S)、组织结构紧密度(CTR)均下降,而其组织结构疏松度(SR)增加;GA_3处理的幼苗叶片的叶肉细胞内各叶绿体大小显著大于对照,随着GA_3处理浓度增加,紫斑牡丹叶肉细胞内叶绿体的体积趋于增大,类囊体垛叠凝聚逐渐松散,叶绿体上淀粉颗粒在300 mg/L GA_3处理中较明显;叶片气孔长度、宽度、气孔器大小、气孔开度和气孔密度随着GA_3浓度升高先升高后下降,同时叶片上表皮角质层厚度随GA_3浓度的升高而增加。(2)紫斑牡丹叶片净光合速率(P_n)、气孔导度(Cond)、蒸腾速率(T_r)、水分利用率(WUE)在100和300 mg/L GA_3处理下大都显著高于对照,且300 mg/L GA_3处理显著高于其余处理,而其在500 mg/L GA_3处理下显著低于对照。(3)紫斑牡丹叶片脱落酸(ABA)和吲哚乙酸(IAA)含量均在500 mg/L GA_3下显著高于对照,而在其余浓度处理下不同程度低于对照,叶片内源玉米素核苷(ZR)和GA_3含量均在300 mg/L GA_3处理下显著高于其余处理和对照,而其余处理相比对照均无显著变化;叶片的ZR/ABA、ZR/IAA、ZR/GA_3和(IAA+GA_3+ZR)/ABA比值都在300 mg/L GA_3处理下显著高于其他处理,叶片的IAA/ABA和ABA/GA_3比值均在500 mg/L GA_3处理下显著高于其他处理。研究发现,适宜浓度外源GA_3处理,能显著提高紫斑牡丹幼苗叶片光合速率、水分利用效率及蒸腾速率,调节植物体内源激素的含量及平衡,从而使叶片能合成较多有机物,促进幼苗生长。  相似文献   

19.
Wild type (WT) tomato seedlings responded to a low red to far-red (R/FR) ratio with increased stem elongation, similar leaflet area expansion and lower shoot ethylene levels. The levels of endogenous growth-active GA1 and its immediate precursor GA20 were decreased by low R/FR ratio, whereas the levels of GA1 catabolite, GA8, increased. To examine the interaction of ethylene with GAs in regulating tomato shoot growth under low R/FR ratio, transgenic (T) seedlings bearing Le-ACS2 and Le-ACS4 antisense mRNA were utilized. Low R/FR ratio increased stem elongation and decreased ethylene levels in T tomato shoots, as it did in WT shoots. However, T stems were significantly taller than the WT stems under low R/FR ratio. Leaflet areas were significantly larger for T, than WT seedlings under both R/FR ratios. Low R/FR ratio did not decrease endogenous levels of GA1 and GA20 in T shoots, but did increase GA8 levels, which were higher than in WT shoots. These results, and hormone/inhibitor application studies, showed that in tomato shoots subjected to low R/FR ratio, GAs play a growth-promotive role in stem elongation, whereas ethylene is growth-inhibitory. Further, these results may imply that decreasing ethylene production under low R/FR ratio causes increases in stem elongation and GA levels.  相似文献   

20.
R. S. Barros  S. J. Neill 《Planta》1986,168(4):530-535
Aseptically cultured lateral buds of Salix viminalis L. collected from field-grown trees exhibited a clear periodicity in their ability to respond to exogenous abscisic acid (ABA). Buds were kept unopened by ABA only when the plants were dormant or entering dormancy. Short days alone did not induce bud dormancy in potted plants but ABA treatment following exposure to an 8-h photoperiod prevented bud opening although ABA treatment of buds from long-day plants did not. Naturally dormant buds taken from shoots of field-grown trees and cultured in the presence of ABA opened following a chilling treatment. In no cases were the induction and breaking of dormancy and response to ABA correlated with endogenous ABA levels in the buds.Abbreviations ABA abscisic acid - GA3 gibberellic acid - HPLC high-performance liquid chromatography - LD long day - MeABA methyl ABA - PAR photosynthetically active radiation - SD short day  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号