首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
We report an assay for testicular 17, 20-lyase which depends on the use of [21?14C]progesterone as a substrate. The method is made possible by a simplified procedure for the synthesis of [21?14C]progesterone. A chromatographic separation of the unreacted substrate and the 2-carbon by-product on mini silica gel colums permitted a quantitative assay of the lyase activity.The lyase complex from rat testes has been solubilized by treatment with Triton CF-54 detergent. The solubilized enzyme complex catalyzes the formation of androstenedione (4-androstene-3,17-dione) from progesterone without equilibrium with added 17-hydroxyprogesterone and the solubilized enzyme complex responds to the presence of cytosol activator. Both of these characteristics are similar to the properties of the intact microsomes. Thus, solubilization with this detergent preserves the special properties of the microsome bound enzyme complex.  相似文献   

2.
It has been shown that during the in vitro conversion of progesterone to androstenedione, 17 alpha-hydroxyprogesterone is not an obligatory intermediate which equilibrates with freely diffusible steroids in the incubation medium. Recently a cytochrome P-450 was purified that catalyzed, in addition to hydroxylase/lyase activities, reduction of androstenedione to testosterone. In order to determine whether progesterone could be transformed to testosterone without both intermediates (17 alpha-hydroxyprogesterone and androstenedione) being equilibrated with steroids in the medium, several double-label double-substrate experiments were performed. When rat microsomes were incubated with an equimolar mixture of [14C]progesterone and 17 alpha-hydroxy[3H]progesterone, androstenedione was isolated with a 11-fold higher 14C/3H ratio than 17 alpha-hydroxyprogesterone, indicating that androstenedione could not be produced from free, diffusible 17 alpha-hydroxyprogesterone. Incubation of an equimolar mixture of 17 alpha-hydroxy[3H]progesterone and [14C]androstenedione with testicular microsomes resulted in the incorporation of 3-4-fold more 17 alpha-hydroxyprogesterone into testosterone than of androstenedione, although the latter is the immediate precursor of testosterone. In an experiment in which equimolar concentrations of [3H]progesterone and [14C]androstenedione were incubated with testicular microsomes, the large pool of progesterone inhibited competitively lyase activity, but still the label of progesterone was incorporated into testosterone to the same extent as that of androstenedione. These results indicate that testosterone can be produced by immature rat testicular microsomes from added progesterone on an organized unit without the intermediates equilibrating with the incubation medium.  相似文献   

3.
The characteristics of acyl CoA:cholesterol acyltransferase (ACAT; EC 2.3.1.26) in microsomes prepared from human term placenta were studied and the rate of incorporation of [1-14C] oleoyl CoA into cholesteryl esters was measured. The apparent Km of the enzyme for [1-14C] oleoyl CoA was 38 ± 9 μm and the V for the reaction was 15 ± 6 pmol × mg? protein × min?1. The Hill coefficient for the reaction was 1.2, indicative of some degree of positive cooperativity. Cholesterol, added to the incubation mixture, did not influence ACAT activity, indicating that endogenous microsomal cholesterol served as an effective substrate for the placental ACAT enzyme. However, [1,2-3H]cholesterol in the presence of oleoyl CoA was incorporated into cholesteryl esters by placental microsomes. When progesterone was present in the incubation mixture at a concentration of 20 μm, ACAT activity was inhibited 50%. Pregnenolone, 5α-dihydroprogesterone, 17α-hydroxyprogesterone, deoxycorticosterone, dehydroisoandrosterone, androstenedione, testosterone, and estradiol-17β also inhibited ACAT activity, whereas corticosterone, cortisol, and estriol had little effect. These results are supportive of the view that ACAT activity in human placenta may be regulated by endogenously synthesized steroid hormones.  相似文献   

4.
H Yamasaki  K Shimizu 《Steroids》1973,22(5):637-658
When [7α-3H] dehydroepiandrosterone was incubated with the adrenal homogenates of human fetus at 22 to 26 weeks gestational age, 16α-hydroxydehydroepiandrosterone and/or its sulfate was formed as the only detectable metabolite. The 16α-hydroxylase activity was concentrated in the microsomal fraction of the adrenal homogenate.[1,2-3H]Androstenedione, [4-14C] pregnenolone and [7α-3H] progesterone were also 16α-hydroxylated by incubation with the microsomal fraction. Amoung these substrates, progesterone gave the highest yield of 16α-hydroxylated products. By incubation with the microsomal fraction, formation of following steroids were also established: 6β-hydroxyandrostenedione from androstenedione; 17-hydroxypregnenolone, 17,21-dihydroxypregnenolone and dehydroepiandrosterone from pregnenolone; 17-hydroxy-progesterone, deoxycorticosterone, 11-deoxycortisol and androstenedione from progesterone.  相似文献   

5.
Sertoli cell-enriched tubules isolated from rats which had been treated with 1,4-dimethyl sulfonyloxybutane were incubated with either [14C] progesterone or [14C] testosterone for 2 hours. Tubules of normal rats and fragments of Sertoli cell-enriched testes were incubated under the same conditions. Sertoli cell-enriched tubules converted progesterone to 20α-dihydroprogesterone, 17α-hydroxyprogesterone, androstenedione and testosterone. The major metabolite was 20α-dihydroprogesterone. The percentage conversion of progesterone into testosterone corresponded to a production of 10–20 ng testosterone. Sertoli cell-enriched tubules converted testosterone to dihydrotestosterone, androstenedione, 3α-androstanediol and 3β-androstanediol. Under our experimental conditions, dihydrotestosterone was the major 5α-reduced metabolite. Normal tubules converted progesterone and testosterone to the same metabolites as Sertoli cell-enriched tubules. Fragments of Sertoli cell-enriched testes were much more active than isolated tubules in metabolizing progesterone. They produced the same amounts of 5α-reduced metabolites of testosterone.  相似文献   

6.
These studies were undertaken to determine the principal pathway of androgen biosynthesis by the testis of the marmoset Saguinus oedipus. Testicular fragments (25 mg) were incubated at 37°C in Krebs-Ringer bicarbonate buffer, pH 7.4, containing pregnenolone-7-3H (3β-hydroxy-5-pregnen-20-one) or progesterone-7-3H. Duplicate fragments were incubated with each substrate for 30 min, one hr, three hr, or five hr, for a total of 16 separate incubations. Metabolites were separated by paper and thin-layer chromatography, with identity established by recrystallization to constant specific activities and 3H/14C ratios. Pregnenolone was readily metabolized to progesterone, 17α-hydroxyprogesterone, androstenedione (4-androstene-3, 17-dione) and testosterone. Progesterone was converted to 17α-hydroxyprogesterone, androstenedione and testosterone. 17α-hydroxyprogesterone was the predominant metabolite obtained from both substrates at one, three and five hrs of incubation. Neither 17α-hydroxypregnenolone (3β-17-dihydroxy-5-pregnen-20-one) nor dehydroepiandrosterone (3β-hydroxy-5-androsten17-one) was detected in the incubates. These data suggest a predominant Δ4 pathway with accumulation of 17α-hydroxyprogesterone in the testis of this primate specie.  相似文献   

7.
S.A. Sholl  R.C. Wolf 《Steroids》1980,36(2):209-218
For the purpose of describing the pathway by which estrogens are synthesized in the rhesus monkey (Macacamulatta) corpus luteum (CL), CL were obtained during the midluteal phase of the menstrual cycle and fragments incubated with equimolar amounts of [7-3H]pregnenolone plus [4-14C]progesterone. Metabolites including 3H-progesterone, 3H, 14C-20α-dihydroprogesterone, 3H, 14C-17-hydroxyprogesterone, 3H-estrone and 3H-estradiol-17β appeared in the medium during the first 20 minutes of incubation, 3H, 14C-Androstenedione was not consistently noted until after 60 minutes. Despite the fact that the 14C/3H-17-hydroxyprogesterone ratio quickly approached a constant value in the medium, 14C-estrogens were not detected in the medium or tissue fragments suggesting that progesterone was not a principal precursor for estrogen synthesis. As evidenced by the observation that the 14C/3H-progesterone ratio was significantly higher in luteal fragments than the 17-hydroxyprogesterone ratio, 17-hydroxyprogesterone appeared to be synthesized from pregnenolone both by way of progesterone and by another route which did not include progesterone. C21- and C18-Steroids were more concentrated in tissue fragments after 120 minutes of incubation than in the medium indicating that these steroids were sequestered by luteal tissue.  相似文献   

8.
When minced polycystic ovarian tissue was incubated with a mixture of [4-14C]-pregnenolone and [17α-3H]pregnenolone2 and added cofactors for 25, 40 and 60 min, the following metabolites were isolated and characterized: progesterone, 17-hydroxyprogesterone, 17-hydroxypregnenolone, dehydroepiandrosterone, 4-androstenedione, and testosterone; unmetabolized substrates were also recovered. There were increased amounts of progesterone, 17-hydroxyprogesterone, dehydroepiandrosterone, and 4-androstenedione formed as the incubation time increased.  相似文献   

9.
Androstenedione formation from progesterone by P-450(17 alpha,lyase) was investigated in ovarian microsomes of immature rats treated with pregnant mare serum gonadotropin. Successive monooxygenase reactions in the formation of androstenedione without the intermediate leaving P-450(17 alpha,lyase) were demonstrated by a double-substrate double-label experiment using [14C]progesterone and 17 alpha-[3H]hydroxyprogesterone as substrates and also by specific reduction in the concentration of intermediate 17 alpha-hydroxyprogesterone in the reaction medium by reaction of liposomal P-450C21. A detailed kinetic study on the reactions of P-450(17 alpha,lyase) in microsomes was conducted in the steady state. Kinetic parameters indicated the C17,C20-lyase reaction for 17 alpha-hydroxyprogesterone (Km = 80 nM) to be strongly inhibited by progesterone (Ki = 8 nM). In the presence of a high concentration of progesterone, as in the case of in vivo rat ovary, most androstenedione is concluded to be formed directly from progesterone by successive monooxygenase reactions catalyzed by P-450(17 alpha,lyase). 20 alpha-Dihydroprogesterone competitively inhibited the C17,C20-lyase reaction for 17 alpha-hydroxyprogesterone with Ki = 23 nM, but had only slight effect on progesterone metabolism to androstenedione. 20 alpha-Dihydroprogesterone, thus, cannot be a regulator for androstenedione formation in rat ovary.  相似文献   

10.
Studies on the role of cytochrome P-450 in mouse, rat, and chick testis microsomes showed that this CO-binding hemoprotein is involved in the activity of the 17α-hydroxylase. A 70–80% inhibition by CO of the 17α-hydroxylase activity was detected in rat and chick testis microsomes. In the mouse testis, the level of the enzyme activity is ten times greater than that of the rat. This partly explains why an acceleration of NADPH oxidation by progesterone can be observed in mouse but not in rat testis microsomes. In rat testis microsomes, type I binding spectra of cytochrome P-450 was observed with pregnenolone, progesterone, 17-hydroxyprogesterone, androstenedione, and testosterone. The apparent Ks values for progesterone and 17-hydroxyprogesterone were 0.50 and 1.00 μm, respectively.When NADPH is used to measure cytochrome P-450 levels in rat testis microsomes, CO formation resulting from a stimulation in lipid peroxidation by phosphate or Fe2+ was sufficient to bind with 50% of the total amount of cytochrome P-450. Substitution of phosphate by Tris reduced the amount of lipid peroxidation to minimal levels. On a comparable basis, no CO formation was observed in avian testis microsomes.An increase in the testicular levels of cytochrome P-450 resulted upon the administration of HCG and cyclic-AMP to 1-day-old chicks. The lack of stimulation of the cytochrome P-450 levels by progesterone and pregnenolone suggest that the hormonal stimulation of the P-450 levels is not due to substrate induction.  相似文献   

11.
14C-17-Hydroxyprogesterone was incubated with 7000 × g × 20 min supernatants of rat testis homogenates in the presence of various concentrations of 3H-progesterone, both under conditions where metabolism would take place and where it would be prevented. When metabolism was prevented, the ratio of progesterone to 17-hydroxyprogesterone in the microsomal fraction was 3 times that which was added to the incubation medium.Progesterone competitively inhibited 17,20-lyase action on added 17-hydroxyprogesterone but not on 17-hydroxyprogesterone formed from the added progesterone. The rate of formation of 17-hydroxyprogesterone from progesterone, however, was inhibited by added 17-hydroxyprogesterone. The results indicate that there is no free exchange of an intermediate between progesterone and androstenedione with the soluble fraction, either inside or outside the microsomal vesicle. The limited exchange with 17-hydroxyprogesterone in solution probably represents exchange with an enzyme-bound intermediate.  相似文献   

12.
In order to study the initial as well as the final steps in the aromatization of androgens to estrogens, high-specific activity [19-C3H3]androstenedione and testosterone were synthesized. Incubations of [19-C3H3]androstenedione with human placental microsomes resulted in the generation of [3H]water, as a result of the dual hydroxylation at C-19, and [3H]formic acid reflecting final aromatization. After an initial lag in the production of [3H]formic acid, the two radiolabeled products were formed linearly with time at a ratio of 2 to 1 under subsaturating conditions and 2.2 to 1 when saturating levels of substrate were present. Incubation of a mixture of [19-C3H3]- and [4-14C]androstenedione with human placental microsomes yielded 19-hydroxy- and 19-oxoandrostenedione, respectively, products of one and two hydroxylations at C-19. The isotope ratios of these derivatives revealed the presence of a tritium isotope effect in the first but not in the second hydroxylation at that site. When [19-C3H2]- and [4-14C]19-hydroxyandrostenedione were used as the substrate, the isotope ratio of the isolated 19-oxoandrostenedione showed no evidence of any isotope effect in its formation. Thus, the second hydroxylation at C-19 exhibits no isotope effect irrespective of whether androstenedione or 19-hydroxyandrostenedione are the substrates, and therefore, a concerted process and catalytic commitment are not responsible for the difference in isotope effects between the first and second C-19 hydroxylation by the placental aromatase complex. Radiometric kinetic analysis employing [19-C3H3]- and [1 beta,2 beta-3H]androstenedione as the comparative substrates provided evidence that the isotope effect is exerted solely through the Vmax component of the reaction. The distinction between the successive hydroxylations at C-19 in the aromatization sequence suggests, but does not prove, that different mechanisms, and hence different catalytic sites, may be involved in these steps.  相似文献   

13.
Pubertal changes in the testicular steroid enzyme activities, responsible for the androgen production, were studied in rats in relation to the effects of testicular irradiation, followed by gonadotropin stimulation and cyproterone suppression. Five groups of pro-pubertal and adult rats were used in this study. The in vitro bioconversion from progesterone-4-14C and 17-hydroxyprogesterone-44C to testosterone, androstenedione, androstanediol, dihydrotestosterone and androsterone, demonstrated the effect of age in all cases of drug response investigations. The sexually immature animals in the control group had higher levels of androstenedione than testosterone, in contrast to the findings in the adults. With irradiation, androgen biosynthesis was suppressed in both age groups, which did not recover, under gonadotropin stimulation, in spite of the generation of new cells caused by the treatment. The irradiated adult testes demonstrated ‘pre-pubertal’ type bioconversion by catabolizing the substrates more towards 5α-reduced androgens, like androstanediol (5α-androstane-3α 17β-diol) and androsterone. With cyproterone the 17α-hydroxylase activities were found to be diminished.  相似文献   

14.
Treatment of Xenopus laevis follicles with 50–100 units/ml of human chorionic gonadotropin causes rapid stimulation of [14C]glucose uptake. Studies with these follicles showed that the stimulation of uptake occurred with a wide range of concentrations of [14C]glucose or its nonmetabolizable analog [14C]3-O-methylglucose. Approx. 70% of the glucose taken up in both hormone-treated and control cells becomes incorporated into glycogen within 1 h. The uptake of sugar by these follicles was also stimulated by bovine-luteinizing hormone—but not by folliclestimulating hormone, progesterone or insulin. Human chorionic gonadotropin stimulated sugar uptake by follicles containing medium-sized oocytes (stages 3,4 and 5 according to Dumont) which cannot be induced to undergo meiotic maturation by this hormone. After 4–6 h treatment of fully grown X. laevis follicles with either progesterone or human chorionic gonadotropin, glucose uptake suffers a drastic decrease to below basal levels. This inhibition of uptake is coincident with the breakdown of the germinal vesicle of the oocyte and is clearly related to meiotic maturation, since it is not observed with medium-sized follicles which cannot mature.  相似文献   

15.
Slices of an adreno-cortical adenoma which had been obtained at operation from an 11-year-old girl with clinical signs of virilism were incubated with each of the following steroids: [1,2-3H]progesterone, [4-14C]pregnenolone, [1,2-3H]testosterone, [4-14C]androstenedione and [7-3H]dehydroepiandrosterone, respectively. Isolation and identification of the free radioactive metabolites were achieved by gel column chromatography on Sephadex LH-20, thin-layer chromatography, radio gas chromatography and isotope dilution. After incubation of progesterone, the following metabolites were identified: 11beta-hydroxyprogesterone, 16alpha-hydroxyprogesterone, 17alpha-hydroxyprogesterone, 21-deoxycortisol, corticosterone and cortisol. Pregnenolone was metabolized to 17alpha-hydroxypregnenolone, progesterone, dehydroepiandrosterone, androstenedione and 11beta-hydroxyandrostenedione. When testosterone was used as substrate, 11beta-hydroxytestosterone, androstenedione and 11beta-hydroxyandrostenedione were found as metabolites, whereas androstenedione was metabolized to testosterone and 11beta-hydroxyandrostenedione. After incubation of dehydroepiandrosterone, only androstenedione and 11beta-hydroxyandrostenedione were isolated and identified. From these results, it appears that cortisol was formed in the adenoma tissue via 21-deoxycortisol and corticosterone. Delta4-3oxo steroids of the C19-series arose exclusively from pregnenolone via 17alpha-hydroxypregnenolone and dehydroepiandrosterone, and not from progesterone and 17alpha-hydroxyprogesterone. Calculated on the amounts of metabolites formed, the highest enzyme activities were those of the 11beta-hydroxylase and the 17alpha-hydroxylase. It is interesting to note that only traces of testosterone were detected after incubation of androstenedione, whereas testosterone yielded large amounts of androstenedione.  相似文献   

16.
To characterize Leydig cell steroidogensis, we examined the metabolism of (3H)pregnenolone (3β-hydroxy-5-pregnen-20-one) to androgens in the presence and absence of human chorionic gonadotropin (hCG) as a function of culture duration. Approximately 20–30% of the (3H)pregnenolone was converted to testosterone (17β-hydroxy-4-androsten-3-one) by purified Leydig cells at 0, 3 and 5 days (d) of culture. Androstenedione (4-androstene-3,17-dione) and dihydrotestosterone (17β-hydroxy-5α-androstan-3-one) were also produced while on day 5 of culture, significant amounts of progesterone (4-pregnene-3, 20-dione) were isolated. The Δ5 intermediates, 17-hydroxypregnenolone (3β, 17-dihydroxy-5-pregnen-20-one) and dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one), accounted for less than 1% of substrate conversion, indicating a clear preference for Leydig cells to metabolize (3H)pregnenolone via the Δ4 pathway. On day 0 of culture, unidentified metabolites consisted of predominately polar steroids while on day 5 of culture, the unidentified metabolites consisted of predominately nonpolar steroids. In the presence of hCG, (3H)pregnenolone metabolism did not differ from basal on day 0 or 3 of culture. HCG increased the conversion of pregnenolone to progesterone and 17-hydroxyprogesterone (17-hydroxy-4-pregnene-3, 20-dione) on 5d. This suggests that Leydig cells cultured for 5d have decreased C17–20 desmolase activity or that hCG acutely stimulates 3β-hydroxysteroid dehydrogenase and Δ45 isomerase activities.  相似文献   

17.
T Shinada  K J Ryan 《Steroids》1973,21(2):233-244
The biosynthesis and metabolism of progesterone and estrogens have been studied in chimpanzee placental tissue in vitro. The conversion of androstenedione-4-14C to estrone and estradiol-17β and of pregnenolone-7α-3H to progesterone has been demonstrated. In addition, the following metabolites were isolated following incubation of either pregnenolone-7α-3H or progesterone-4-14C: 20α-dihydroprogesterone, 20β-dihydroprogesterone, 6β-hydroxyprogesterone, 5α-pregnane-3,20 dione. The compound 5α-pregnan-3β o1-20-one was identified only after incubation with pregnenolone-7α-3H, while 5β-pregnane-3, 20 dione was identified only after incubation with progesterone-4-14C. No estrogens could be demonstrated following the incubation of placental preparations with either of the C21 substrates.  相似文献   

18.
Intact ovarian follicles, obtained from untreated and human chorionic gonadotropin (HCG) treated Japanese yellowtail Seriola quinqueradiata during different maturational stages, were incubated with radioactive [3H]pregnenolone, [3H]17‐hydroxyprogesterone or [14C] androstenedione and steroid metabolites identified by thin layer chromatography (TLC) followed by recrystallization to constant specific activity. In untreated late vitellogenic (0 h) follicles, androstenedione was the major product with smaller amounts of testosterone and oestradiol‐17α. In post‐vitellogenic (12 h post‐injection) intact follicles, androstenedione predominated, and although testosterone and oestradiol‐17α were not produced, there were small amounts of 17, 20β‐dihydroxy‐4‐pregnen‐3‐one (17,20β‐P) and 17,21‐dihydroxy‐4‐pregnene‐3, 20‐dione (11‐deoxycortisol). In HCG‐treated fish, a steroidogenic shift resulted in the disappearance of testosterone and oestradiol‐17 coinciding with the appearance of 17, 20β‐P. During early and late final oocyte maturation FOM (24 and 36 h post‐injection), there was a five‐ to seven‐fold increase in the production of 17, 20β‐P, whereas production of 11‐deoxycortisol remained almost the same. During FOM, in addition to 17,20β‐P, its 5β‐reduced metabolite, 17,20β‐dihydroxy‐5β‐pregnan‐3‐one (5β‐17,20β‐P) was synthesized, suggesting a decrease in maturation‐inducing 17,20β‐P activity. 17, 20β,21‐Trihydroxy‐4‐pregnen‐3‐one (20β‐S) was not synthesized by ovarian fragments in Japanese yellowtail at any maturational stage. The metabolites identified on TLC during FOM were tested to evaluate their maturation‐inducing activity in an in vitro bioassay. Of the steroids tested, 17,20β‐P was the most effective inducer of germinal vesicle breakdown (GVBD), followed by 5β‐17,20β‐P. Timely synthesis of 17,20β‐P immediately prior to and during FOM as well as its great potency in inducing GVBD in vitro supports the evidence for a physiological role of 17,20β‐P as a maturation‐inducing hormone in Japanese yellowtail.  相似文献   

19.
A Z Mehdi  T Sandor 《Steroids》1974,24(2):151-163
Incubations of whole homogenates of. the tiju lizard (Tupinambis sp.) adrenals tissue were carried out using 14C-labelled progesterone1*, pregnenolone and cholesterol. 14C-progesterone was metabolized to labelled 18-hydroxycorticosterone, aldosterone, corticosterone and 11-deoxycorticosterone. Identical metabolites plus 14C-progesterone were obtained from pregnenolone. Cholesterol-4-14C was transformed into products similar to those obtained from progesterone. In all these studies the elaboration of cortisol or any other 17-hydroxylated steroids could not be demonstrated. In another set of experiments, whole homogenate preparations from adrenals of the green lizard (lacerta viridis) were incubated with 14C-labelled androstenedione and testosterone. Ahdrostenedione was converted to testosterone and 11β-hydroxyandrostenedione. Testosterone was metabolized to 11β-hydroxyandrostenedione and androstenedione. The results indicate that the in vitro transformation of C-27 or C-21 radioactive substrate by lizard adrenals is similar to the other reptiles studied. However, it appears to possess 17β-hydroxysteroid oxido-reductase, though the adrenal tissue itself lacks 17α-hydroxylase activity.  相似文献   

20.
  • 1.1. The metabolism of two tritium labelled vertebrate-type steroids was studied in two insect species, i.e. the fleshfly, Sarcophaga bullata, and the Colorado potato beetle, Leptinotarsa decemlineata.
  • 2.2. After injection of [3H]androstenedione into Sarcophaga bullata pharate adults, testosterone (both as free steroid and as conjugate) could be identified as a metabolic product. This indicates the presence of the 17β-hydroxysteroid dehydrogenase (HSD) enzyme in the fleshfly.
  • 3.3. Injection of 17α-hydroxy[3H]progesterone into Leptinotarsa decemlineata last instar larvae resulted in the formation of 17α-hydroxy-20α-dihydroprogesterone, 17α-hydroxy-20β-dihydroprogesterone and their conjugates. This indicates the presence of both the 20α-HSD and the 20β-HSD enzyme in Leptinotarsa.
  • 4.4. Important conversions in the biosynthetic pathway of steroids in vertebrates, such as the conversion of 17α-hydroxyprogesterone to androgens (Leptinotarsa) and the aromatization of androgens to estrogens (Sarcophaga), were not demonstrated in the metabolic studies.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号