首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bacterial strain, PNS-1, isolated from activated sludge, could utilize sulphanilic acid (4-ABS) as the sole organic carbon and energy source under aerobic conditions. Determination and comparison of 16S r DNA sequences showed that the strain PNS-1 is closely related to the species of Agrobacterium genus. Growth on 4-ABS was accompanied with ammonia and sulfate release. TOC results showed complete mineralization of sulphanilic acid. This strain was highly specific for 4-ABS as none of the sulphonated aromatics used in the present study including other ABS isomers were utilized. Strain PNS-1 could, however, utilize all the tested monocyclic aromatic compounds devoid of a sulfonate group. No intermediates could be detected either in the growth phase or with dense cell suspensions. Presence of chloramphenicol completely inhibited 4-ABS degradation by cells pregrown on succinate, indicating that degradation enzymes are inducible. No plasmid could be detected in the Agrobacterium sp. Strain PNS-1 suggesting that 4-ABS degradative genes may be chromosomal encoded.  相似文献   

2.
Mathematical model parameters for the methanogenic degradation of propylene glycol were estimated in a sequential manner by means of an optimization technique. Model parameters determined from an initial experimental data set using one bioreactor were then verified with the results from a second bioreactor. The proposed methodology is a useful tool to obtain model parameters for continuous flow reactors with completely mixed regime. Abbrevations: S – substrate concentration (mg COD l–1); S in – influent substrate concentration (mg COD l–1); D L – dilution rate (day–1); – stoichiometric coefficients (ND); nx – number of microbial species (ND); X S – fixed biomass concentration (mg biomass l–1); X L – suspended biomass concentration of (mg biomass l–1); k d – decay rate of biomass (day–1); b S – specific detachment rate of biofilm (day–1); – specific growth rate of biomass (day–1); m – maximum specific growth rate of biomass (day–1); K S – half saturation constant (mg COD l–1); K I – inhibition constant (mg COD l–1).  相似文献   

3.
Acremonium strictum, capable of degrading 7.4 g thiocyanate l–1, was isolated from wastewater condensate from coke-oven gas. Ammonia and sulfate were the final products from thiocyanate degradation with a stoichiometric ratio of near 1:1. The highest degradation activity was at pH 6. Although the degradation rate started to be inhibited above 4 g thiocyanate l–1, thiocyanate was completely degraded up to 7.4 g l–1 within 85 h in shake-flask cultures. The degradation of thiocyanate was inhibited by phenol above 625 mg l–1, by cyanide above 16 mg l–1, and by nitrite above 100 mg l–1. However, ammonia and nitrate had negligible inhibition on thiocyanate degradation up to 3 g l–1 and 1.5 g l–1, respectively.  相似文献   

4.
Ten sulfonated aromatic amines were tested for their aerobic and anaerobic biodegradability and toxicity potential in a variety of environmental inocula. Of all the compounds tested, only two aminobenzenesulfonic acid (ABS) isomers, 2- and 4-ABS, were degraded. The observed degradation occurred only under aerobic conditions with inocula sources that were historically polluted with sulfonated aromatic amines. Bioreactor experiments, with non-sterile synthetic wastewater, confirmed the results from the aerobic batch degradation experiments. Both ABS isomers were degraded in long-term continuous experiment by abioaugmented enrichment culture. The maximum degradation rate in the aerobic bioreactor was 1.6–1.8 gl–1 d–1 for 2-ABS and a somewhat lower value for 4-ABS at hydraulic retention times (HRT) of 2.8–3.3h. Evidence for extensive mineralization of 2- and 4-ABS was based on oxygen uptake and carbon dioxide production during the batch experiments and the high levels of chemical oxygen demand (COD) removal in the bioreactor. Furthermore, mineralization of the sulfonate group was demonstrated by high recovery of sulfate. The sulfonated aromatic amines did not show any toxic effects on the aerobic and anaerobic bacterial populations tested. The poor biodegradability of sulfonated aromatic amines indicated under the laboratory conditions of this study suggests that these compounds may not be adequately removed during biological wastewater treatment.  相似文献   

5.
Denitrification was studied in anoxic batch cultures of a simulated fish processing wastewater at 37 r C and pH 7.5, using a denitrifying enrichment culture from fishery wastewater. Different initial nitrate to biomass ratios (So/Xo) were used: nitrate and biomass varied from 7.5 to 94.7 mg NO3-N l–1, and from 20 to 4300 mg volatile suspended solids l–1, respectively. The specific maximum denitrification rate (r m) and the cell yield (Y X / S) depended on the So/Xo ratio under anoxic conditions: r m increased from 1.2 to 1584 mg NO3-N g–1 VSS h–1 and Y X / S decreased from 42 to 0.03 mg VSS mg–1 NO3-N when So/Xo varied from 5.5 10– 3 to 9.3 mg NO3-N/mg VSS. Nomenclature CNO3 – N nitrate concentration, mg NO3-N l–1 K S saturation constant, mg NO3-N l–1 r m specific maximum denitrification rate, mg NO3-N g–1 VSS h–1 So initial substrate concentration, mg l–1 t time, h TOC total organic carbon VSS volatile suspended solids x biomass concentration, g VSS l–1 Xo initial biomass concentration, g VSS l–1 Y X/S substrate to biomass cell yield, mg VSS/mg N Greek symbols: m maximum specific growth rate of the anoxic microbial population, 1 h–1  相似文献   

6.
Sequencing-batch reactors were used to develop an activated sludge enrichment culture capable of degrading 1-naphthylamine (1NA). Approximately 5 months acclimation with salicylic acid (1600 mg l–1) as the primary source of carbon were required to obtain an enrichment culture able to degrade even small quantities of 1NA. After an additional 4 months acclimation, during which the concentration of salicyclic acid was decreased to 50 mg l–1, a culture developed that degraded 1NA concentrations as high as 300 mg l–1. Kinetic determinations showed that 1NA degradation (in the presence of salicylate) followed Michaelis-Menten kinetics with K m and V m values of 32.5±2.2 mg l–1 and 375±18 ng 1NA mg–1 cells h–1, respectively. The same enrichement was able to degrade 1NA when present as the sole source of carbon and energy and to convert approximately 87% to CO2.  相似文献   

7.
A bacterium utilizing 2-chloro-4,6-diamino-s-triazine (CAAT) as sole nitrogen source was isolated under a N2-free atmosphere and identified as Klebsiella pneumoniae. Concomitant to CAAT degradation the protein content increased and chloride was released into the medium. Under air and a N2-atmosphere no reduction of CAAT degradation resulted, though this strain is able to fix molecular nitrogen, but the decomposition accelerated under anaerobic conditions. The degradation rate increased continuously with increasing CAAT concentration. A continuous CAAT degradation without CAAT accumulation was possible up to a influx rate of 4.8 mol·l–1 h–1 (dilution rate = 0.007 h–1). K. pneumoniae A2 was also able to utilize deethylsimazine (CEAT) and deethylatrazine (CIAT) as nitrogen source. Both under aerobic and anaerobic conditions CEAT could be degraded faster than CIAT. The degradation sequence of mixed s-triazines was cyanuric acid < CAAT < CEAT < CIAT, which was reflected by the degradation times of single compounds. Complete degradation was assumed for all investigated s-triazine derivatives.  相似文献   

8.
Kinetics of endosulfan degradation by Phanerochaete chrysosporium   总被引:1,自引:0,他引:1  
The chlorinated pesticide, endosulfan, could be degraded by Phanerochaete chrysosporium under non-ligninolytic conditions, and this did not require direct contact with mycelium. The major metabolites formed were endosulfan sulfate and endosulfan diol. The rate of degradation depended on the initial concentration. With 2.5 mg endosulfan l–1, degradation was at 0.23 mg l–1 day–1. The degradation could be described using a nonlinear rate expression that was similar to the Michaelis–Menten equation.  相似文献   

9.
Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12   总被引:1,自引:1,他引:0  
A new strain of bacterium degrading polyaromatic hydrocarbons (PAHs), Burkholderia cepacia 2A-12, was isolated from oil-contaminated soil. Of three PAHs, the isolated strain could utilize naphthalene (Nap) and phenanthrene (Phe) as a sole carbon source but not pyrene (Pyr). However, the strain could degrade Pyr when a cosubstrate such as yeast extract (YE) was supplemented. The PAH degradation rate of the strain was enhanced by the addition of other organic materials such as YE, peptone, glucose, and sucrose. YE was a particularly effective additive in stimulating cell growth as well as PAH degradation. When 1 g YE l–1, an optimum concentration, was supplemented into the basal salt medium (BSM) with 215 mg Phe l–1, the specific growth rate (0.30 h–1) and Phe-degrading rate (29.6 mol l–1 h–1) were enhanced approximately ten and three times more than those obtained in the BSM with 215 mg Phe l–1, respectively. Both cell growth and PAH degradation rates were increased with increasing Phe and Pyr concentrations, and B. cepacia 2A-12 had a tolerance against Phe and Pyr toxicity at the high concentration of 730–760 mg l–1. Through kinetic analysis, the maximum specific growth rate ( max) and PAH degrading rate ( max) for Phe were obtained as 0.39 h–1 and 300 mol l–1 h–1, respectively. Also, max and max for Pyr were 0.27 h–1 and 52 mol l–1 h–1, respectively. B. cepacia 2A-12 could simultaneously degrade crude oil as well as PAHs, indicating that this bacterium is very useful for the removal of oils and PAHs contaminants.  相似文献   

10.
The production of extracellular enzymes by the thermophilic fungus Thermomyces lanuginosus was studied in chemostat cultures at a dilution rate of 0.08 h–1 in relation to variation in the ammonium concentration in the feed medium. Under steady state conditions, three growth regimes were recognised and the production of several extracellular enzymes from T. lanuginosus was recorded under different nutrient limitations ranging from nitrogen limitation to carbon/energy limitation. The range and the production of carbohydrate hydrolysing enzymes and lipase increased from Regime I (NH4Cl 600 mg l–1) to Regime III (NH4CI 1200 mg l–1), whereas production of protease was highest in Regime II (600 mg l–1 < NH4Cl <1200 mg l–1).  相似文献   

11.
Summary The growth parameters ofPenicillium cyclopium have been evaluated in a continuous culture system for the production of fungal protein from whey. Dilution rates varied from 0.05 to 0.20 h–1 under constant conditions of temperature (28°C) and pH (3.5). The saturation coefficients in the Monod equation were 0.74 g l–1 for lactose and 0.14 mg l–1 for oxygen, respectively. For a wide range of dilution rates, the yield was 0.68 g g–1 biomass per lactose and the maintenance coefficient 0.005 g g–1 h–1 lactose per biomass, respectively. The maximum biomass productivity achieved was 2 g l–1 h–1 biomass at dilution rates of 0.16–0.17 h–1 with a lactose concentration of 20 g l–1 in the feed. The crude protein and total nucleic acid contents increased with a dilution rate, crude protein content varied from 43% to 54% and total nucleic acids from 6 to 9% in the range of dilution rates from 0.05 to 0.2 h–1, while the Lowry protein content was almost constant at approximately 37.5% of dry matter.Nomenclature (mg l–1) Co initial concentration of dissolved oxygen - (h–1) D dilution rate - (mg l–1) K02 saturation coefficient for oxygen - (g l–1) Ks saturation coefficient for substrate - (g g–1 h–1) lactose per biomass) m maintenance energy coefficient - (mM g–1 h–1O2 per biomass) Q02 specific oxygen uptake rate - (g l–1) S residual substrate concentration at steady state - (g l–1) So initial substrate concentration in feed - (min) t1/2 time when Co is equal to Co/2 - (g l–1) X biomass concentration - (g l–1) X biomass concentration at steady state - (g g–1 biomass per lactose) YG yield coefficient for cell growth - (g g–1 biomass per lactose) Yx/s overall yield coefficient - (h–1) specific growth rate  相似文献   

12.
The applicability of a recently published modification of the chemostat, named titrostat, for microbial continuous-flow purification of toluene-contaminated air is discussed. This article describes the operative range and the toluene elimination efficiency of a 2-l titrostat running with a mixed bacterial culture dominated by two Acinetobacter species: A. calcoaceticus and A. radioresistens. The study focuses on the kinetics and stoichiometry of the process. Special attention is paid to the peculiarities of toluene as an unconventional growth substrate having high carbon and energy content. Removal productivity as high as 2.24 g l–1 h–1 with 99.9% elimination efficiency was observed at air flow rate 60 l h–1, temperature 32°C, pH 6.2, toluene concentration in the inlet air 37.4 mg l–1 and titrant solution containing NH3 at 1.87 g l–1. The maximum biomass yield from assimilated toluene, Y s m=0.880±0.011, and a rate of substrate expenditures for cell maintenance, m s=0.022±0.002 h–1, were estimated.  相似文献   

13.
Lower concentrations of CuSO4 (25–75 M) in the MS medium supplemented with 0.1 mg l–1 IAA+5.0 mg l–1 Kn+500 mg l–1 CH+10 mg l–1 Cyst hyd enhanced the growth of regenerants of Dioscorea bulbifera L. CuSO4 (75 M) induced an appreciable diosgenin yield in the regenerants compared to those obtained on media without Cu. The presence of Cu thus seems to stimulate diosgenin production. The regenerants also differentiated bulbils on lower concentrations of Cu. At CuSO4 (100 M), however, cultures showed poor growth as well as a low diosgenin yield. Increased proline and protein contents were recorded in cultures grown on Cu-enriched media.  相似文献   

14.
Alcaligenes faecalis G utilized 95–97% of 5–15 g -caprolactam l–1 in 24–48 h over a pH range of 6–8.5 and at 23–40 °C, without complex nutrient requirement. In the absence of KH2PO4 and K2HPO4/MgSO4 in the medium, only 7.6% and 0.2% of 10 g caprolactam l–1 was utilized, respectively. The chemical oxygen demand (COD) of the wastewater of nylon-6 plant was mainly due to its caprolactam content. A. faecalis G decreased the caprolactam content and COD of the wastewater by 80–90% of the original in spite of the wastewater having higher caprolactam content (3600 mg l–1) and COD (7700 mg l–1) than those of any of the previous reports.  相似文献   

15.
Summary Lactate concentration was measured in the abdominal muscle of the shrimpPalaemon serratus. Rapid and seasonal temperature changes result in an increase of the lactate content of approximately 3–4 fold.Lactate dehydrogenase from the abdominal muscle exhibits a temperature dependent pyruvate inhibition with pyruvate as substrate.The kinetic parameters of lactate dehydrogenase fromPalaemon serratus are found to vary during rapid temperature changes: Vmax increases with temperature from 0.06 mol min–1 (mg protein)–1 at 10°C to 0.28 mol min–1 (mg protein)–1 at 30°C with lactate as substrate, and from 5.5 mol min–1 (mg protein)–1 at 10°C to 26.2 mol min–1 (mg protein)–1 at 30°C, with pyruvate (Table 1). The Hill coefficientn H, decreases with temperature from 2.2 to 1.2 when the pyruvate reduction is examined, but remains near 1.2 when the activity is measured with lactate as substrate (Table 1). The S0.5 values for lactate show a tendency to increase below 30 °C (18.9 mM l–1 at 20 °C) whereas the S0.5 for pyruvate is found to increase greatly with temperature (0.004 mM l–1 at 10 °C and 0.06 mM l–1 at 20 °C).Long term temperature changes involve variations of lactate dehydrogenase activity leading to inverse thermal compensation (Table 2).Activation energy (about 56 kJ both with pyruvate and lactate) does not vary during the year, suggesting that temperature adaptation does not induce important catalytic changes (Table 3).Abbreviation LDH lactate dehydrogenase  相似文献   

16.
The transformed root culture of Polygonum tinctorium Lour. was established by infecting leaf explants with Agrobacterium rhizogenes A4. These cultures were examined for their growth and indigo content under various culture conditions. Among the four different culture media tested, SH medium showed the highest yield for root growth (28 mg dry wt/30 ml) and indigo production (152 g/dry wt). In SH medium, 30 g sucrose l–1, 2500 mg KNO3 l–1, 300 mg NH4H2PO4 l–1 were the best conditions for indigo production at pH 5.7. The production of indigo in hairy roots slightly increased with the addition of 200 mg chitosan l–1 (186 g/dry wt) and 20 U pectinase l–1 (181 g/dry wt).  相似文献   

17.
Summary Degradation of 3,4-dichloroaniline (34DCA) in aqueous by undefined cultures of free and immobilized cells was examined. Batch cultures of freely suspended cells and continuous degradation in a packed-bed reactor were studied using both synthetically concocted and industrially produced waste-waters. 34DCA was found to be degraded with a concomitant evolution of chloride ions into the bulk medium. The [acked bed reactor with biomass immobilized on celite diatomaceous earth was found to be capable of degrading over 98% of the 34DCA present in a synthetically concocted inlet stream at a concentration of 250 mg l–1. Residence times of less than 4 h were employed, giving an overall volumetric degradation rate for the packed bed of 90 mg l–1 h–1. The industrially produced wastewater contained, in addition to 34DCA, aniline, 4-chloroaniline, 2,3-dichloroaniline (23DCA) and 3,4-dichloronitrobenzene. The biomass enriched on the synthetic 34DCA waste-water was found to be capable of degrading these compounds in addition to 34DCA with the exception of 23DCA. 34DCA degradation efficiencies of over 95% were obtained for the industrial waste-water at reactor residence times of 4.6 h, giving volumetric degradation rates of 24 mg l–1 h–1. Offprint requests to: A. G. Livingston  相似文献   

18.
A modified Rotating Biological Contactor (RBC) was used for the treatability studies of synthetic tapioca wastewaters. The RBC used was a four stage laboratory model and the discs were modified by attaching porous nechlon sheets to enhance biofilm area. Synthetic tapioca wastewaters were prepared with influent concentrations from 927 to 3600 mg/l of COD. Three hydraulic loads were used in the range of 0.03 to 0.09 m3·m–2·d–1 and the organic loads used were in the range of 28 to 306 g COD· m–2·d–1. The percentage COD removal were in the range from 97.4 to 68. RBC was operated at a rotating speed of 18 rpm which was found to be the optimal rotating speed. Biokinetic coefficients based on Kornegay and Hudson models were obtained using linear analysis. Also, a mathematical model was proposed using regression analysis.List of Symbols A m2 total surface area of discs - d m active depth of microbial film onany rotating disc - K s mg ·l–1 saturation constant - P mg·m–2·–1 area capacity - Q l·d–1 hydraulic flow rate - q m3·m–2·d–1 hydraulic loading rate - S 0 mg·l–1 influent substrate concentration - S e mg·l–1 effluent substrate concentration - w rpm rotational speed - V m3 volume of the reactor - X f mg·l–1 active biomass per unit volume ofattached growth - X s mg·l–1 active biomass per unit volume ofsuspended growth - X mg·l–1 active biomass per unit volume - Y s yield coefficient for attachedgrowth - Y A yield coefficient for suspendedgrowth - Y yield coefficient, mass of biomass/mass of substrate removed Greek Symbols hr mean hydraulic detention time - (max)A d–1 maximum specific growth rate forattached growth - (max)s d–1 maximum specific growth rate forsuspended growth - max d–1 maximum specific growth rate - d–1 specific growth rate - v mg·l–1·hr–1 maximum volumetric substrateutilization rate coefficient  相似文献   

19.
Aerobic biodegradation of a xenobiotic recalcitrant compound sodium anthraquinone-2-sulphonate (SAS), was investigated using as an inoculum a mixed microbial culture, which was activated sludge from industrial and domestic waste-water treatment plants. The difference in SAS degradation was examined using two main systems: (1) suspended cells and (2) immobilized cells, both in batch and in continuous culture. In the suspended cell system, under continuous culture conditions using SAS as a unique source of carbon and energy, it was possible to degrade about 95% of this substrate after 6 days. Maximal SAS removal rates in the suspended-cell system were 593 mg SAS l–1 h–1 and 88.7 mg SAS l–1 h–1 for dilution rates (D) of 0.05 h–1 and 0.075 h–1, respectively. In the immobilized-cell system, almost all SAS was degraded in 6 days and the maximal removal rate reached 88.7 mg SAS l–1 h–1 at D=0.05 h–1. Application of a continuous-flow enrichment procedure resulted in selection of several kinds of micro-organisms and led to a progressive elimination of some species of Aeromonas. A stable microbial community of 11 strains has been established and characterized at D=0.075 h–1. Most of them were Gram-negative and belonged to the genus Pseudomonas.  相似文献   

20.
Degradation of organic pollutants by methane grown microbial consortia   总被引:5,自引:0,他引:5  
Microbial consortia were enriched from various environmental samples with methane as the sole carbon and energy source. Selected consortia that showed a capacity for co-oxidation of naphthalene were screened for their ability to degrade methyl-tert-butyl-ether (MTBE), phthalic acid esters (PAE), benzene, xylene and toluene (BTX). MTBE was not removed within 24 h by any of the consortia examined. One consortium enriched from activated sludge (AAE-A2), degraded PAE, including (butyl-benzyl)phthalate (BBP), and di-(butyl)phthalate (DBP). PAE have not previously been described as substrates for methanotrophic consortia. The apparent Km and Vmax for DBP degradation by AAE-A2 at 20 °C was 3.1 ± 1.2 mg l–1 and 8.7 ± 1.1 mg DBP (g protein × h)–1, respectively. AAE-A2 also showed fast degradation of BTX (230 ± 30 nmol benzene (mg protein × h)–1 at 20 °C). Additionally, AAE-A2 degraded benzene continuously for 2 weeks. In contrast, a pure culture of the methanotroph Methylosinus trichosporium OB3b ceased benzene degradation after only 2 days. Experiments with methane mono-oxygenase inhibitors or competitive substrates suggested that BTX degradation was carried out by methane-oxidizing bacteria in the consortium, whereas the degradation of PAE was carried out by non-methanotrophic bacteria co-existing with methanotrophs. The composition of the consortium (AAE-A2) based on polar lipid fatty acid (PLFA) profiles showed dominance of type II methanotrophs (83–92% of biomass). Phylogeny based on a 16S-rRNA gene clone library revealed that the dominating methanotrophs belonged to Methylosinus/Methylocystis spp. and that members of at least 4 different non-methanotrophic genera were present (Pseudomonas, Flavobacterium, Janthinobacterium and Rubivivax).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号