首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidermal growth factor   总被引:1,自引:0,他引:1  
  相似文献   

2.
Apoptosis, or programmed cell death, plays an important role in the pathogenesis of a number of human diseases, including cancers, autoimmune diseases, and neurodegenerative disorders. Recent evidence suggests that EGF induced signal transduction pathways which govern cell proliferation and cell cycle progression also mediate antiproliferative effects leading to increased apoptosis in cells that express high levels of epidermal growth factor receptors. Treatments designed to increase apoptosis have potential to change the natural progression of cancer and eventually lead to its successful control.  相似文献   

3.
The nerve growth factor: Thirty-five years later   总被引:15,自引:0,他引:15  
  相似文献   

4.
Summary The somatomedin-like growth factors cartilage-derived factor (CDF) and multiplication-stimulating activity (MSA) stimulate DNA synthesis and proliferation of rabbit costal chondrocytes under serum-free conditions. Previously, we suggeted that CDF and MSA act on chondrocytes in an early G1 phase to stimulate DNA synthesis. CDF and MSA have synergistic effects with epidermal growth factor (EGF) or fibroblast growth factor (FGF) in stimulating DNA synthesis of the cells. The mode of combined action of CDF or MSA with EGF or FGF in chondrocytes was studied by sequential treatments with these agents. EGF or FGF had synergistic effects with CDF or MSA in stimulating DNA synthesis, even when added 10 h after the latter. Synergism was also observed in cells pretreated with CDF or MSA; That is, the cultures were treated for 5 h with CDF or MSA and then washed, and treated with FGF or EGF. However, when CDF or MSA was added more than 5 h after EGF or FGF, no synergism of effects was observed. These findings suggest that the cultured chondrocytes become activated to interact with FGF or EGF for commitment to DNA synthesis when they are exposed to somatomedin-like growth factors at an early stage in the G1 phase. Thus chondrocytes are under a different mechanism of growth control from fibroblastic cells.Abbreviations CDF cartilage-derived factor - MSA multiplication-stimulating activity - EGF epidermal growth factor - FGF fibroblast growth factor  相似文献   

5.
Although fibroblast growth factor 2 (FGF2) and fibroblast growth factor receptor 3 (FGFR3) both inhibit longitudinal bone growth, little is known about the relationship between FGF2 and FGFR3. Accordingly, the current study examined the expression of FGFR3 mRNA after the administration of FGF2 using cultured chondrocytes from day 17 chick embryos to evaluate the relationship between FGF2 and FGFR3. The chondrocytes were isolated from the caudal one-third portion (LS) of sterna, peripheral regions (USP) and central core regions (USC) of the cephalic portion of the sterna, and lower portion of the proximal tibial growth plate (Ti) of day 17 chick embryo. The expression of FGFR1, FGFR3, and type II and X collagen mRNA in the chondrocytes from the LS, USP, USC, and Ti was determined. FGFR1 was not expressed in the LS and USP chondrocytes, yet strongly expressed in the USC and Ti chondrocytes. With a treatment of FGF2, the expression of FGFR1 slightly increased in the USC chondrocytes and was not related with the concentration of FGF2 in the Ti chondrocytes. FGFR3 was expressed in all the chondrocyte types, yet strongly increased in the LS, USC, USP, and Ti in that order according to the concentration of FGF2. For the LS and USP chondrocytes, the expression of FGFR3 with FGF2 increased in a 4-day culture, yet decreased in a 6-day culture, whereas for the USC chondrocytes, the expression of FGFR3 mRNA with FGF2 increased in a 2-day culture, yet decreased in a 4-day culture, suggesting that the hypertrophic chondrocytes were more numerous and sensitive compared to the proliferative chondrocytes. For all the chondrocyte types, FGF2 appeared to be up-regulated to FGFR3, as the expression of FGFR3 mRNA increased with a higher concentration of FGF2 until a peak level. In conclusion, FGF2 was found to up-regulate to FGFR3 until the peak level of FGFR3 mRNA expression, while in hypertrophic chondrocytes, FGFR3 appeared to cause the differentiaton of chondrocytes, resulting in the inhibition of longitudinal bone growth after the peak level of FGFR3 mRNA expression.  相似文献   

6.
Hepatocyte growth factor (HGF) is a potent inducer of motility in epithelial cells. Since we have previously found that activation of the epidermal growth factor receptor (EGFR) is an absolute prerequisite for induction of motility of corneal epithelial cells after wounding, we investigated whether induction of motility in response to HGF is also dependent on activation of the EGFR. We now report that HGF induces transactivation of the EGFR in an immortalized line of corneal epithelial cells, in human skin keratinocytes, and in Madin-Darby canine kidney cells. EGFR activation is unconditionally required for induction of motility in corneal epithelial cells, and for induction of a fully motile phenotype in Madin-Darby canine kidney cells. Activation of the EGFR occurs through amphiregulin and heparin-binding epidermal growth factor-like growth factor. Early after HGF stimulation, blocking EGFR activation does not inhibit extracellular-signal regulated kinase 1/2 (ERK1/2) activation by HGF, but the converse is seen after approximately 1 h, indicating the existence of EGFR-dependent and -independent routes of ERK1/2 activation. In summary, HGF induces transactivation of the EGFR in epithelial cells, and this is a prerequisite for induction of full motility.  相似文献   

7.
血小板源生长因子受体与肿瘤   总被引:4,自引:0,他引:4  
张秀华  林莉萍  丁健 《生命科学》2006,18(3):220-226
血小板源生长因子(platelet-derived growth factor,PDGF)经由其受体(platelet-derived growth fac tor receptor,PDGFR)表现细胞效应。PDGF和PDGFR涉及多种肿瘤的发病机制并在血管生成中起重要作用。PDGF在肿瘤中的自分泌刺激、PDGFR的过表达或过度活化或者刺激肿瘤内血管生成都会促进肿瘤生长;PDGFR的阻断可以降低实体瘤中组织间质液压而增强药物传送。这些机制可能提示在肿瘤治疗中PDGFR抑制剂单用、与化疗药物或者和其他靶点药物联合用药的可能性和可行性。随着PDGFR拮抗剂,如imatinib的上市,PDGFR作为抗肿瘤药物的靶点备受瞩目。  相似文献   

8.
Shieh JH  Moore MA 《Cytotechnology》1989,2(4):269-286
The formation of the cellular constituents of the blood is regulated by a series of endogenous polypeptides with largely paracrine function. A number of these hematopoietic growth factors (HGF's), which include colony stimulating factors, interleukins, and erythropoietin, have been purified to homogeneity and cloned, which in turn has led to extensive investigations of their biochemical properties and biological effects and functions. The HGF's act on target cells by binding to receptors. The kinetics and, to an even larger extent, dynamics of the factor/receptor associations display several intriguing characteristics, most of which are still poorly understood. Herein, the biochemical characteristics of HGF's receptors as well as the binding properties, post-receptor binding events and receptor modulation resulting from the association of HGF's and their target cells are reviewed.Abbreviations BMDM Bone Marrow-Derived Macrophages - CSF Colony-Stimulating Factor - cAMP cyclic 3,5-adenosine monophosphate - EPO Erythropoietin - fMLP formyl-methionylleucyl-phenylalanine - IFN Interferon - IL Interleukin - LPS Lipopolysaccharide - PEM Peritoneal E Exudate Macrophages - PKC Protein Kinase C - TNF Tumor Necrosis Factor - TPA 12-O-tetradecanoylphorbol-13-acetate - PtdIns(4,5)P2 Phosphatidylinositol-4,5 bisphosphate  相似文献   

9.
Density-induced down regulation of epidermal growth factor receptors   总被引:4,自引:0,他引:4  
Summary Previous studies have shown that cell density can regulate the binding of several growth factors. To determine whether cell density exerts a uniform effect on the expression of epidermal growth factor (EGF) receptors, seven cell lines were examined in detail. For each cell line, EGF binding was found to decrease as cell density increases. Scatchard analysis of the binding data reveals that decreases in EGF binding are due to reductions in the number of cell surface EGF receptors. The only apparent exception is the effect of cell density on the binding of EGF to A-431 cells. For these cells, increases in cell density lead to two effects: decreases in the number of high affinity EGF receptors and increases in the total number of EGF receptors. In addition to the effects of cell density on EGF receptors, it was determined that increases in cell density can coordinately down-regulate receptors for as many as four different growth factors. Overall, the findings described in this report for EGF and those previously described for transforming growth factor type-β (TGF-β) and fibroblast growth factor (FGF) demonstrate the existence of a common mechanism for down-regulating growth factor receptors. This work was supported by grants from the Nebraska Department of Health (89-51), the National Cancer Institute (Laboratory Research Center Support Grant, CA36727), and the American Cancer Society (Core Grant ACS SIG-16). EDITOR'S STATEMENT The paper by Rizzino et al. demonstrates that receptor number decreases as a function of cell density. This may represent a mechanism by which cell proliferation is reduced as cell density increases.  相似文献   

10.
11.
12.
The rat pheochromocytoma clone PC12 responds to nerve growth factor through the expression of a number of differentiated neuronal properties. One of the most rapid changes is a large, transient increase in the activity of ornithine decarboxylase. These cells also show an increase in ornithine decarboxylase activity in response to the mitogen, epidermal growth factor, but do not respond morphologically as they do to nerve growth factor. Specific, high-affinity epidermal growth factor receptors are present on the cells. When the cells are differentiated with nerve growth factor, the response to epidermal growth factor is markedly diminished and there is a marked reduction in the binding of epidermal growth factor to the cells.  相似文献   

13.
Primary cell cultures were prepared from fetal, neonatal and adult rat pituitaries and evaluated for their ability to secrete growth hormone (GH) in response to growth hormone-releasing factor (GRF). Pituitary cells prepared from fetuses at days 19 and 21 of gestation, neonatal animals at the day of birth (day 0) or the following day (day 1) and peripubertal male rats showed full dose response curves to GRF with maximal GH release when stimulated with 1 X 10(-10) M rat GRF. At this concentration of GRF, the amount of GH released was not different from that elicited by activation of adenylate cyclase with 1 X 10(-5) M forskolin. In contradistinction, a preparation of cells from fetuses at day 18 of gestation did not show the same release of GH when challenged with 1 X 10(-10) M GRF and forskolin (0.057 +/- 0.001, compared to 0.076 +/- 0.003 micrograms/10(5) cells per 4.5 h), although the cells clearly responded to both secretagogues (basal levels of GH, 0.029 +/- 0.002 micrograms/10(5) cells per 4.5 h). While cells prepared from fetuses at day 21 of gestation or from animals after birth released 5-10% of their total cellular GH content, those prepared from 18- and 19-day fetuses released as much as 40% of their total GH suggesting there is a maturation of intracellular GH processing that occurs late in gestation. The results show that, in late pregnancy, the rat fetal pituitary is highly responsive to growth hormone-releasing factor and suggest that this peptide participates in regulating GH levels during the perinatal period.  相似文献   

14.
Summary Stem cells of the embryonal carcinoma cell line called H6 can be induced to differnetiate to endoderm-like cells by retinoic acid (3×10−6 M). We have detected a diffusible and stable factor which is secreted by H6 endoderm-like cells and stimulates the growth of H6 stem cells. The stimulation by the endoderm-like cells is considereably greater than that by mouse fibroblasts or H6 stem cells themselves. No reciprocal stimulation of endoderm-like cells by stem cells occurs. Part but not all of the stimulation might be due to extracellular matrix proteins or to insulin-like growth factor type 2, each of which also stimulates the growth of H6 stem cells. Insulin causes no such stimulation. This work was supported by research rant no. CA-16754 from the National Cancer Institute to J. W. L. E. L. G. was supported by an American Heart Association Medical Student Research Award. Editor's Statement This paper presents a good example of cooperativity between undifferentiated teratoma stem cells and differentiated parietal endoderm-derived countrparts in terms of growth support. It raises the interesting question of the relationship between factors produced by paprietal and visceral endoderm cells. Gordon H. Sato  相似文献   

15.
Summary The expression of epidermal growth factor receptor (EGFR) was determined in cryosections of 42 human gliomas using biotinylated epidermal growth factor (B-EGF) and two monoclonal antibodies (mAb) against EGFR. All gliomas were found to express EGFR when examined with B-EGF, whereas 33 expressed EGFR when examined with the two mAbs. The highly malignant gliomas (glioblastomas and anaplastic astrocytomas) had a more heterogeneous staining pattern and a larger proportion of tumour cells staining strongly with B-EGF than did the low-grade gliomas (astrocytomas, oligodendrogliomas, mixed gliomas, and ependymomas). This indicates that high-grade gliomas contain more tumour cells rich in EGFR than do the low-grade gliomas. Reactive astrocytes, ependymal cells, and many types of nerve cells (cerebral cortical pyramidal cells, pyramidal and granular hippocampal cells, Purkinje cells, cerebellar granular cells and neurons in the molecular layer of the cerebellum) expressed EGFR, whereas small neurons and normal glial cells were not found to express EGFR.  相似文献   

16.
PC-cell derived growth factor (PCDGF), also known as granulin precursor or progranulin, is the largest member of a family of growth modulators characterized by a unique cysteine-rich motif. Biological and pathological studies point out to the importance of this growth factor in breast cancer and other human cancers, where it stimulates proliferation and survival, and promotes metastasis. These studies suggest that PCDGF is a suitable therapeutic and diagnostic target for the development of novel cancer therapy and diagnosis.  相似文献   

17.
18.
Mouse embryonic palatal mesenchymal (MEPM) cells were cultured either on plastic tissue culture dishes or on the surface of three-dimensional collagen gels or within collagen gel matrices in DMEM/F12 medium containing 2.5% donor calf serum. MEPM cells proliferated exponentially when cultured on collagen or on plastic. Cells cultured within collagen gels did not proliferate but remained viable. Addition of 10 ng/ml epidermal growth factor (EGF) or transforming growth factor alpha (TGF) stimulated the proliferation of those cells cultured on plastic or on collagen but not those cultured within collagen gels. Immunocytochemical analysis revealed that MEPM cells synthesise collagen types I, III, IV, V, VI and IX; fibronectin, heparan sulphate proteoglycan, laminin and tenascin in vitro. These molecules are all present in the developing palate in vivo. EGF and TGF produced a generalised stimulation of extracellular matrix (ECM) synthesis by MEPM cells in vitro. Biochemical analysis indicated that cells cultured within collagen gels had the highest intrinsic rate of protein synthesis. On all substrata neither EGF nor TGF markedly altered the types of ECM molecules synthesised but rather caused a general increase in the total amount produced. This stimulation was most marked where the cells were cultured within collagen gels. The lack of stimulation of proliferation of MEPM cells cultured within collagen gels (i.e. in a physiologically-relevant environment) by EGF or TGF together with the marked stimulation of ECM synthesis suggests that these factors may act as differentiation signals via their effects on ECM production. Correspondence to: M.J. Dixon  相似文献   

19.
The keratinocyte growth factor receptor (KGFR)/fibroblast growth factor receptor 2b is activated by high-affinity-specific interaction with two different ligands, keratinocyte growth factor (KGF)/fibroblast growth factor (FGF)7 and FGF10/KGF2, which are characterized by an opposite requirement of heparan sulfate proteoglycans and heparin for binding to the receptor. We investigated here the possible different endocytic trafficking of KGFR, induced by the two ligands. Immunofluorescence and immunoelectron microscopy analysis showed that KGFR internalization triggered by either KGF or FGF10 occurs through clathrin-coated pits. Immunofluorescence confocal microscopy using endocytic markers as well as tumor susceptibility gene 101 (TSG101) silencing demonstrated that KGF drives KGFR to the degradative pathway, while FGF10 targets the receptor to the recycling endosomes. Biochemical analysis showed that KGFR is ubiquitinated and degraded after KGF treatment but not after FGF10 treatment, and that the alternative fate of KGFR might depend on the different ability of the receptor to phosphorylate the fibroblast growth factor receptor substrate 2 (FRS2) substrate and to recruit the ubiquitin ligase c-Cbl. The recycling endocytic pathway followed by KGFR upon FGF10 stimulation correlates with the higher mitogenic activity exerted by this ligand on epithelial cells compared with KGF, suggesting that the two ligands may play different functional roles through the regulation of the receptor endocytic transport.  相似文献   

20.
Keratinocyte growth factor (KGF/FGF7) and fibroblast growth factor 10 (FGF10/KGF2) regulate keratinocyte proliferation and differentiation by binding to the tyrosine kinase KGF receptor (KGFR). KGF induces keratinocyte motility and cytoskeletal rearrangement, whereas a direct role of FGF10 on keratinocyte migration is not clearly established. Here we analyzed the motogenic activity of FGF10 and KGF on human keratinocytes. Migration assays and immunofluorescence of actin cytoskeleton revealed that FGF10 is less efficient than KGF in promoting migration and exerts a delayed effect in inducing lamellipodia and ruffles formation. Both growth factors promoted phosphorylation and subsequent membrane translocation of cortactin, an F-actin binding protein involved in cell migration; however, FGF10-induced cortactin phosphorylation was reduced, more transient and delayed with respect to that promoted by KGF. Cortactin phosphorylation induced by both growth factors was Src-dependent, while its membrane translocation and cell migration were blocked by either Src and PI3K inhibitors, suggesting that both pathways are involved in KGF- and FGF10-dependent motility. Furthermore, siRNA-mediated downregulation of cortactin inhibited KGF- and FGF10-induced migration. These results indicate that cortactin is involved in keratinocyte migration promoted by both KGF and FGF10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号