首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of five hybridoma cell lines that produced monoclonal antibodies against the components of the hemolysin BL (HBL) enterotoxin complex and sphingomyelinase produced by Bacillus cereus were established and characterized. Monoclonal antibody 2A3 was specific for the B component, antibodies 1A12 and 8B12 were specific for the L2 component, and antibody 1C2 was specific for the L1 protein of the HBL enterotoxin complex. No cross-reactivity with other proteins produced by different strains of B. cereus was observed for monoclonal antibodies 2A3, 1A12, and 8B12, whereas antibody 1C2 cross-reacted with an uncharacterized protein of approximately 93 kDa and with a 39-kDa protein, which possibly represents one component of the nonhemolytic enterotoxin complex. Antibody 2A12 finally showed a distinct reactivity with B. cereus sphingomyelinase. The monoclonal antibodies developed in this study were also successfully applied in indirect enzyme immunoassays for the characterization of the enterotoxic activity of B. cereus strains. About 50% of the strains tested were capable of producing the HBL enterotoxin complex, and it could be demonstrated that all strains producing HBL were also highly cytotoxic.  相似文献   

2.
A double-antibody sandwich enzyme-linked immunosorbent assay was developed for quantifying cellobiohydrolase I (CBH I) in crude preparations of the cellulase complex from Trichoderma reesei. The other enzymes (endoglucanase and β-glucosidase) in this complex and other ingredients in culture broth did not interfere with this assay. The antibody configuration that resulted in the highest specificity for the assay of CBH I employed a monoclonal antibody to coat wells in polystyrene plates and peroxidase-labeled polyclonal antibody to detect cellobiohydrolase bound to the immobilized monoclonal antibody. Previously, procedures have not been available for the direct assay of CBH I activity in the presence of the other enzymes in the complex, and current indirect procedures are cumbersome and inaccurate. The direct procedure described here is highly specific for CBH I and useful for quantifying this enzyme in the range of 0.1 to 0.8 μg/ml.  相似文献   

3.
Recently it has been reported that Talaromyces emersonii CBS 814.70 is capable of growth on lactose containing media. During growth on such media large amounts of β-glucosidase are secreted into the medium. In addition, low levels of endoglucanase activity have been detected. In order to enhance endoglucanase production, u.v. irradiation and a modified selection procedure yielded a number of mutants. One of these, UV7, was capable of increased cellulase production during growth on cellulose, lactose and glucose containing media. Comparative studies between the wild-type organism and the mutant have shown that the former apparently produces constitutive levels of both endoglucanase and β-glucosidase. The form of β-glucosidase that appears to be constitutive is that form previously named BG-I.  相似文献   

4.
The activity of components of the extracellular cellulase system of the thermophilic fungus Sporotrichum thermophile showed appreciable differences between strains; β-glucosidase (EC 3.2.1.21) was the most variable component. Although its endoglucanase (EC 3.2.1.4) and exoglucanase (EC 3.2.1.91) activities were markedly lower, S. thermophile degraded cellulose faster than Trichoderma reesei. The production of β-glucosidase lagged behind that of endoglucanase and exoglucanase. The latter activities were produced during active growth. When growth was inhibited by cycloheximide treatment, the hydrolysis of cellulose was lower than in the control in spite of the presence of both endoglucanase and exoglucanase activities in the culture medium. Degradation of cellulose was a growth-associated process, with cellulase preparations hydrolyzing cellulose only to a limited extent. The growth rate and cell density of S. thermophile were similar in media containing cellulose or glucose. A distinctive feature of fungal development in media incorporating cellulose or lactose (inducers of cellulase activity) was the rapid differentiation of reproductive units and autolysis of hyphal cells to liberate propagules which were capable of renewing growth immediately.  相似文献   

5.
Understanding the roles of the components of the multienzyme complex of the anaerobial cellulase system, acting on complex substrates, is crucial to the development of efficient cellulase systems for industrial applications such as converting lignocellulose to sugars for bioethanol production. In this study, we purified the multienzyme complex of Neocallimastix patriciarum J11 from a broth through cellulose affinity purification. The multienzyme complex is composed of at least 12 comprised proteins, based on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Eight of these constituents have demonstrated β-glucanase activity on zymogram analysis. The multienzyme complex contained scaffoldings that respond to the gathering of the cellulolytic components. The levels and subunit ratio of the multienzyme complex from N. patriciarum J11 might have been affected by their utilized carbon sources, whereas the components of the complexes were consistent. The trypsin-digested peptides of six proteins were matched to the sequences of cellulases originating from rumen fungi, based on identification through liquid chromatography/mass spectrometry, revealing that at least three types of cellulase, including one endoglucanase and two exoglucanases, could be found in the multienzyme complex of N. patriciarum J11. The cellulolytic subunits could hydrolyze synergistically on both the internal bonds and the reducing and nonreducing ends of cellulose. Based on our research, our findings are the first to depict the composition of the multienzyme complex produced by N. patriciarum J11, and this complex is composed of scaffoldin and three types of cellulase.  相似文献   

6.
Efficient hydrolysis of holocellulose depends on a proper balance between cellulase (endoglucanase, exoglucanase, β-glucosidase) and xylanase activities. The present study aimed to induce the production of cellulases and xylanases using liquid cultures (one, two, three, and four fungal strains on the same bioreactor) of wild strains of Trichoderma harzianum, Aspergillus niger, and Fusarium oxysporum. The strains were identified by amplification and analysis of the ITS rDNA region and the obtained sequences were deposited in Genbank. Enzymes (endoglucanase, exoglucansae, β-glucosidase, and xylanase activities) and the profile of extracellular protein isoforms (SDS-PAGE) produced by different fungal combinations (N?=?14) were analyzed by Pearson’s correlation matrix and principal component analysis (PCA). According to our results, induction of endoglucanase (19.02%) and β-glucosidase (6.35%) were obtained after 4 days when A. niger and F. oxysporum were cocultured. The combination of A. nigerT. harzianum produced higher endoglucanase in a shorter time than monocultures. On the contrary, when more than two strains were cultured in the same reactor, the relationships of competition were established, trending to diminish the amount of enzymes and the extracellular protein isoforms produced. The xylanase production was sensible to stress produced by mixed cultures, decreasing their activity. This is important when the aim is to produce cellulase-free xylanase. In addition, exoglucanase activity did not change in the combinations tested.  相似文献   

7.
In this paper, we report new sequence data for secreted thermostable fungal enzymes from the un-sequenced xylanolytic filamentous fungus Talaromyces emersonii and reveal novel insights on the potential role of enzymes relevant as wheat dough improvers. The presence of known and de novo enzyme sequences were confirmed through NanoLC-ESI-MS/MS and resultant peptide sequences were identified using SWISS PROT databases. The de novo protein sequences were assigned identity based on homology to known fungal proteins. Other proteins were assigned function based on the limited T. emersonii genome coverage. This approach allowed the identification of enzymes with relevance as wheat dough improvers. Rheological examination of wheat dough and wheat flour components treated with the thermostable fungal enzyme cocktail revealed structural alterations that can be extrapolated to the baking process.Thermoactive amylolytic, xylanolytic, glucanolytic, proteolytic and lipolytic enzyme activities were observed. Previously characterized T. emersonii enzymes present included; β-glucosidase, xylan-1,4-β-xyloxidase, acetylxylan esterase, acid trehalase, avenacinase, cellobiohydrolase and endo-glucanase. De novo sequence analysis confirmed peptides as being; α-glucosidase, endo-1,4-β-xylanase, endo-arabinase, endo-glucanase, exo-β-1,3-glucanase, glucanase/cellulase, endopeptidase and lipase/acylhydrolase. Rheology tests using wheat dough and fractioned wheat flour components in conjunction with T. emersonii enzymes show the role of these novel biocatalysts in altering properties of wheat substrates. Enzyme treated wheat flour fractions showed the effects of particular enzymes on appropriate substrates. This proteomic approach combined with rheological characterization is the first such report to the authors’ knowledge.  相似文献   

8.
Mutational experiments were performed to decrease the protease productivity of Humicola grisea var. thermoidea YH-78 using UV light and N-methyl-N′-nitro-N-nitrosoguanidine. A protease-negative mutant, no. 140, exhibited higher endoglucanase activity than the parent strain in mold bran culture at 50°C for 4 days. The culture extract rapidly disintegrated filter paper but produced a small amount of reducing sugar. About 30% of total endoglucanase activity in the extract was adsorbed onto Avicel. The electrophoretically homogeneous preparation of Avicel-adsorbable endoglucanase (molecular weight, 128,000) showed intensive filter-paper-disintegrating activity but did not release reducing sugar. The preparation also exhibited a highly synergistic effect with the cellulase preparation from Trichoderma reesei in the hydrolysis of microcrystalline cellulose. This endoglucanase was observed via scanning electron microscopy to disintegrate Avicel fibrils layer by layer from the surface, yielding thin sections with exposed chain ends. A mutant, no. 191, producing higher protease activity and an Avicel-unadsorbable, Avicel-nondisintegrating endoglucanase was isolated. The purified enzyme (molecular weight, 63,000) showed no disintegrating activity on filter paper and Avicel and a less synergistic effect with the T. reesei cellulase in hydrolyzing microcrystalline cellulose than did the former enzyme. Endoglucanase was therefore divided into two types, Avicel disintegrating and Avicel nondisintegrating.  相似文献   

9.
Studies on Cellulose Hydrolysis by Acetivibrio cellulolyticus   总被引:3,自引:1,他引:2       下载免费PDF全文
Acetivibrio cellulolyticus extracellular cellulase extensively hydrolyzed crystalline celluloses such as Avicel (FMC Corp., Food and Pharmaceutical Products Div., Philadelphia, Pa.) but only if it was desalted and supplemented with Ca2+. The Ca2+ effect was one of increased enzyme stability in the presence of the ion. Although preincubation of the cellulase complex at 40°C for 5 h without added Ca2+ had a negligible effect on endoglucanase activity or on the subseqent hydrolysis of amorphous cellulose, the capacity of the enzyme to hydrolyze crystalline cellulose was almost completely lost. Adsorption studies showed that 90% of the Avicel-solubilizing component of the total enzyme preparation bound to 2% Avicel at 40°C. Under these conditions, only 15% of the endoglucanase and 25% of the protein present in the enzyme preparation adsorbed to the substrate. The protein profile of the bound enzyme, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was complex and distinctly different from the profile observed for total cellulase preparations. The specific activity of A. cellulolyticus cellulase with respect to Avicel hydrolysis was compared with that of commercially available Trichoderma reesei cellulase.  相似文献   

10.
4-hydroxybenzoic acid (4-HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to directly produce 4-HBA from cellulose using a recombinant Pichia pastoris strain that displays heterologous cellulolytic enzymes on its cell surface via the glycosylphosphatidylinositol (GPI)-anchoring system. β-glucosidase (BGL) from Aspergillus aculeatus, endoglucanase (EG) from Trichoderma reesei, and cellobiohydrolase (CBH) from Talaromyces emersonii were co-displayed on the cell surface of P. pastoris using an appropriate GPI-anchoring domain for each enzyme. The cell-surface cellulase activity was further enhanced using P. pastoris SPI1 promoter- and secretion signal sequences. The resulting strains efficiently hydrolyzed phosphoric acid swollen cellulose (PASC) to glucose. Then, we expressed a highly 4-HBA-resistant chorismate pyruvate-lyase (UbiC) from Providencia rustigianii in the cellulase-displaying strain. This strain produced 975 mg/L of 4-HBA from PASC, which corresponding to 36.8% of the theoretical maximum yield, after 96 h of batch fermentation without the addition of commercial cellulase. This 4-HBA yield was over two times higher than that obtained from glucose (12.3% of the theoretical maximum yield). To our knowledge, this is the first report on the direct production of an aromatic compound from cellulose using cellulase-displaying yeast.  相似文献   

11.
Cellulases from Trichoderma reesei form an enzyme group with a common structural organization. Each cellulase enzyme is composed of two functional domains, the core region containing the active site and the cellulose-binding domain (CBD). To facilitate the specific detection of each domain, monoclonal antibodies (mAb) against cellobiohydrolase I (CBHI), cellobiohydrolase II (CBHII) and endoglucanase I (EGI) were produced. Five mAb were obtained against CBHI, ten against CBHII and eight against EGI. The location of the antigenic epitope for each antibody was mapped by allowing the antibodies to react with truncated cellulases, synthesized from deleted cDNA in Saccharomyces cerevisiae. Proteolytic fragments of Trichoderma cellulases, obtained by papain digestion, were used to confirm the results. Specific antibodies were detected against the core and the CBD epitopes for all three cellulases. Using the truncated enzymes, it was possible to locate the epitopes to a reasonably short region within the protein. To obtain a quantitative assay for each enzyme, a specific mAb against each antigen was chosen, based on the affinity to the corresponding antigen on Western-blot staining and on filter blots of the cellulolytic yeasts. The mAb were used to quantitative the corresponding enzymes in T. reesei culture medium. Specific quantitation of each cellulase enzyme has not been possible by biochemical assays or using polyclonal antibodies, due to their cross-reactions. Now, these mAb can be specifically used to recognize and quantitate different domains of these three important cellulolytic enzymes.  相似文献   

12.
Monoclonal antibodies were prepared against two different human tumour cell lines, the melanoma cell line SK-Mel-25 and the acute lymphoblastic leukemia T cell line CCRF-CEM. Presence of antibodies against human tumour cells in the supernatants of hybridoma cultures was tested by binding of 125I-F(ab′)2 anti-mouse IgG. On two occasions a hybridoma culture, initially selected for subsequent cloning as it seemingly produced antibodies against tumour cells, was later found to produce monoclonal antibodies specific for Mycoplasma hyorhinis. In immunofluorescent staining patchy structures were visible which seemed to be attached to the cell surface. By combined staining with FITC-conjugated anti-mouse immunoglobulin for monoclonal antibody, Evans blue for cytoplasm and Hoechst compound no. 33258 for DNA, the reaction against mycoplasma could be recognized. These results demonstrate that if cultured cells are used for preparation of monoclonal antibodies, there is a good chance that the selected hybridomas may produce antibodies against ‘culture artifacts’ such as mycoplasmas, in addition to the target antigens. Thus mycoplasma contamination of cell cultures poses a serious problem in the hybridoma research and the testing system for antibody specificity should be carefully monitored.  相似文献   

13.
《New biotechnology》2008,25(6):437-441
Fungal cellulases are well-studied enzymes and are used in various industrial processes. Much of the knowledge of enzymatic depolymerization of cellulosic material has come from Trichoderma cellulase system. Species of Trichoderma can produce substantial amounts of endoglucanase and exoglucanase but very low levels of β-glucosidase. This deficiency necessitates screening of fungi for cellulytic potential. A number of indigenously isolated fungi were screened for cellulytic potential. In the present study, the kinetics of cellulase production from an indigenous strain of Aspergillus niger MS82 is reported. Product formation parameters of endoglucanase and β-glucosidase (Qp + Yp/s) indicate that A. niger MS82 is capable of producing moderate to high levels of both endoglucanase and β-glucosidase when grown on different carbon containing natural substrates, for example, grass, corncob, bagasse along side purified celluloses. Furthermore, it was observed that the production of endoglucanase reaches its maximum during exponential phase of growth, while β-glucosidase during the Stationary phase. Enzyme production by solid-state fermentation was also investigated and found to be promising. Highest production of cellulase was noted at pH 4.0 at 35 °C under submerged conditions. Growth and enzyme production was affected by variations in temperature and pH.  相似文献   

14.
Aims: The conversion of cheap cellulosic biomass to more easily fermentable sugars requires the use of costly cellulases. We have isolated a series of marine sponge‐derived fungi and screened these for cellulolytic activity to determine the potential of this unique environmental niche as a source of novel cellulase activities. Methods and Results: Fungi were isolated from the marine sponge Haliclona simulans. Phylogenetic analysis of these and other fungi previously isolated from H. simulans showed fungi from three phyla with very few duplicate species. Cellulase activities were determined using plate‐based assays using different media and sea water concentrations while extracellular cellulase activities were determined using 3,5‐dinitrosalicylic acid (DNSA)‐based assays. Total and specific cellulase activities were determined using a range of incubation temperatures and compared to those for the cellulase overproducing mutant Hypocrea jecorina QM9414. Several of the strains assayed produced total or relative endoglucanase activities that were higher than H. jecorina, particularly at lower reaction temperatures. Conclusions: Marine sponges harbour diverse fungal species and these fungi are a good source of endoglucanase activities. Analysis of the extracellular endoglucanase activities revealed that some of the marine‐derived fungi produced high endoglucanase activities that were especially active at lower temperatures. Significance and Impact of the Study: Marine‐derived fungi associated with coastal marine sponges are a novel source of highly active endoglucanases with significant activity at low temperatures and could be a source of novel cellulase activities.  相似文献   

15.
Four cellulase genes of Trichoderma reesei, cbh1, cbh2, egl1 and egl2, have been replaced by the amdS marker gene. When linear DNA fragments and flanking regions of the corresponding cellulase locus of more than 1 kb were used, the replacement frequencies were high, ranging from 32 to 52%. Deletion of the major cellobiohydrolase 1 gene led to a 2-fold increase in the production of cellobiohydrolase II; however, replacement of the cbh2 gene did not affect the final cellulase levels and deletion of egl1 or egl2, slightly increased production of both cellobiohydrolases. Based on our results, endoglucanase II accounts for most of the endoglucanase activity produced by the hypercellulolytic host strain. Furthermore, loss of the egl2, gene causes a significant drop in the filter paper-hydrolysing activity, indicating that endoglucanase II has an important role in the total hydrolysis of cellulose.  相似文献   

16.
A total of five hybridoma cell lines that produced monoclonal antibodies against the components of the hemolysin BL (HBL) enterotoxin complex and sphingomyelinase produced by Bacillus cereus were established and characterized. Monoclonal antibody 2A3 was specific for the B component, antibodies 1A12 and 8B12 were specific for the L(2) component, and antibody 1C2 was specific for the L(1) protein of the HBL enterotoxin complex. No cross-reactivity with other proteins produced by different strains of B. cereus was observed for monoclonal antibodies 2A3, 1A12, and 8B12, whereas antibody 1C2 cross-reacted with an uncharacterized protein of approximately 93 kDa and with a 39-kDa protein, which possibly represents one component of the nonhemolytic enterotoxin complex. Antibody 2A12 finally showed a distinct reactivity with B. cereus sphingomyelinase. The monoclonal antibodies developed in this study were also successfully applied in indirect enzyme immunoassays for the characterization of the enterotoxic activity of B. cereus strains. About 50% of the strains tested were capable of producing the HBL enterotoxin complex, and it could be demonstrated that all strains producing HBL were also highly cytotoxic.  相似文献   

17.
The thermophilic fungus Talaromyces emersonii CBS 814.70 is capable of growth on lactose containing media. The cell protein produced towards the end of growth on that substrate is similar to those levels produced during growth of the organism on cellulose. During growth of the organism on lactose, cellulase is secreted into the medium. Analysis of the components of the cellulase system shows that both β-glucosidase and endoglucanase enzymes are produced. Levels of β-glucosidase produced during growth of the organism on lactose are well in excess of levels of that enzyme produced at any time during growth of the organism on cellulose, and we have shown that the form of that enzyme produced during growth on lactose is β-glucosidase III (BG-III). Analysis of the forms of endoglucanase indicates that not all forms of enzyme produced during growth on cellulose are produced during growth on lactose. β-Galactosidase activity was found to be present in the mycelial associated fraction, though our evidence suggests that this may simply be an incidental activity of the cell associated form of β-glucosidase IV (BG-IV).  相似文献   

18.
An endo beta-1,4-glucanase (EC 3.2.1.4, 1.4-(1,3;1,4)-beta-D-glucan 4 glucanhydrolase) was purified to apparent homogeneity from culture filtrates of Trichoderma reesei QM 9414. Identity of the protein with endoglucanase I (EG I) was examined by subjecting CNBr fragments of the protein to analysis by plasma desorption mass spectrometry. Seven non-glycosylated fragments, mapped on the eg1 gene sequence, could be identified, hence proving at least 39.4% identity of the amino acid sequence. No sign for microheterogeneity was observed. Purified EG I was used to prepare monoclonal antibodies. 17 stable clones were obtained, of which one--Mab EG 3--was used to analyze several commercial T. reesei cellulase preparations as well as culture filtrates from T. pseudokoningii and T. longibrachiatum for the presence of EG I. Most of them contained immunoreactive material migrating as a prominent 50-55 kDa band on SDS-PAGE, resembling EG I, but in some instances additional lower molecular weight bands were also observed. Cultivation of T. reesei at low pH led to an increase of these lower molecular weight bands. EG I was rather stable against proteolysis by papain in vitro, but after prolonged treatment, immunopositive products of 50 and 45 kDa were produced at the expense of the 55 kDa band. Our monoclonal antibodies failed to react with a low-molecular-weight endoglucanase, which was previously shown to be detectable with polyclonal antiserum against EG I. However, all monoclonals reacted with a 118 kDa protein which is most probably a dimer of EG I. These results are discussed with respect to the occurrence of multiple forms of EG I in T. reesei cellulase preparations.  相似文献   

19.
Three different monoclonal antibodies were produced against Trypanosona cruzi proteasomes. These antibodies were shown to react with a single 27-kDa band on immunoblots of purified proteasomes. Using a 7E5 monoclonal antibody (IgG1) that recognized the α5 subunit of protozoan protease we have studied the intracellular distribution of the T. cruzi 20S proteasome. Contrary to all cell types described to date, T. cruzi 20S proteasome was found not only in the cytoplasm and nucleus but also in the kinetoplast. As revealed by confocal microscopy, the reactivity of monoclonal antibody 7E5 was highly specific for protozoan proteasome because the antibody recognized only the proteasomes from parasites and not those from the mammalian host in T. cruzi infected cells. These findings were confirmed by immunoblots or immunoprecipitations, followed by chymotrypsin-like activity detection in kinetoplasts isolated by differential centrifugation and sucrose density gradients. Proteasome 20S was present in all T. cruzi stages and only slight differences in terms of relative abundance were found. The potential role of the proteasome in kinetoplast remodeling remains to be determined.  相似文献   

20.
Cytotoxic T lymphocytes (CTL) for autologous malignant melanoma in culture of a patient AV were induced by restimulation of PBL (peripheral blood leukocytes) with AV melanoma cells in vitro and subcultured in interleukin 2 (IL-2) conditioned media. Monoclonal antibodies detecting six antigenic systems on melanoma cell surfaces were tested for blocking activity on the effector function of subcultured cytolytic T lymphocytes for autologous melanoma cells. The monoclonal antibodies R24 (γ3), specific for the GD3 disialoganglioside on melanoma cell surfaces and I24 (γM), detecting a similar antigenic determinant, blocked autologous T lymphocytotoxicity for malignant melanoma cells on the target level. The effector function of alloantigen activated cytolytic T lymphocytes generated by coculture of allogeneic PBL with Epstein-Barr virus (EBV) transformed AV B lymphocytes, was blocked by monoclonal antibody R24 when tested against AV melanoma targets, but not when tested against AV B lymphocyte targets. It is concluded that blocking by mAb R24 occurs in this system as a nonspecific effect, unrelated to the specific target antigen recognition by cytotoxic T lymphocytes. Steric hindrance or antibody induced membrane changes may account for the blocking effect of monoclonal antibody R24.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号