首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contribution of major bacterial groups to the assimilation of extracellular polymeric substances (EPS) and glucose in the Delaware Estuary was assessed using microautoradiography and fluorescence in situ hybridization. Bacterial groups contributed to EPS and glucose assimilation in part according to their distribution in the estuary. Abundance of the phylogenetic groups explained 35% and 55% of the variation in EPS and glucose assimilation, respectively. Actinobacteria contributed 70% to glucose assimilation in freshwater, while Alphaproteobacteria assimilated 60% of this compound in saline water. In contrast, various bacterial groups dominated the assimilation of EPS. Actinobacteria and Betaproteobacteria contributed the most in the freshwater section, whereas Cytophaga-like bacteria and Alpha- and Gammaproteobacteria participated in EPS assimilation in the lower part of the estuary. In addition, we examined the fraction of bacteria in each group that assimilated glucose or EPS. Overall, the fraction of bacteria in all groups that assimilated glucose was higher than the fraction that assimilated EPS (15 to 30% versus 5 to 20%, respectively). We found no correlation between the relative abundance of a group in the estuary and the fraction of bacteria actively assimilating glucose or EPS; the more active groups were often less abundant. Our results imply that the bacterial community in the Delaware Estuary is not controlled solely by “bottom-up” factors such as dissolved organic matter.  相似文献   

2.
To determine whether metagenomic libraries sample adequately the dominant bacteria in aquatic environments, we examined the phylogenetic make-up of a large insert metagenomic library constructed with bacterial DNA from the Delaware River, a polymerase chain reaction (PCR) library of 16S rRNA genes, and community structure determined by fluorescence in situ hybridization (FISH). The composition of the libraries and community structure determined by FISH differed for the major bacterial groups in the river, which included Actinobacteria, beta-proteobacteria and Cytophaga-like bacteria. Beta-proteobacteria were underrepresented in the metagenomic library compared with the PCR library and FISH, while Cytophaga-like bacteria were more abundant in the metagenomic library than in the PCR library and in the actual community according to FISH. The Delaware River libraries contained bacteria belonging to several widespread freshwater clusters, including clusters of Polynucleobacter necessarius, Rhodoferax sp. Bal47 and LD28 beta-proteobacteria, the ACK-m1 and STA2-30 clusters of Actinobacteria, and the PRD01a001B Cytophaga-like bacteria cluster. Coverage of bacteria with > 97% sequence identity was 65% and 50% for the metagenomic and PCR libraries respectively. Rarefaction analysis of replicate PCR libraries and of a library constructed with re-conditioned amplicons indicated that heteroduplex formation did not substantially impact the composition of the PCR library. This study suggests that although it may miss some bacterial groups, the metagenomic approach can sample other groups (e.g. Cytophaga-like bacteria) that are potentially underrepresented by other culture-independent approaches.  相似文献   

3.
The Cytophaga-Flavobacterium group is known to be abundant in aquatic ecosystems and to have a potentially unique role in the utilization of organic material. However, relatively little is known about the diversity and abundance of uncultured members of this bacterial group, in part because they are underrepresented in clone libraries of 16S rRNA genes. To circumvent a suspected bias in PCR, a primer set was designed to amplify 16S rRNA genes from the Cytophaga-Flavobacterium group and was used to construct a library of these genes from the Delaware Estuary. This library had several novel Cytophaga-like 16S rRNA genes, of which about 40% could be grouped together into two clusters (DE clusters 1 and 2) defined by sequences initially observed only in the Delaware library; the other 16S rRNA genes were classified into an additional four clades containing sequences from other environments. An oligonucleotide probe was designed for the cluster with the most clones (DE cluster 2) and was used in fluorescence in situ hybridization assays. Bacteria in DE cluster 2 accounted for about 10% of the total prokaryotic abundance in the Delaware Estuary and in a depth profile of the Chukchi Sea (Arctic Ocean). The presence of DE cluster 2 in the Arctic Ocean was confirmed by results from 16S rRNA clone libraries. The contribution of this cluster to the total bacterial biomass is probably larger than is indicated by the abundance of its members, because the average cell volume of bacteria in DE cluster 2 was larger than those of other bacteria and prokaryotes in the Delaware Estuary and Chukchi Sea. DE cluster 2 may be one of the more abundant bacterial groups in the Delaware Estuary and possibly other marine environments.  相似文献   

4.
珠江口水体浮游细菌种群多样性空间分布特征   总被引:1,自引:0,他引:1  
孙富林  王友绍 《生态科学》2011,30(6):569-574
为认识珠江口水体浮游细菌的多样性分布规律,运用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)和多维尺度分析(MDS)的方法,研究了春季珠江口十个站位表底水层浮游细菌种群16SrRNA基因多样性特征。研究结果表明,珠江口浮游细菌种群具有丰富的基因多样性;不同站位细菌群落结构和优势种群变化显著:大多数站位表底层细菌群落结构比较相似,河口外站位(A12,A14和C5),表底层细菌群落结构差异性较大:多样性分析表明A14,B6和C5站位底层细菌多样性大于表层。遗传发育分析表明,序列归属于变形细菌(Proteobacteria),酸杆菌(Acidobacteria),蓝细菌(Cyanobacteria),厚壁细菌(Firmicutes)和放线菌(Actinobacteria)。变形细菌(Proteobacteria)种类最多,从河口内淡水区到河口外海水区都有大量分布,是珠江口水域占优势的菌群;同时也检测到种类丰富的放线菌(Actinobacteria)的存在,也是珠江口水域的优势菌群。  相似文献   

5.
Many ecosystems rely on subsidies of carbon and nutrients from surrounding environments. In headwater streams that are heavily shaded by riparian forests, allochthonous inputs from terrestrial systems often comprise a major part of the organic matter budget. Bacteria play a key role in organic matter cycling in streams, but there is limited evidence about how much bacterial carbon is actually assimilated by invertebrate and fish consumers, and how bacterial carbon assimilation varies among streams. We conducted stable isotope tracer additions of 13C-acetate, that is assimilated only by bacteria, and 15N-ammonium, that is assimilated by both bacteria and algae, in two small, shaded streams in the Adirondack region of New York State, USA. Our goal was to determine whether there is an important trophic link between bacteria and macroconsumers, and whether the link changes when the light environment is experimentally altered. In 2009, we evaluated bacterial carbon use in both streams with natural canopy cover using 10-day dual-isotope tracer releases. The canopy was then thinned in one stream to increase light availability and primary production and tracer experiments were repeated in 2010. As part of the tracer experiments, we developed a respiration assay to measure the δ 13C content of live bacteria, which provided critical information for determining how much of the carbon assimilated by invertebrate consumers is from bacterial sources. Some invertebrate taxa, including scraper mayflies (Heptagenia spp.) that feed largely on biofilms assimilated over 70% of their carbon from bacterial sources, whereas shredder caddisflies (Pycnopsyche spp.) that feed on decomposing leaves assimilated less than 1% of their carbon from bacteria. Increased light availability led to strong declines in the magnitude of bacterial carbon fluxes to different consumers (varying from ?17 to ?91% decrease across invertebrate taxa), suggesting that bacterial energy assimilation differs not only among consumer taxa but also within the same consumer taxa in streams with different ecological contexts. Our results demonstrate that fluxes of bacterial carbon to higher trophic levels in streams can be substantial, that is over 70% for some taxa, but that invertebrate taxa vary considerably in their reliance on bacterial carbon, and that local variation in carbon sources controls how much bacterial carbon invertebrates use.  相似文献   

6.
The Columbia River estuary is a dynamic system in which estuarine turbidity maxima trap and extend the residence time of particles and particle-attached bacteria over those of the water and free-living bacteria. Particle-attached bacteria dominate bacterial activity in the estuary and are an important part of the estuarine food web. PCR-amplified 16S rRNA genes from particle-attached and free-living bacteria in the Columbia River, its estuary, and the adjacent coastal ocean were cloned, and 239 partial sequences were determined. A wide diversity was observed at the species level within at least six different bacterial phyla, including most subphyla of the class Proteobacteria. In the estuary, most particle-attached bacterial clones (75%) were related to members of the genus Cytophaga or of the alpha, gamma, or delta subclass of the class Proteobacteria. These same clones, however, were rare in or absent from either the particle-attached or the free-living bacterial communities of the river and the coastal ocean. In contrast, about half (48%) of the free-living estuarine bacterial clones were similar to clones from the river or the coastal ocean. These free-living bacteria were related to groups of cosmopolitan freshwater bacteria (beta-proteobacteria, gram-positive bacteria, and Verrucomicrobium spp.) and groups of marine organisms (gram-positive bacteria and alpha-proteobacteria [SAR11 and Rhodobacter spp.]). These results suggest that rapidly growing particle-attached bacteria develop into a uniquely adapted estuarine community and that free-living estuarine bacteria are similar to members of the river and the coastal ocean microbial communities. The high degree of diversity in the estuary is the result of the mixing of bacterial communities from the river, estuary, and coastal ocean.  相似文献   

7.
The exopolysaccharides (EPSs) produced by some bacteria are potential growth substrates for other bacteria in soil. We used stable-isotope probing (SIP) to identify aerobic soil bacteria that assimilated the cellulose produced by Gluconacetobacter xylinus or the EPS produced by Beijerinckia indica. The latter is a heteropolysaccharide comprised primarily of l-guluronic acid, d-glucose, and d-glycero-d-mannoheptose. 13C-labeled EPS and 13C-labeled cellulose were purified from bacterial cultures grown on [13C]glucose. Two soils were incubated with these substrates, and bacteria actively assimilating them were identified via pyrosequencing of 16S rRNA genes recovered from 13C-labeled DNA. Cellulose C was assimilated primarily by soil bacteria closely related (93 to 100% 16S rRNA gene sequence identities) to known cellulose-degrading bacteria. However, B. indica EPS was assimilated primarily by bacteria with low identities (80 to 95%) to known species, particularly by different members of the phylum Planctomycetes. In one incubation, members of the Planctomycetes made up >60% of all reads in the labeled DNA and were only distantly related (<85% identity) to any described species. Although it is impossible with SIP to completely distinguish primary polysaccharide hydrolyzers from bacteria growing on produced oligo- or monosaccharides, the predominance of Planctomycetes suggested that they were primary degraders of EPS. Other bacteria assimilating B. indica EPS included members of the Verrucomicrobia, candidate division OD1, and the Armatimonadetes. The results indicate that some uncultured bacteria in soils may be adapted to using complex heteropolysaccharides for growth and suggest that the use of these substrates may provide a means for culturing new species.  相似文献   

8.
Soils are among the most biodiverse habitats on earth and while the species composition of microbial communities can influence decomposition rates and pathways, the functional significance of many microbial species and phylogenetic groups remains unknown. If bacteria exhibit phylogenetic organization in their function, this could enable ecologically meaningful classification of bacterial clades. Here, we show non-random phylogenetic organization in the rates of relative carbon assimilation for both rapidly mineralized substrates (amino acids and glucose) assimilated by many microbial taxa and slowly mineralized substrates (lipids and cellulose) assimilated by relatively few microbial taxa. When mapped onto bacterial phylogeny using ancestral character estimation this phylogenetic organization enabled the identification of clades involved in the decomposition of specific soil organic matter substrates. Phylogenetic organization in substrate assimilation could provide a basis for predicting the functional attributes of uncharacterized microbial taxa and understanding the significance of microbial community composition for soil organic matter decomposition.  相似文献   

9.
The deposit-feeding prosobranch Hydrobia ventrosa (Montagu) was fed 14C-labelled food for a short period. As food, sterile detritus (homogenously 14C-labelled, dried barley hay), detritus with attached bacteria, and pure bacteria were used. The distribution of the ingested 14C was followed for a 24-h period. It was found that the assimilation efficiencies of sterile hay, hay with bacteria, and pure bacteria were 34, 56, and 70 %, respectively. This indicates a significance of bacteria for deposit-feeders. There is a considerable loss of dissolved organic material, in part due to leakage from faecal pellets (13 % of the ingested C in the case of a pure bacterial meal and 7 % of the ingested C in the case of sterile hay). The animals also excrete about 30 % of the assimilated carbon. Excretion of mucus constitutes about 9 % of the assimilated carbon. The fraction of assimilated carbon respired depends on the nature of the food. For sterile hay, hay with bacteria, and pure bacteria the percentage respired was 53, 30, and 38 %, respectively. Growth efficiency is, therefore, higher when protein-rich bacteria are included in the diet.  相似文献   

10.
We examined the ability of different freshwater bacterial groups to take up leucine and thymidine in two lakes. Utilization of both substrates by freshwater bacteria was examined at the community level by looking at bulk incorporation rates and at the single-cell level by combining fluorescent in situ hybridization and signal amplification by catalysed reporter deposition with microautoradiography. Our results showed that leucine was taken up by 70–80% of Bacteria -positive cells, whereas only 15–43% of Bacteria -positive cells were able to take up thymidine. When a saturating substrate concentration in combination with a short incubation was used, 80–90% of Betaproteobacteria and 67–79% of Actinobacteria were positive for leucine uptake, whereas thymidine was taken up by < 10% of Betaproteobacteria and by < 1% of the R-BT subgroup that dominated this bacterial group. Bacterial abundance was a good predictor of the relative contribution of bacterial groups to leucine uptake, whereas when thymidine was used Actinobacteria represented the large majority (> 80%) of the cells taking up this substrate. Increasing the substrate concentration to 100 nM did not affect the percentage of R-BT cells taking up leucine (> 90% even at low concentrations), but moderately increased the fraction of thymidine-positive R-BT cells to a maximum of 35% of the hybridized cells. Our results show that even at very high concentrations, thymidine is not taken up by all, otherwise active, bacterial cells.  相似文献   

11.
The contribution of major phylogenetic groups to heterotrophic bacteria assimilating sulfur from dissolved dimethylsulfoniopropionate (DMSP) and assimilating leucine was analysed in surface seawaters from Blanes Bay (NW Mediterranean) over an annual study between March 2003 and April 2004. The percentage of bacteria assimilating DMSP-S showed a strong seasonal pattern, with a steady increase from winter (8 +/- 5%) to summer (23 +/- 3%). The same seasonal pattern was observed for the rate of DMSP-S assimilation. The annual average percentage of DMSP-S-assimilating bacteria (16 +/- 8%) was lower than the corresponding percentage of leucine-assimilating cells (35 +/- 16%), suggesting that not all bacteria synthesizing protein incorporated DMSP-S. Smaller differences between both percentages were recorded in summer. Members of the Alphaproteobacteria (Roseobacter and SAR11) and Gammaproteobacteria groups accounted for most of bacterial DMSP-S-assimilating cells over the year. All major bacterial groups showed an increase of the percentage of cells assimilating DMSP-S during summer, and contributed to the increase of the DMSP-S assimilation rate in this period. In these primarily P-limited waters, enrichment with P + DMSP resulted in a stimulation of bacterial heterotrophic production comparable to, or higher than, that with P + glucose in summer, while during the rest of the year P + glucose induced a stronger response. This suggested that DMSP was more important a S and C source for bacteria in the warm stratified season. Overall, our results suggest that DMSP-S assimilation is controlled by the contribution of DMSP to S (and C) sources rather than by the phylogenetic composition of the bacterioplankton.  相似文献   

12.
Caulobacters are adherent prosthecate bacteria that are members of bacterial biofouling communities in many environments. Investigation of the cell surface carbohydrates produced by two strains of the freshwater Caulobacter crescentus, CB2A and CB15A, revealed a hitherto undetected extracellular polysaccharide (EPS) or capsule. Isolation and characterization of the EPS fractions showed that each strain produced a unique neutral EPS which could not be readily removed from the cell surface by washing. Monosaccharide analysis showed that the main CB2A EPS contained D-glucose, D-gulose, and D-fucose in a ratio of 3:1:1, whereas the CB15A EPS fraction contained D-galactose, D-glucose, D-mannose, and D-fucose in approximately equal amounts. Methylation analysis of the main CB2A EPS showed the presence of terminal glucose and gulose groups, 3-linked fucosyl, and two 3,4-linked glucosyl units, thus confirming the pentasaccharide repeating unit indicated by 1H nuclear magnetic resonance analysis. Similar studies of the CB15A EPS revealed a tetrasaccharide repeating unit consisting of terminal galactose, 4-linked fucosyl, 3-linked glucosyl, and 3,4-linked mannosyl residues. EPS was not detectable by thin-section electron microscopy techniques, including some methods designed to preserve or enhance capsules, nor was the EPS readily detected on the cell surface by scanning electron microscopy when conventional fixation techniques were used; however, a structure consistent with EPS was revealed when samples were prepared by cryofixation and freeze-substitution methods.  相似文献   

13.
Photosynthesis genes and operons of aerobic anoxygenic photosynthetic (AAP) bacteria have been examined in a variety of marine habitats, but genomic information about freshwater AAP bacteria is lacking. The goal of this study was to examine photosynthesis genes of AAP bacteria in the Delaware River. In a fosmid library, we found two clones bearing photosynthesis gene clusters with unique gene content and organization. Both clones contained 37 open reading frames, with most of those genes encoding known AAP bacterial proteins. The genes in one fosmid were most closely related to those of AAP bacteria in the Rhodobacter genus. The genes of the other clone were related to those of freshwater beta-proteobacteria. Both clones contained the acsF gene, which is required for aerobic bacteriochlorophyll synthesis, suggesting that these bacteria are not anaerobes. The beta-proteobacterial fosmid has the puf operon B-A-L-M-C and is the first example of an uncultured bacterium with this operon structure. The alpha-3-proteobacterial fosmid has a rare gene order (Q-B-A-L-M-X), previously observed only in the Rhodobacter genus. Phylogenetic analyses of photosynthesis genes revealed a possible freshwater cluster of AAP beta-proteobacteria. The data from both Delaware River clones suggest there are groups of freshwater or estuarine AAP bacteria distinct from those found in marine environments.  相似文献   

14.
Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell 3H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware coast from August through December and on transects through the Delaware estuary in August and November 2011. The percent of active AAP bacteria was up to twofold higher than the percentage of active cells in the rest of the bacterial community in the estuary. Likewise, the silver grain area around active AAP bacteria in microautoradiography preparations was larger than the area around cells in the rest of the bacterial community, indicating higher rates of leucine consumption by AAP bacteria. The cell size of AAP bacteria was 50% bigger than the size of other bacteria, about the same difference on average as measured for activity. The abundance of AAP bacteria was negatively correlated and their activity positively correlated with light availability in the water column, although light did not affect 3H-leucine incorporation in light–dark experiments. Our results suggest that AAP bacteria are bigger and more active than other bacteria, and likely contribute more to organic carbon fluxes than indicated by their abundance.  相似文献   

15.
河口细菌群落多样性及其控制因素:以切萨皮克湾为例   总被引:3,自引:0,他引:3  
咸淡水的混合和重要营养盐与有机物的再循环,使得河口成为地球上生产力较高而动态变化明显的水生生态系统.一个典型的河口区断面中,细菌群落包含了一些从淡水到海洋的过渡类型:例如α-变形菌(Alphaproteobacteria)、p-变形菌(Betaproteobacteria)、γ-变形菌(Gammaproteobacteria)、蓝细菌(Cyanobactenia)[聚球藻(Synechococcus)]、拟杆菌(Bacteroidetes)、放线细菌(Actinobacteria)和疣微菌(Verrucomicrobia)等.此外,河口也包含其独特的细菌群落:SAR11组、玫瑰杆菌属(Roseobacter)、SAR86和放线细菌(Actinobacteria)的一些进化亚枝(subclades),表明海湾或者大型温带河口区细菌类群具有区域生态适应性.以研究较多的美国切萨皮克湾(Chesapeake Bay)为例,其细菌群落呈现出显著的季节性变化和周期性的年际变化特征;这些变化除了受水的滞留时间和细菌生长速度影响外,还可能受其他许多环境因子的影响.其中叶绿素a和水温变化的影响最大,其他环境因子如溶解氧、铵态氮、亚硝酸盐和硝酸盐以及病毒的丰度也有影响.近年来,基于群落水平的基因组学(genomics)和后基因组学(postgenomics)(转录组学和蛋白质组学)技术应用于研究自然条件下微生物群落错综复杂的基因多样性和表达,提供了揭示水环境中微生物群落组成和新功能基因的途径.  相似文献   

16.
In the present study, benthic microbial communities along the Pearl Estuary, a typical subtropical estuary in China subjected to extensive anthropogenic disturbance, were investigated using 16S rRNA gene-based pyrosequencing. The results showed that microbial communities in freshwater samples were clearly distinct from those in saltwater samples, since the relative sequence abundances of Deltaproteobacteria, Thermoplasmata and Marine Group I (MG-I) were higher in saltwater sediments, whereas Chloroflexi, Spirochaetes, Betaproteobacteria and methanogens were more prevalent in freshwater sediments. In addition, bacterial communities showed vertical stratifications in saltwater sediments, but remained constant with depth in freshwater sediments. The total organic carbon and carbon/nitrogen ratio in sediments correlated significantly with the overall community variations. The predominance of various microorganisms in specific niches led to efforts to identify their functional couplings by exploring their co-occurrence patterns. Using network analysis, strong positive correlations were observed between sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria, and between SRB and nitrite-oxidizing bacteria, indicating the potential interactions of intra-sulfur cycle processes, as well as sulfur and nitrogen cycles, in coastal sediments. Archaeal clades revealed strong and wide correlations between the Miscellaneous Crenarchaeotal Group (MCG) and other groups, suggesting a central role of MCG in the coastal benthic environment. Inversely, MG-I displayed negative correlations with other clades, which might indicate that the lifestyles of heterotrophic and autotrophic clades were mutually exclusive. This study presented a detailed outline of the biogeographic patterns of benthic microbial communities along the Pearl Estuary and provided new information regarding the potential interactions of various biogeochemical cycles in coastal sediments.  相似文献   

17.
Effects of salinity on bacterioplankton: field and microcosm experiments   总被引:2,自引:2,他引:0  
Bacterial populations in a tidal estuary were monitored with the aim of investigating (i) the relationship between planktonic bacteria and salinity and (ii) the survival of allochthonous bacteria in microcosm experiments at different salinities. With the increase in salinity, bacterial numbers decreased in a curvilinear fashion, rather than monotonically. Maximal abundance for different bacterial groups was found between 7 and 22%0 S. The salinity alone explained between 19 and 58% of bacterial variability. In microcosm experiments the adverse effect of salinity on the survival of freshwater bacteria and indicators of faecal contamination was particularly important. In freshwater and low salinity experiments grazing by protozoans had similar effects on the survival of allochthonous bacteria.  相似文献   

18.
The bacterial community of an aerobic:anaerobic non-P removing SBR biomass fed a mixture of acetate and glucose was analysed using several 16S rRNA based methods. Populations responsible for anaerobic glucose and acetate assimilation were determined with fluorescent in situ hybridization (FISH) in combination with microautoradiography (FISH/MAR). At 'steady state' this community consisted of alpha-Proteobacteria (26%) and gamma-Proteobacteria (14%), mainly appearing as large cocci in tetrads (i.e. typical 'G-Bacteria'). Large numbers of low G+C bacteria (22%), and high G+C Gram-positive bacteria (29%) seen as small cocci in clusters or in sheets were also detected after FISH. DGGE fingerprinting of PCR amplified 16S rDNA fragments and subsequent cloning and sequencing of several of the major bands led to the identification of some of these populations. They included an organism 98% similar in its 16S rRNA sequence to Micropruina glycogenica, and ca. 76% of the high G+C bacteria responded to a probe MIC 184, designed against it. The rest responded to the KSB 531 probe designed against a high G+C clone sequence, sbr-gs28 reported in other similar systems. FISH analyses showed that both these high G+C populations were almost totally dominated by small clustered cocci. Only ca. 2% of cells were beta-Proteobacteria. None of the alpha- and gamma-Proteobacterial 'G-bacteria' responded to FISH probes designed for the 'G-Bacteria' Amaricoccus spp. or Defluvicoccus vanus. FISH/MAR revealed that not all the alpha-Proteobacterial 'G-Bacteria' could take up acetate or glucose anaerobically. Almost all of the gamma-Proteobacterial 'G-Bacteria' assimilated acetate anaerobically but not glucose, the low G+C clustered cocci only took up glucose, whereas the high G+C bacteria including M. glycogenica and the sbr-gs28 clone assimilated both acetate and glucose. All bacteria other than the low G+C small cocci and a few of the alpha-Proteobacteria accumulated PHB. The low G+C bacteria showing anaerobic glucose assimilation ability were considered responsible for the lactic acid produced anaerobically by this SBR biomass, and M. glycogenica for its high glycogen content.  相似文献   

19.
In this study, we investigated the yield and physicochemical properties of the high molecular weight extracellular polymeric substance (HMW–EPS) produced by Halomonas sp. strain TG39 when grown on different types and ratios of substrates. Glucose (1% w/v) and a peptone/yeast extract ratio of 5.1 (0.6% w/v final concentration) yielded an EPS fraction (HMW‐glucose) exhibiting the highest anionic activity (20.5) and specific emulsifying activity (EI24 = 100%) compared to EPS produced by cells grown on mannitol, sucrose, malt extract or no carbon source. The HMW–EPS fractions were capable of binding ≈255–464 mg of methylene blue (MB) per gram of EPS, which represents the highest reported binding of MB by a bacterial EPS. A comparative evaluation of these properties to those of commercial hydrocolloids indicated that the combined effect of protein and anionic residues of the HMW–EPS contributed to its ability to emulsify n‐hexadecane. Liquid chromatography revealed the HMW‐glucose EPS to be a heterogeneous polymer with a polydispersity index of 1.8. This work presents evidence of a correlation between the anionic nature and protein content of bacterial EPS with its emulsifying qualities, and identifies EPS produced by strain TG39 as a high MB‐binding bacterial sorbant with potential biotechnological application. Biotechnol. Bioeng. 2009;103: 207–216. © 2008 Wiley Periodicals, Inc.  相似文献   

20.
Two features of the effects of salinity on the bacterial flora of the Tay estuary are considered. First the effect of salinity on the size and species composition of the resident microflora at various sites within the estuary. The second part is concerned with data obtained from laboratory experiments designed to study the effects of subjecting marine and freshwater bacteria, isolated from the Tay, to salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号