首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Translocation of conventional protein kinases C (PKCs) to the plasma membrane leads to their specific association with transmembrane-4 superfamily (TM4SF; tetraspanin) proteins (CD9, CD53, CD81, CD82, and CD151), as demonstrated by reciprocal co-immunoprecipitation and covalent cross-linking experiments. Although formation and maintenance of TM4SF-PKC complexes are not dependent on integrins, TM4SF proteins can act as linker molecules, recruiting PKC into proximity with specific integrins. Previous studies showed that the extracellular large loop of TM4SF proteins determines integrin associations. In contrast, specificity for PKC association probably resides within cytoplasmic tails or the first two transmembrane domains of TM4SF proteins, as seen from studies with chimeric CD9 molecules. Consistent with a TM4SF linker function, only those integrins (alpha(3)beta(1), alpha(6)beta(1), and a chimeric "X3TC5" alpha(3) mutant) that associated strongly with tetraspanins were found in association with PKC. We propose that PKC-TM4SF-integrin structures represent a novel type of signaling complex. The simultaneous binding of TM4SF proteins to the extracellular domains of the integrin alpha(3) subunit and to intracellular PKC helps to explain why the integrin alpha3 extracellular domain is needed for both intracellular PKC recruitment and PKC-dependent phosphorylation of the alpha(3) integrin cytoplasmic tail.  相似文献   

2.
Recent literature suggests that tetraspanin proteins (transmembrane 4 superfamily; TM4SF proteins) may associate with each other and with many other transmembrane proteins to form large complexes that sometimes may be found in lipid rafts. Here we show that prototype complexes of CD9 or CD81 (TM4SF proteins) with alpha(3)beta(1) (an integrin) and complexes of CD63 (a TM4SF protein) with phosphatidylinositol 4-kinase (PtdIns 4-K) may indeed localize within lipid raft-like microdomains, as seen by three different criteria. First, these complexes localize to low density light membrane fractions in sucrose gradients. Second, CD9 and alpha(3) integrin colocalized with ganglioside GM1 as seen by double staining of fixed cells. Third, CD9-alpha3beta1 and CD81-alpha3beta1 complexes were shifted to a higher density upon cholesterol depletion from intact cells or cell lysate. However, CD9-alpha3beta1, CD81-alpha3beta1, and CD63-PtdIns 4-K complex formation itself was not dependent on localization into raftlike lipid microdomains. These complexes did not require cholesterol for stabilization, were maintained within well solubilized dense fractions from sucrose gradients, were stable at 37 degrees C, and were small enough to be included within CL6B gel filtration columns. In summary, prototype TM4SF protein complexes (CD9-alpha3beta1, CD81-alpha3beta1, and CD63-PtdIns 4-K) can be solubilized as discrete units, independent of lipid microdomains, although they do associate with microdomains resembling lipid rafts.  相似文献   

3.
CD81 and CD9, members of the transmembrane-4 superfamily (TM4SF; tetraspanins), form extensive complexes with other TM4SF proteins, integrins, and other proteins, especially in mild detergents. In moderately stringent Brij 96 lysis conditions, CD81 and CD9 complexes are virtually identical to each other, but clearly distinct from other TM4SF complexes. One of the most prominent proteins within CD81 and CD9 complexes is identified here as FPRP, the 133-kDa prostaglandin F(2alpha) receptor regulatory protein. FPRP, a cell-surface Ig superfamily protein, associates specifically with CD81 or with CD81 and CD9, but not with integrins or other TM4SF proteins. In contrast to other CD81- and CD9-associating proteins, FPRP associates at very high stoichiometry, with essentially 100% of cell-surface FPRP on 293 cells being CD81- and CD9-associated. Also, CD81.CD9.FPRP complexes have a discrete size (<4 x 10(6) Da) as measured by gel permeation chromatography and remain intact after disruption of cholesterol-rich membrane microdomains by methyl-beta-cyclodextrin. Although CD81 associated with both alpha(3) integrin and FPRP in 293 cells, the alpha(3)beta(1).CD81 and CD81.CD9.FPRP complexes were distinct, as determined by immunoprecipitation and immunodepletion experiments. In conclusion, our data affirm the existence of distinct TM4SF complexes with unique compositions and specifically characterize FPRP as the most robust, highly stoichiometric CD81- and/or CD9-associated protein yet described.  相似文献   

4.
CD151 is a cell surface protein that belongs to the tetraspan superfamily. It associates with other tetraspan molecules and certain integrins to form large complexes at the cell surface. CD151 is expressed by a variety of epithelia and mesenchymal cells. We demonstrate here that in human skin CD151 is codistributed with alpha3beta1 and alpha6beta4 at the basolateral surface of basal keratinocytes. Immunoelectron microscopy showed that CD151 is concentrated in hemidesmosomes. By immunoprecipitation from transfected K562 cells, we established that CD151 associates with alpha3beta1 and alpha6beta4. In beta4-deficient pyloric atresia associated with junctional epidermolysis bullosa (PA-JEB) keratinocytes, CD151 and alpha3beta1 are clustered together at the basal cell surface in association with patches of laminin-5. Focal adhesions are present at the periphery of these clusters, connected with actin filaments, and they contain both CD151 and alpha3beta1. Transient transfection studies of PA-JEB cells with beta4 revealed that the integrin alpha6beta4 becomes incorporated into the alpha3beta1-CD151 clusters where it induces the formation of hemidesmosomes. As a result, the amount of alpha3beta1 in the clusters diminishes and the protein becomes restricted to the peripheral focal adhesions. Furthermore, CD151 becomes predominantly associated with alpha6beta4 in hemidesmosomes, whereas its codistribution with alpha3beta1 in focal adhesions becomes partial. The localization of alpha6beta4 in the pre-hemidesmosomal clusters is accompanied by a strong upregulation of CD151, which is at least partly due to increased cell surface expression. Using beta4 chimeras containing the extracellular and transmembrane domain of the IL-2 receptor and the cytoplasmic domain of beta4, we found that for recruitment of CD151 into hemidesmosomes, the beta4 subunit must be associated with alpha6, confirming that integrins associate with tetraspans via their alpha subunits. CD151 is the only tetraspan identified in hemidesmosomal structures. Others, such as CD9 and CD81, remain diffusely distributed at the cell surface.In conclusion, we show that CD151 is a major component of (pre)-hemidesmosomal structures and that its recruitment into hemidesmosomes is regulated by the integrin alpha6beta4. We suggest that CD151 plays a role in the formation and stability of hemidesmosomes by providing a framework for the spatial organization of the different hemidesmosomal components.  相似文献   

5.
As observed previously, tetraspanin palmitoylation promotes tetraspanin microdomain assembly. Here, we show that palmitoylated integrins (alpha3, alpha6, and beta4 subunits) and tetraspanins (CD9, CD81, and CD63) coexist in substantially overlapping complexes. Removal of beta4 palmitoylation sites markedly impaired cell spreading and signaling through p130Cas on laminin substrate. Also in palmitoylation-deficient beta4, secondary associations with tetraspanins (CD9, CD81, and CD63) were diminished and cell surface CD9 clustering was decreased, whereas core alpha6beta4-CD151 complex formation was unaltered. There is also a functional connection between CD9 and beta4 integrins, as evidenced by anti-CD9 antibody effects on beta4-dependent cell spreading. Notably, beta4 palmitoylation neither increased localization into "light membrane" fractions of sucrose gradients nor decreased solubility in nonionic detergents-hence it does not promote lipid raft association. Instead, palmitoylation of beta4 (and of the closely associated tetraspanin CD151) promotes CD151-alpha6beta4 incorporation into a network of secondary tetraspanin interactions (with CD9, CD81, CD63, etc.), which provides a novel framework for functional regulation.  相似文献   

6.
Tetraspanins (or proteins from the transmembrane 4 superfamily, TM4SF) form membrane complexes with integrin receptors and are implicated in integrin-mediated cell migration. Here we characterized cellular localization, structural composition, and signaling properties of alpha3beta1-TM4SF adhesion complexes. Double-immunofluorescence staining showed that various TM4SF proteins, including CD9, CD63, CD81, CD82, and CD151 are colocalized within dot-like structures that are particularly abundant at the cell periphery. Differential extraction in conjunction with chemical cross-linking indicated that the cell surface fraction of alpha3beta1-TM4SF protein complexes may not be directly linked to the cytoskeleton. However, in cells treated with cytochalasin B alpha3beta1-TM4SF protein complexes are relocated into intracellular vesicles suggesting that actin cytoskeleton plays an important role in the distribution of tetraspanins into adhesion structures. Talin and MARCKS are partially codistributed with TM4SF proteins, whereas vinculin is not detected within the tetraspanin-containing adhesion structures. Attachment of serum-starved cells to the immobilized anti-TM4SF mAbs induced dephosphorylation of focal adhesion kinase (FAK). On the other hand, clustering of tetraspanins in cells attached to collagen enhanced tyrosine phosphorylation of FAK. Furthermore, ectopic expression of CD9 in fibrosarcoma cells affected adhesion-induced tyrosine phosphorylation of FAK, that correlated with the reorganization of the cortical actin cytoskeleton. These results show that tetraspanins can modulate integrin signaling, and point to a mechanism by which TM4SF proteins regulate cell motility.  相似文献   

7.
Previously we established that the alpha(3)beta(1) integrin shows stable, specific, and stoichiometric association with the TM4SF (tetraspannin) protein CD151. Here we used a membrane impermeable cross-linking agent to show a direct association between extracellular domains of alpha(3)beta(1) and CD151. The alpha(3)beta(1)-CD151 association site was then mapped using chimeric alpha(6)/alpha(3) integrins and CD151/NAG2 TM4SF proteins. Complex formation required an extracellular alpha(3) site (amino acids (aa) 570-705) not previously known to be involved in specific integrin contacts with other proteins and a region (aa 186-217) within the large extracellular loop of CD151. Notably, the anti-CD151 monoclonal antibody TS151r binding epitope, previously implicated in alpha(3) integrin association, was mapped to the same region of CD151 (aa 186-217). Finally, we demonstrated that both NH(2)- and COOH-terminal domains of CD151 are located on the inside of the plasma membrane, thus confirming a long suspected model of TM4SF protein topology.  相似文献   

8.
9.
EWI-2, a cell surface immunoglobulin SF protein of unknown function, associates with tetraspanins CD9 and CD81 with high stoichiometry. Overexpression of EWI-2 in A431 epidermoid carcinoma cells did not alter cell adhesion or spreading on laminin-5, and had no effect on reaggregation of cells plated on collagen I (alpha2beta1 integrin ligand). However, on laminin-5 (alpha3beta1 integrin ligand), A431 cell reaggregation and motility functions were markedly impaired. Immunodepletion and reexpression experiments revealed that tetraspanins CD9 and CD81 physically link EWI-2 to alpha3beta1 integrin, but not to other integrins. CD81 also controlled EWI-2 maturation and cell surface localization. EWI-2 overexpression not only suppressed cell migration, but also redirected CD81 to cell filopodia and enhanced alpha3beta1-CD81 complex formation. In contrast, an EWI-2 chimeric mutant failed to suppress cell migration, redirect CD81 to filopodia, or enhance alpha3beta1-CD81 complex formation. These results show how laterally associated EWI-2 might regulate alpha3beta1 function in disease and development, and demonstrate how tetraspanin proteins can assemble multiple nontetraspanin proteins into functional complexes.  相似文献   

10.
Transmembrane proteins of the tetraspanin superfamily are assembled in multimeric complexes on the cell surface. Spatial orientation of tetraspanins within these complexes may affect signaling functions of the associated transmembrane receptors (e.g. integrins, receptor-type tyrosine kinases). The structural determinants that control assembly of the tetraspanin complexes are unknown. We have found that various tetraspanins and the alpha(3) integrin subunit are palmitoylated. The stability and molecular composition of the palmitoylated alpha(3)beta(1)-tetraspanin complexes are not affected by adhesion. To assess the significance of palmitoylation in the function of the alpha(3)beta(1)-tetraspanin complexes we mapped the sites of palmitoylation for CD151. Mutation of six cysteines, Cys(11), Cys(15), Cys(79), Cys(80), Cys(242), and Cys(243) was necessary to completely abolish palmitoylation of CD151. The association of the palmitoylation-deficient mutant of CD151 (CD151Cys8) with CD81 and CD63 was markedly decreased, but the interaction of the alpha(3)beta(1)-CD151Cys8 complex with phosphatidylinositol 4-kinase was not affected. Ectopic expression of CD151Cys8 in Rat-1 cells impaired the interactions of the endogenous CD63 and CD81 with the alpha(3)beta(1) integrin. Although the expression of the palmitoylation-deficient CD151 does not change cell spreading on the extracellular matrix, the number of focal adhesions increased. Adhesion-induced phosphorylation of PKB/c-Akt is markedly increased in cells expressing a palmitoylation-deficient mutant, thereby providing direct evidence for the role of the tetraspanin microdomains in regulation of the integrin-dependent phosphatidylinositol 3-kinase signaling pathway. In contrast, activation of FAK and ERK1/2 were not affected by the expression of CD151Cys8. Our results demonstrate that palmitoylation of tetraspanins is critical not only for the organization of the integrin-tetraspanin microdomains but also has a specific role in modulation of adhesion-dependent signaling.  相似文献   

11.
The basement membrane protein laminin-5 supports tumor cell adhesion and motility and is implicated at multiple steps of the metastatic cascade. Tetraspanin CD151 engages in lateral, cell surface complexes with both of the major laminin-5 receptors, integrins alpha3beta1 and alpha6beta4. To determine the role of CD151 in tumor cell responses to laminin-5, we used retroviral RNA interference to efficiently silence CD151 expression in epidermal carcinoma cells. Near total loss of CD151 had no effect on steady state cell surface expression of alpha3beta1, alpha6beta4, or other integrins with which CD151 associates. However, CD151-silenced carcinoma cells displayed markedly impaired motility on laminin-5, accompanied by unusually persistent lateral and trailing edge adhesive contacts. CD151 silencing disrupted alpha3beta1 integrin association with tetraspanin-enriched microdomains, reduced the bulk detergent extractability of alpha3beta1, and impaired alpha3beta1 internalization in cells migrating on laminin-5. Both alpha3beta1- and alpha6beta4-dependent cell adhesion to laminin-5 were also impaired in CD151-silenced cells. Reexpressing CD151 in CD151-silenced cells reversed the adhesion and motility defects. Finally, loss of CD151 also impaired migration but not adhesion on substrates other than laminin-5. These data show that CD151 plays a critical role in tumor cell responses to laminin-5 and reveal promotion of integrin recycling as a novel potential mechanism whereby CD151 regulates tumor cell migration.  相似文献   

12.
ADAM disintegrin domains can support integrin-mediated cell adhesion. However, the profile of which integrins are employed for adhesion to a given disintegrin domain remains unclear. For example, we suggested that the disintegrin domains of mouse sperm ADAMs 2 and 3 can interact with the alpha6beta1 integrin on mouse eggs. Others concluded that these disintegrin domains interact instead with the alpha9beta1 integrin. To address these differing results, we first studied adhesion of mouse F9 embryonal carcinoma cells and human G361 melanoma cells to the disintegrin domains of mouse ADAMs 2 and 3. Both cell lines express alpha6beta1 and alpha9beta1 integrins at their surfaces. Antibodies to the alpha6 integrin subunit inhibited adhesion of both cell lines. An antibody that recognizes human alpha9 integrin inhibited adhesion of G361 cells. VLO5, a snake disintegrin that antagonizes alpha4beta1 and alpha9beta1 integrins, potently inhibited adhesion of both cell lines. We next explored expression of the alpha9 integrin subunit in mouse eggs. In contrast to our ability to detect alpha6beta1, we were unable to convincingly detect alpha9beta1 integrin on the surface of mouse eggs. Moreover, treatment of mouse eggs with 250 nm VLO5, which is 250 fold over its approximately IC(50) for inhibition of somatic cell adhesion, had minimal effect on sperm-egg binding or fusion. We did detect alpha9 integrin protein on epithelial cells of the oviduct. Additional studies showed that antibodies to the alpha6 and alpha7 integrins additively inhibited adhesion of mouse trophoblast stem cells and that an antibody to the alpha4 integrin inhibited adhesion of MOLT-3 cells to these disintegrin domains: Our data suggest that multiple integrins (on the same cell) can participate in adhesion to a given ADAM disintegrin domain and that interactions between ADAMs and integrins may be important for sperm transit through the oviduct.  相似文献   

13.
The tetraspanin CD151 forms a stoichiometric complex with integrin alpha3beta1 and regulates its endocytosis. We observed that down-regulation of CD151 in various epithelial cell lines changed glycosylation of alpha3beta1. In contrast, glycosylation of other transmembrane proteins, including those associated with CD151 (e.g. alpha6beta1, CD82, CD63, and emmprin/CD147) was not affected. The detailed analysis has shown that depletion of CD151 resulted in the reduction of Fucalpha1-2Gal and bisecting GlcNAc-beta(1-->4) linkage on N-glycans of the alpha3 integrin subunit. The modulatory activity of CD151 toward alpha3beta1 was specific, because stable knockdown of three other tetraspanins (i.e. CD9, CD63, and CD81) did not affect glycosylation of the integrin. Analysis of alpha3 glycosylation in CD151-depleted breast cancer cells with reconstituted expression of various CD151 mutants has shown that a direct contact with integrin is required but not sufficient for the modulatory activity of the tetraspanin toward alpha3beta1. We also found that glycosylation of CD151 is also critical; Asn(159) --> Gln mutation in the large extracellular loop did not affect interactions of CD151 with other tetraspanins or alpha3beta1 but negated its modulatory function. Changes in the glycosylation pattern of alpha3beta1 observed in CD151-depleted cells correlated with a dramatic decrease in cell migration toward laminin-332. Migration toward fibronectin or static adhesion of cells to extracellular matrix ligands was not affected. Importantly, reconstituted expression of the wild-type CD151 but not glycosylation-deficient mutant restored the migratory potential of the cells. These results demonstrate that CD151 plays an important role in post-translation modification of alpha3beta1 integrin and strongly suggest that changes in integrin glycosylation are critical for the promigratory activity of this tetraspanin.  相似文献   

14.
Tetraspanin CD82 has been implicated in integrin-mediated functions such as cell motility and invasiveness. Although tetraspanins associate with integrins, it is unknown if and how CD82 regulates the functionality of integrins. In this study, we found that Du145 prostate cancer cells underwent morphogenesis on the reconstituted basement membrane Matrigel to form an anastomosing network of multicellular structures. This process entirely depends on integrin alpha6, a receptor for laminin. After CD82 is expressed in Du145 cells, this cellular morphogenesis was abolished, indicating a functional cross-talk between CD82 and alpha6 integrins. Interestingly, antibodies against other tetraspanins expressed in Du145 cells such as CD9, CD81, and CD151 did not block this integrin alpha6-dependent morphogenesis. We further found that CD82 significantly inhibited cell adhesion on laminin 1. Notably, the level of alpha6 integrins on the cell surface was down-regulated upon CD82 expression, although total cellular alpha6 protein levels remained unchanged in CD82-expressing cells. This down-regulation indicates that the diminished cell adhesiveness of CD82-expressing Du145 cells on laminin likely resulted from less cell surface expression of alpha6 integrins. As expected, CD82 physically associated with the integrin alpha6 in Du145-CD82 transfectant cells, suggesting that the formation of the CD82-integrin alpha6 complex reduces alpha6 integrin cell surface expression. Finally, the internalization of cell surface integrin alpha6 is significantly enhanced upon CD82 expression. In conclusion, our results indicate that 1) CD82 attenuates integrin alpha6 signaling during a cellular morphogenic process; 2) the decreased surface expression of alpha6 integrins in CD82-expressing cells is likely responsible for the diminished adhesiveness on laminin and, subsequently, results in the attenuation of alpha6 integrin-mediated cellular morphogenesis; and 3) the accelerated internalization of integrin alpha6 upon CD82 expression correlates with the down-regulation of cell surface integrin alpha6.  相似文献   

15.
BAP31, a resident integral protein of the endoplasmic reticulum membrane, regulates the export of other integral membrane proteins to the downstream secretory pathway. Here we show that cell surface expression of the tetraspanins CD9 and CD81 is compromised in mouse cells from which the Bap31 gene has been deleted. CD9 and CD81 facilitate the function of multiprotein complexes at the plasma membrane, including integrins. Of note, BAP31 does not appear to influence the egress of alpha5beta1 or alpha(v)beta3 integrins to the cell surface, but in Bap31-null mouse cells, these integrins are not able to maintain cellular adhesion to the extracellular matrix in the presence of reduced serum. Consequently, Bap31-null cells are sensitive to serum starvation-induced apoptosis. Reconstitution of wild-type BAP31 into these Bap31-null cells restores integrin-mediated cell attachment and cell survival after serum stress, whereas interference with the functions of CD9, alpha5beta1, or alpha(v)beta3 by antagonizing antibodies makes BAP31 cells act similar to Bap31-null cells in these respects. Finally, in human KB epithelial cells protected from apoptosis by BCL-2, the caspase-8 cleavage product, p20 BAP31, inhibits egress of tetraspanin and integrin-mediated cell attachment. Thus, p20 BAP31 can operate upstream of BCL-2 in living cells to influence cell surface properties due to its effects on protein egress from the endoplasmic reticulum.  相似文献   

16.
Cell adhesion to extracellular matrices is mediated by a set of heterodimeric cell surface receptors called integrins that might be the subject of regulation by growth and differentiation factors. We have examined the effect of transforming growth factor-beta 1 (TGF-beta 1) on the expression of the very late antigens or alpha beta 1 group of integrins in human cell lines. The six known members of this family share a common beta 1 subunit but have distinct alpha subunits that confer selective affinity toward type I collagen, fibronectin, laminin, and other as yet unknown cell adhesion proteins. Using a panel of specific antibodies and cDNA probes, we show that in WI-38 lung fibroblasts TGF-beta 1 elevates concomitantly the expression of alpha 1, alpha 2, alpha 3, alpha 5, and beta 1 integrin subunits at the protein and/or mRNA level, their assembly into the corresponding alpha beta 1 complexes, and their exposure on the cell surface. The rate of synthesis of total alpha subunits relative to beta 1 subunit is higher in TGF-beta 1-treated cells than in control cells. The characteristically slow (t1/2 approximately 10 h) rate of beta 1 conversion from precursor form to mature glycoprotein in untreated cells increases markedly (to t1/2 approximately 3 h) in response to TGF-beta 1. The results suggest that in WI-38 fibroblasts the beta 1 subunit is synthesized in excess over alpha subunits, and assembly of beta 1 subunits with rate-limiting alpha subunits is required for transit through the Golgi and exposure of alpha beta 1 complex on the cell surface. TGF-beta 1 does not induce the synthesis of integrin subunits that are not expressed in unstimulated cells, such as alpha 4 and alpha 6 subunits in WI-38 fibroblasts. However, alpha 4 and alpha 6 subunits can be regulated by TGF-beta in those cells that express them. The results suggest that TGF-beta regulates the expression of individual integrin subunits by parallel but independent mechanisms. By modifying the balance of individual alpha beta 1 integrins, TGF-beta 1 might modulate those aspects of cell migration, positioning, and development that are guided by adhesion to extracellular matrices.  相似文献   

17.
The role of transmembrane 4 superfamily (TM4SF) proteins during muscle cell fusion has not been investigated previously. Here we show that the appearance of TM4SF protein, CD9, and the formation of CD9-beta1 integrin complexes were both regulated in coordination with murine C2C12 myoblast cell differentiation. Also, anti-CD9 and anti-CD81 monoclonal antibodies substantially inhibited and delayed conversion of C2C12 cells to elongated myotubes, without affecting muscle-specific protein expression. Studies of the human myoblast-derived RD sarcoma cell line further demonstrated that TM4SF proteins have a role during muscle cell fusion. Ectopic expression of CD9 caused a four- to eightfold increase in RD cell syncytia formation, whereas anti-CD9 and anti-CD81 antibodies markedly delayed RD syncytia formation. Finally, anti-CD9 and anti-CD81 monoclonal antibodies triggered apoptotic degeneration of C2C12 cell myotubes after they were formed. In summary, TM4SF proteins such as CD9 and CD81 appear to promote muscle cell fusion and support myotube maintenance.  相似文献   

18.
The functional interaction ("cross-talk") of integrins with growth factor receptors has become increasingly clear as a basic mechanism in cell biology, defining cell growth, adhesion, and motility. However, no studies have addressed the microdomains in which such interaction takes place nor the effect of gangliosides and tetraspanins (TSPs) on such interaction. Growth of human embryonal WI38 fibroblasts is highly dependent on fibroblast growth factor (FGF) and its receptor (FGFR), stably associated with ganglioside GM3 and TSPs CD9 and CD81 in the ganglioside-enriched microdomain. Adhesion and motility of these cells are mediated by laminin-5 ((LN5) and fibronectin (FN) through alpha3beta1 and alpha5beta1 integrin receptors, respectively. When WI38 cells or its transformant VA13 cells were adhered to LN5 or FN, alpha3beta1 or alpha5beta1 were stimulated, giving rise to signaling to activate FGFR through tyrosine phosphorylation and inducing cell proliferation under serum-free conditions without FGF addition. Types and intensity of signaling during the time course differed significantly depending on the type of integrin stimulated (alpha3beta1 versus alpha5beta1), and on cell type (WI38 versus VA13). Such effect of cross-talk between integrins and FGFR was influenced strongly by the change of GM3 and TSPs. (i) GM3 depletion by P4 caused enhanced tyrosine phosphorylation of FGFR and Akt followed by MAPK activation, without significant change of ceramide level. GM3 depletion also caused enhanced co-immunoprecipitation of FGFR with alpha3/alpha5/beta1 and of these integrins with CD9/CD81. (ii) LN5- or FN-dependent proliferation of both WI38 and VA13 was strongly enhanced by GM3 depletion and by CD9/CD81 knockdown by siRNA. Thus, integrin-FGFR cross-talk is strongly influenced by GM3 and/or TSPs within the ganglioside-enriched microdomain.  相似文献   

19.
Dynamic regulation of beta(2) integrin-dependent adhesion is critical for a wide array of T cell functions. We previously showed that binding of high-affinity alpha(4)beta(1) integrins to VCAM-1 strengthens alpha(L)beta(2) integrin-mediated adhesion to ICAM-1. In this study, we compared beta(2) integrin-mediated adhesion of T cells to ICAM-1 under two different functional contexts: alpha(4) integrin signaling during emigration from blood into tissues and CD3 signaling during adhesion to APCs and target cells. Cross-linking either alpha(4) integrin or CD3 on Jurkat T cells induced adhesion to ICAM-1 of comparable strength. Adhesion was dependent on phosphatidylinositol (PI) 3-kinase but not p44/42 mitogen-activated protein kinase (extracellular regulated kinase 1/2), because it was inhibited by wortmannin and LY294002 but not U0126. These data suggest that PI 3-kinase is a ubiquitous regulator of beta(2) integrin-mediated adhesion. A distinct morphological change consisting of Jurkat cell spreading and extension of filopodia was induced by alpha(4) integrin signaling. In contrast, CD3 induced radial rings of cortical actin polymerization. Inhibitors of PI 3-kinase and extracellular regulated kinase 1/2 did not affect alpha(4) integrin-induced rearrangement of the actin cytoskeleton, but treatment with ionomycin, a Ca(2+) ionophore, modulated cell morphology by reducing filopodia and promoting lamellipodia formation. Qualitatively similar morphological and adhesive changes to those observed with Jurkat cells were observed following alpha(4) integrin or CD3 stimulation of human peripheral blood T cells.  相似文献   

20.
New insights have emerged about the expression, during testicular cord formation, of the ADAM (a disintegrin and metalloprotease) domain family of proteins that combines both cell surface adhesion and proteolytic activity; this family includes integrins alpha3beta1 and alpha6beta1 and tetraspanins, a distinct family of proteins containing four transmembrane domains, a small and a large extracellular loop, and short cytoplasmic tails. ADAM3 (cyritestin), ADAM5, ADAM6, and ADAM15 are expressed in fetal rat testes. In contrast, the expression of the ADAM1/ADAM2 pair (fertilin alpha/fertilin beta, respectively) is not detected in fetal testis. Yet the expression of ADAM1 starts immediately after birth, and is followed within 24 hr by the expression of ADAM2. Therefore, the ADAM1/ADAM2 heterodimer is visualized far in advance of the meiotic and spermiogenic phase of spermatogenesis. A similar expression pattern was observed for integrin subunits alpha3, alpha6, and beta1, as well as for tetraspanins CD9, CD81, and CD98; the latter is a single-pass integrin subunit beta1-binding protein. ADAM2, integrin subunits alpha3, alpha6, and beta1, and tetraspanin CD9 and CD81 immunoreactive sites are observed in prespermatogonia (also known as primordial germ cells or gonocytes). A model is proposed in which the ADAM-integrin-tetraspanin complex, known to constitute a network of membrane microdomains called the tetraspanin web, may be involved in the migration of prespermatogonia from the center to the periphery of the testicular cords and in the reinitiation of mitotic activity during the initial wave of spermatogenesis. A complementary model consists in the rearrangement of the tetraspanin web in prespermatogonia/spermatogonia undergoing spontaneous or Fas-induced apoptosis upon coculturing with Sertoli cells. In this model, the cellular site involved in the formation of preapoptotic bodies is devoid of tetraspanin-integrin clusters, in contrast with nonapoptotic cells, which display a diffuse circumferential distribution. In apoptotic prespermatogonia, immunoreactive clusters are restricted to sites where the attachment of prespermatogonia/spermatogonia to Sertoli cell surfaces is still preserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号