首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
5.
6.
7.
Expansins are non-enzymatic plant proteins breaking hydrogen bonds between cellulose microfibrils and hemicellulose polymer matrix. Each plant has many expansin genes, whose protein products participate in the regulation of plant growth and development mainly by regulating cell expansion. To analyze the effects of elevated expansin expression on the plant organ sizes, we cloned the AtEXPA10 gene from Arabidopsis thaliana and PnEXPA1 gene from Populus nigra. Transgenic tobacco plants expressing the target genes were obtained. The obtained transgenic tobacco plants were shown to have significantly larger leaves and longer stems compared to control plants. The flowers were quite insignificantly larger, but at the same time transgenic plants had more flowers. The microscopic studies showed that the organs of AtEXPA10-carrying plants were larger mainly due to stimulated cell proliferation, whereas the overexpression of the PnEXPA1 gene activated cell expansion.  相似文献   

8.
9.
10.
11.
12.
Canola is one of the most important cash crops in Canada, and a national project named “Designing Oilseeds for Tomorrow’s Market” was undertaken to improve seed meal quality of this strategically important crop. As a part of this project, our group is focusing on identifying seed coat-specific promoters for canola (Brassica napus). These promoters will be used to genetically modify canola seed coat to reduce or eliminate anti-nutritional components from the meal. The Arabidopsis thaliana BAN promoter (AtBANpro) and δVPE promoter (AtδVPEpro) were isolated and fused to GUS reporter gene to generate transgenic canola plants. These plants were analyzed by GUS staining and microtome sectioning which showed that both promoters are seed coat-specific in canola: AtBANpro in inner seed coat layer and AtδVPEpro in outer seed coat layer. Therefore, the two Arabidopsis promoters can be used to modify genes in seed coat of canola for further improving its seed qualities.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.

Background  

Calcium signaling plays a prominent role in plants for coordinating a wide range of developmental processes and responses to environmental cues. Stimulus-specific generation of intracellular calcium transients, decoding of calcium signatures, and transformation of the signal into cellular responses are integral modules of the transduction process. Several hundred proteins with functions in calcium signaling circuits have been identified, and the number of downstream targets of calcium sensors is expected to increase. We previously identified a novel, calmodulin-binding nuclear protein, IQD1, which stimulates glucosinolate accumulation and plant defense in Arabidopsis thaliana. Here, we present a comparative genome-wide analysis of a new class of putative calmodulin target proteins in Arabidopsis and rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号