首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin (IL)-1 is an important mediator of acute brain injury and inflammation, and has been implicated in chronic neurodegeneration. The main source of IL-1 in the CNS is microglial cells, which have also been suggested as targets for its action. However, no data exist demonstrating expression of IL-1 receptors [IL-1 type-I receptor (IL-1RI), IL-1 type-II receptor (IL-1RII) and IL-1 receptor accessory protein (IL-1RAcP)] on microglia. In the present study we investigated whether microglia express IL-1 receptors and whether they present target or modulatory properties for IL-1 actions. RT-PCR analysis demonstrated lower expression of IL-1RI and higher expression of IL-1RII mRNAs in mouse microglial cultures compared with mixed glial or pure astrocyte cultures. Bacterial lipopolysaccharide (LPS) caused increased expression of IL-1RI, IL-1RII and IL-1RAcP mRNAs, induced the release of IL-1beta, IL-6 and prostaglandin-E2 (PGE2), and activated nuclear factor kappaB (NF-kappaB) and the mitogen-activated protein kinases (MAPKs) p38, and extracellular signal-regulated protein kinase (ERK1/2), but not c-Jun N-terminal kinase (JNK) in microglial cultures. In comparison, IL-1beta induced the release of PGE2, IL-6 and activated NF-kappaB, p38, JNK and ERK1/2 in mixed glial cultures, but failed to induce any of these responses in microglial cell cultures. IL-1beta also failed to affect LPS-primed microglial cells. Interestingly, a neutralizing antibody to IL-1RII significantly increased the concentration of IL-1beta in the medium of LPS-treated microglia and exacerbated the IL-1beta-induced IL-6 release in mixed glia, providing the first evidence that microglial IL-1RII regulates IL-1beta actions by binding excess levels of this cytokine during brain inflammation.  相似文献   

2.
ATP has been indicated as a primary factor in microglial response to brain injury and inflammation. By acting on different purinergic receptors 2, ATP is known to induce chemotaxis and stimulate the release of several cytokines from these cells. The activation of purinergic receptors 2 in microglia can be triggered either by ATP deriving from dying cells, at sites of brain injury or by ATP released from astrocytes, in the absence of cell damage. By the use of a biochemical approach integrated with video microscopy experiments, we investigated the functional consequences triggered in microglia by ATP released from mechanically stimulated astrocytes, in mixed glial cocultures. Astrocyte-derived ATP induced in nearby microglia the formation and the shedding of membrane vesicles. Vesicle formation was inhibited by the ATP-degrading enzyme apyrase or by P2X(7)R antagonists. Isolation of shed vesicles, followed by IL-1beta evaluation by a specific ELISA revealed the presence of the cytokine inside the vesicular organelles and its subsequent efflux into the extracellular medium. IL-1beta efflux from shed vesicles was enhanced by ATP stimulation and inhibited by pretreatment with the P2X(7) antagonist oxidized ATP, thus indicating a crucial involvement of the pore-forming P2X(7)R in the release of the cytokine. Our data identify astrocyte-derived ATP as the endogenous factor responsible for microvesicle shedding in microglia and reveal the mechanisms by which astrocyte-derived ATP triggers IL-1beta release from these cells.  相似文献   

3.
Members of the interleukin-1 (IL-1) family of cytokines are key mediators in the regulation of host defence responses and the development of inflammation in response to acute and chronic injury to the brain. Two major agonists, IL-1alpha and IL-1beta, bind to a membrane receptor complex composed of the type-1 IL-1 receptor (IL-1RI) and the accessory protein (IL-1RAcP). The discovery of new orphan members of the IL-1 receptor superfamily (including ST2/T1, IL-1Rrp2, TIGIRR1 and -2, SIGGIR, IL-18Ralpha and IL-18Rbeta) has increased speculation that alternative IL-1 ligands signalling pathways exist in the brain. We demonstrate here that all the IL-1R-like orphan receptors are expressed by many brain cell types including astrocytes, microglia, oligodendrocytic progenitor cells and neurons. IL-18Rbeta expression was significantly increased in response to treatment of mixed glia with bacterial lipopolysaccharide (LPS) in vitro, whereas expression of IL-1Rrp2 and TIGIRR1 was reduced. Furthermore, IL-18Rbeta, IL-1Rrp2, but not TIGIRR1 expression, was increased in the brain in vivo in response to peripheral administration of LPS or middle cerebral artery occlusion (MCA). These results suggest possible roles for newly identified members of the IL-1 receptor family in CNS diseases.  相似文献   

4.
Microglia are important innate immune effectors against invading CNS pathogens, such as Staphylococcus aureus (S. aureus), a common etiological agent of brain abscesses typified by widespread inflammation and necrosis. The NLRP3 inflammasome is a protein complex involved in IL-1β and IL-18 processing following exposure to both pathogen- and danger-associated molecular patterns. Although previous studies from our laboratory have established that IL-1β is a major cytokine product of S. aureus-activated microglia and is pivotal for eliciting protective anti-bacterial immunity during brain abscess development, the molecular machinery responsible for cytokine release remains to be determined. Therefore, the functional role of the NLRP3 inflammasome and its adaptor protein apoptosis-associated speck-like protein (ASC) in eliciting IL-1β and IL-18 release was examined in primary microglia. Interestingly, we found that IL-1β, but not IL-18 production, was significantly attenuated in both NLRP3 and ASC knockout microglia following exposure to live S. aureus. NLRP3 inflammasome activation was partially dependent on autocrine/paracrine ATP release and α- and γ-hemolysins produced by live bacteria. A cathepsin B inhibitor attenuated IL-β release from NLRP3 and ASC knockout microglia, demonstrating the existence of alternative inflammasome-independent mechanisms for IL-1β processing. In contrast, microglial IL-18 secretion occurred independently of cathepsin B and inflammasome action. Collectively, these results demonstrate that microglial IL-1β processing is regulated by multiple pathways and diverges from mechanisms utilized for IL-18 cleavage. Understanding the molecular events that regulate IL-1β production is important for modulating this potent proinflammatory cytokine during CNS disease.  相似文献   

5.
Minocycline inhibits LPS-induced retinal microglia activation   总被引:3,自引:0,他引:3  
  相似文献   

6.
ATP stimulation of cell surface P2X7 receptors results in cytolysis and cell death of macrophages. Activation of this receptor in bacterial lipopolysaccharide (LPS)-activated macrophages or monocytes also stimulates processing and release of the cytokine interleukin-1beta(IL-1beta) through activation of caspase-1. The cytokine interleukin 18 (IL-18) is also cleaved by caspase-1 and shares pro-inflammatory characteristics with IL-1beta. The objective of the present study was to test the hypothesis that IL-1beta, IL-18, and/or caspase-1 activation contribute directly to macrophage cell death induced by LPS and ATP. Macrophages were cultured from normal mice or those in which genes for the P2X7 receptor, IL-1beta, IL-1alpha, IL-18, or caspase-1 had been deleted. Our data confirm the importance of the P2X7 receptor in ATP-stimulated cell death and IL-1beta release from LPS-primed macrophages. We demonstrate that prolonged stimulation with ATP leads to cell death, which is partly dependent on LPS priming and caspase-1, but independent of cytokine processing and release. We also provide evidence that LPS priming of macrophages makes them highly susceptible to the toxic effects of brief exposure to ATP, which leads to rapid cell death by a mechanism that is dependent on caspase-1 but, again, independent of cytokine processing and release.  相似文献   

7.
Endotoxin-dependent release of IL-1 beta from mouse microglial cells is a very inefficient process, as it is slow and leads to accumulation of a modest amount of extracellular cytokine. Furthermore, secreted IL-1 beta is mostly in the procytokine unprocessed form. Addition of extracellular ATP to LPS-primed microglia caused a burst of release of a large amount of processed IL-1 beta. ATP had no effect on the accumulation of intracellular pro-IL-1 beta in the absence of LPS. In LPS-treated cells, ATP slightly increased the synthesis of pro-IL-1 beta. Optimal ATP concentration for IL-1 beta secretion was between 3 and 5 mM, but significant release could be observed at concentrations as low as 1 mM. At all ATP concentrations IL-1 beta release could be inhibited by increasing the extracellular K+ concentration. ATP-dependent IL-1 beta release was also inhibited by 90 and 60% by the caspase inhibitors YVAD and DEVD, respectively. Accordingly, in ATP-stimulated microglia, the p20 proteolytic fragment derived from activation of the IL-1-beta-converting enzyme could be detected by immunoblot analysis. These experiments show that in mouse microglial cells extracellular ATP triggers fast maturation and release of intracellularly accumulated IL-beta by activating the IL-1-beta-converting enzyme/caspase 1.  相似文献   

8.
9.
IL-1beta released from activated macrophages contributes significantly to tissue damage in inflammatory, degenerative, and autoimmune diseases. In the present study, we identified a novel mechanism of IL-1beta release from activated microglia (brain macrophages) that occurred independently of P2X(7) ATP receptor activation. Stimulation of LPS-preactivated microglia with lysophosphatidylcholine (LPC) caused rapid processing and secretion of mature 17-kDa IL-1beta. Neither LPC-induced IL-1beta release nor LPC-stimulated intracellular Ca(2+) increases were affected by inhibition of P2X(7) ATP receptors with oxidized ATP. Microglial LPC-induced IL-1beta release was suppressed in Ca(2+)-free medium or during inhibition of nonselective cation channels with Gd(3+) or La(3+). It was also attenuated when Ca(2+)-activated K(+) channels were blocked with charybdotoxin (CTX). The electroneutral K(+) ionophore nigericin did not reverse the suppressive effects of CTX on LPC-stimulated IL-1beta release, demonstrating the importance of membrane hyperpolarization. Furthermore, LPC-stimulated caspase activity was unaffected by Ca(2+)-free medium or CTX, suggesting that secretion but not processing of IL-1beta is Ca(2+)- and voltage-dependent. In summary, these data indicate that the activity of nonselective cation channels and Ca(2+)-activated K(+) channels is required for optimal IL-1beta release from LPC-stimulated microglia.  相似文献   

10.
The investigation of factors that regulate expression of CC-chemokines, the important mediators in immune responses and inflammation processes, has an important significance in understanding the immunopathogenesis of liver diseases. We examined the role of interleukin-1beta (IL-1beta), a multifunctional cytokine, in regulating the expression of macrophage inflammatory protein (MIP)-1beta in human hepatocytes (Huh7 and HepG2). IL-1beta significantly enhanced MIP-1beta expression in these cells at both the mRNA and protein levels. Cytokine-enriched supernatants from monocyte-derived macrophage (MDM) cultures also induced MIP-1beta expression. IL-1beta is responsible for MDM supernatant-mediated up-regulation of MIP-1beta since the antibody to IL-1beta abolished MDM supernatant action. Investigation of the mechanism involved in MIP-1beta induction by IL-1beta showed that IL-1beta activated the nuclear factor kappa B (NF-kappaB) promoter in Huh7 cells. In addition, caffeic acid phenethyl ester (CAPE), a specific inhibitor of the activation of NF-kappaB, not only abolished IL-1beta-mediated NF-kappaB promoter activation, but also blocked IL-1beta-induced MIP-1beta expression. These observations suggest that IL-1beta-mediated up-regulation of MIP-1beta production in the hepatic cells may contribute a critical mechanism for continuous recruitment of inflammatory cell to liver and maintenance of inflammation.  相似文献   

11.
Tendon cells receive mechanical signals from the load bearing matrices. The response to mechanical stimulation is crucial for tendon function. However, overloading tendon cells may deteriorate extracellular matrix integrity by activating intrinsic factors such as matrix metalloproteinases (MMPs) that trigger matrix destruction. We hypothesized that mechanical loading might induce interleukin-1beta (IL-1beta) in tendon cells, which can induce MMPs, and that extracellular ATP might inhibit the load-inducible gene expression. Human tendon cells isolated from flexor digitorum profundus tendons (FDPs) of four patients were made quiescent and treated with ATP (10 or 100 microM) for 5 min, then stretched equibiaxially (1 Hz, 3.5% elongation) for 2 h followed by an 18-h-rest period. Stretching induced IL-1beta, cyclooxygenase 2 (COX 2), and MMP-3 genes but not MMP-1. ATP reduced the load-inducible gene expression but had no effect alone. A medium change caused tendon cells to secrete ATP into the medium, as did exogenous UTP. The data demonstrate that mechanical loading induces ATP release in tendon cells and stimulates expression of IL-1beta, COX 2, and MMP-3. Load-induced endogenous IL-1beta may trigger matrix remodeling or a more destructive pathway(s) involving IL-1beta, COX 2, and MMP-3. Concomitant autocrine and paracrine release of ATP may serve as a negative feedback mechanism to limit activation of such an injurious pathway. Attenuation or failure of this negative feedback mechanism may result in the progression to tendinosis.  相似文献   

12.
The P2X7 receptor (P2X7R), an ATP-gated ion channel, plays essential roles in the release and maturation of IL-1beta in microglial cells in the brain. Previously, we found that lysophosphatidylcholine (LPC) potentiated P2X7R-mediated intracellular signals in microglial cells. In this study, we determined whether the lysophospholipids, i.e., LPC and sphingosylphosphorylcholine (SPC), modulate the ATP-induced release and processing of IL-1beta mediated by P2X7R in mouse MG6 microglial cells. LPC or SPC alone induced the release of precursor (pro-IL-1beta) and mature IL-1beta (mIL-1beta) from LPS-primed MG6 cells, possibly due to lytic functions. However, these lysophospholipids inhibited ATP-induced caspase-1 activation that is usually followed by the release of mIL-1beta. Conversely, ATP inhibited the release of pro-IL-1beta and mIL-1beta induced by LPC/SPC. This suggests that lysophospholipids and ATP mutually suppressed each function to release IL-1beta. P2X7R activation resulted in microtubule reorganization in the MG6 cells that was blocked in the presence of LPC and SPC. LPC/SPC reduced the amount of activated RhoA after stimulation with ATP, implying that these lysophospholipids block ATP-induced microtubule reorganization by interfering with RhoA activation. In addition, the microtubule inhibitor colchicine inhibited ATP-induced release of mIL-1beta similar to that of LPC and SPC. This suggests that the impairment of the microtubule reassembly may be associated with the inhibitory effects of LPC/SPC on ATP-induced mIL-1beta release. Mutual suppression by ATP and LPC/SPC on the maturation of IL-1beta was observed in LPS-primed primary microglia. Collectively, these data suggest opposing functions by lysophospholipids, either proinflammatory or anti-inflammatory, in regard to the maturation and release of IL-1beta from microglial cells.  相似文献   

13.
Interleukin (IL)-1beta and IL-18 are structurally similar proteins that require caspase-1 processing for activation. Both proteins are released from the cytosol by unknown pathway(s). To better characterize the release pathway(s) for IL-1beta and IL-18 we evaluated the role of lipopolysaccharide priming, of interleukin-1beta-converting enzyme (ICE) inhibition, of human purinergic receptor (P2X(7)) function, and of signaling pathways in human monocytes induced by ATP. Monocytes rapidly processed and released both IL-1beta and IL-18 after exogenous ATP. Despite its constitutive cytosolic presence, IL-18 required lipopolysaccharide priming for the ATP-induced release. Neither IL-1beta nor IL-18 release was prevented by ICE inhibition, and IL-18 release was not induced by ICE activation itself. Release of both cytokines was blocked completely by a P2X7 receptor antagonist, oxidized ATP, and partially by an antibody to P2X(7) receptor. In evaluating the signaling components involved in the ATP effect, we identified that the protein-tyrosine kinase inhibitor, AG126, produced a profound inhibition of both ICE activation as well as release of IL-1beta/IL-18. Taken together, these results suggest that, although synthesis of IL-1beta and IL-18 differ, ATP-mediated release of both cytokines requires a priming step but not proteolytically functional caspase-1.  相似文献   

14.
Zhao J  Lurie DI 《Cytokine》2004,28(1):1-9
Inflammatory cytokines in the central nervous system are largely modulated by glial cells and influence neuronal responses to CNS injury. The protein tyrosine phosphatase SHP-1, an intracellular regulator of many cytokine signaling pathways, has been implicated in mediating the activation of glia. There is a direct correlation between abnormally activated microglia and neuron loss within the SHP-1 deficient motheaten (me/me) mouse auditory brainstem after afferent injury. In order to determine whether loss of SHP-1 creates an aberrant cytokine environment driving the abnormal activation of me/me microglia, the expression of interleukin-4 (IL-4), interleukin-10 (IL-10), interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), and interferon-gamma (IFN-gamma) was examined by enzyme-linked immunosorbent assay (ELISA). Normal uninjured me/me mice showed lower IL-10 but higher IL-1beta levels compared to wild-type. Following unilateral cochlear ablation, there is decreased expression of IL-4 and IL-10 in me/me brains compared to wild-type, but IL-1beta is significantly increased. These findings indicate that decreases in anti-inflammatory cytokines, in combination with increased expression of the pro-inflammatory cytokine IL-1beta, may initiate a robust inflammatory reaction within the me/me brain contributing to the neuronal degeneration in the deafferented me/me auditory brainstem. SHP-1 may therefore play a role in limiting CNS inflammation following injury and disease.  相似文献   

15.
Parenterally administered lipopolysaccharide (LPS) increases the concentration of the pro-inflammatory cytokine interleukin-1beta (IL-1beta) in the rat hippocampus and evidence suggests that this effect plays a significant role in inhibiting long-term potentiation (LTP). The anti-inflammatory cytokine IL-10, antagonizes certain effects of IL-1beta, so if the effects of LPS are mediated through an increase in IL-1beta, it might be predicted that IL-10 would also abrogate the effect of LPS. Here, we report that IL-10 reversed the inhibitory effect of LPS on LTP and the data couple this with an inhibitory effect on the LPS-induced increase in IL-1beta. LPS treatment increased hippocampal expression of IL-1 receptor Type I protein. Consistent with the LPS-induced increases in IL-1beta concentration and receptor expression, were downstream changes which included enhanced phosphorylation of IRAK and the stress-activated kinases, JNK and p38; these LPS-induced changes were reversed by IL-10, which concurs with the idea that these events are triggered by increased activation of IL-1RI by IL-1beta. We provide evidence which indicates that LPS treatment leads to evidence of cell death and this was reversed in hippocampus prepared from LPS-treated rats which received IL-10. The evidence is therefore consistent with the idea that IL-10 acts to protect neuronal tissue from the detrimental effects induced by LPS.  相似文献   

16.
A role for IL-18 in neutrophil activation   总被引:19,自引:0,他引:19  
IL-18 expression and functional activity has been identified in several autoimmune and infectious diseases. To clarify the potential role of IL-18 during early innate immune responses, we have explored the capacity of IL-18 to activate neutrophils. Human peripheral blood-derived neutrophils constitutively expressed IL-18R (alpha and beta) commensurate with the capacity to rapidly respond to IL-18. IL-18 induced cytokine and chemokine release from neutrophils that was protein synthesis dependent, up-regulated CD11b expression, induced granule release, and enhanced the respiratory burst following exposure to fMLP, but had no effect upon the rate of neutrophil apoptosis. The capacity to release cytokine and chemokine was significantly enhanced in neutrophils derived from rheumatoid arthritis synovial fluid, indicating differential responsiveness to IL-18 dependent upon prior neutrophil activation in vivo. Finally, IL-18 administration promoted neutrophil accumulation in vivo, whereas IL-18 neutralization suppressed the severity of footpad inflammation following carrageenan injection. The latter was accompanied by reduction in tissue myeloperoxidase expression and suppressed local TNF-alpha production. Together, these data define a novel role for IL-18 in activating neutrophils and thereby promoting early innate immune responses.  相似文献   

17.
Elevated expression of interleukin-1 (IL-1beta), a pro-inflammatory cytokine secreted by activated microglia, is a pathogenic marker of numerous neurodegenerative processes including Alzheimer's disease (AD). We have characterized a link between IL-1beta and the 68-kDa neurofilament light (NF-L) protein, which is a major component of the neuronal cytoskeleton. Using human brain aggregate cultures, we found that IL-1beta treatment significantly increased NF-L expression in primary neurons. Analysis of mRNA levels demonstrated elevated NF-L expression within 72 h while imaging of neurons by immunofluorescent staining for NF-L confirmed IL-1beta-induced NF-L protein expression. These observations suggest a potential inflammatory-induced mechanism for deregulation of an important cytoskeletal protein, NF-L, possibly leading to neuronal dysfunction.  相似文献   

18.
CD38 signaling, either induced by ligation with specific agonistic monoclonal antibody (mAb) or after interaction with CD31, its cognate counter-receptor, is involved in release of IL-1beta, IL-6, and IL-10 cytokines in resting human monocytes. CD38 ligation by the F(ab')(2) IB4 mAb did not induce signals relevant for cytokine secretion and the block of the Fcgamma receptor I (FcgammaRI) by anti-CD64 or FcgammaRII by anti-CD32 mAb did not inhibit CD38-mediated IL-1beta release. Dimerization or multimerization of the CD38 molecule by: (i) cross-linking of the receptor ligated by F(ab')(2) or by (ii) increasing CD38 expression by treating monocytes with IFNgamma were able to restore the truncated CD38-mediated signals involved in cytokine secretion. These data indicate that CD38 receptor-mediated signals operate directly suggesting a Fcgamma receptorial surface molecule independent activation pathway. The key element for the receptor mediated signaling is represented by surface density of CD38 on resting monocytes.  相似文献   

19.
小胶质细胞在脂多糖引起的热高敏中的作用   总被引:1,自引:0,他引:1  
目的探讨小胶质细胞在脂多糖引起的热高敏中的作用。方法清洁级雄性昆明小鼠,随机分成两组,每组5只,腹腔注射LPS组和注射PBS组,在注射前及后30、60、120、240 min测量小鼠足底的热痛阈;每组于注射前及后4h各处死5只取脑组织检测IL-1β、TNF-α;每组于腹腔注射4h时处死动物,免疫荧光确定脑组织中小胶质细胞的激活情况。然后分为四组,米诺环素+PBS组,米诺环素+LPS组,PBS+PBS组,PBS+LPS组,每组5只,连续三天腹腔注射米诺环素或PBS,第三天注射LPS或PBS,在注射前及后30、60、120、240 min测量小鼠足底的热痛阈;每组于注射前及后4h各处死5只取脑组织检测IL-1β、TNF-α。结果与注射PBS相比,注射LPS导致IL-1β、TNF-α分泌增加,注射60、120、240 min小鼠的热痛阈降低;与米诺环素+PBS组、米诺环素+LPS组、PBS+PBS组相比,PBS+LPS组导致IL-1β、TNF-α分泌增加,注射60、120、240 min小鼠的热痛阈降低。结论LPS激活小胶质细胞分泌促炎细胞因子导致热高敏。  相似文献   

20.
We investigated the consequences of transient application of specific stimuli mimicking inflammation to hippocampal tissue on microglia activation and neuronal cell vulnerability to a subsequent excitotoxic insult. Two-week-old organotypic hippocampal slice cultures, from 7-day-old C57BL/6 donor mice, were exposed for 3 h to lipopolysaccharide (LPS; 10 ng/mL) followed by 3 h co-incubation with 1 mM ATP, or 100 microM 2'3'-O-(4-benzoyl-benzoyl) adenosine 5'-triphosphate triethylammonium, a selective P2X(7) receptor agonist. These treatments in combination, but not individually, induced a pronounced activation and apoptotic-like death of macrophage antigen-1 (MAC-1)-positive microglia associated with a massive release of interleukin (IL)-1beta exceeding that induced by LPS alone. Antagonists of P2X(7) receptors prevented these effects. Transient pre-exposure of slice cultures to a combination of LPS and P2X(7) receptor agonists, but not either one or the other alone, significantly exacerbated CA3 pyramidal cell loss induced by subsequent 12 h exposure to 8 microM alpha-amino-3-hydroxy-5-methyl-4-isoxazole propinate (AMPA). Potentiation of AMPA toxicity was prevented when IL-1beta production or its receptor signaling were blocked by an inhibitor of interleukin-converting-enzyme or IL-1 receptor antagonist during application of LPS + ATP. The same treatments did not prevent microglia apoptosis-like death. These findings show that transient exposure to specific pro-inflammatory stimuli in brain tissue can prime neuronal susceptibility to a subsequent excitotoxic insult. P2X(7) receptor stimulation, and the consequent IL-1beta release, is mandatory for exacerbation of neuronal loss. These mechanisms may contribute to determine cell death/survival in acute and chronic neurodegenerative conditions associated with inflammatory events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号