首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pre-B?tzinger complex (PBC) is postulated as the center of respiratory rhythmogenesis. Previously, we found a reduction or plateau of cytochrome oxidase (CO) activity in the PBC and other respiratory nuclei at postnatal days 3-4, despite a general increase of CO with age, suggesting a period of synaptic readjustment. The present study examined the expression of CO and a number of neurochemicals in the PBC at closer time intervals. At postnatal days 3-4 and, more prominently, at postnatal day 12, expression of CO, glutamate, and N-methyl-D-aspartate receptor subunit 1 was reduced, whereas expression of GABA, GABA(B) receptor, glycine receptor, and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit 2 was increased. These findings are consistent with our hypothesis that decreased CO activity is associated with an increase in inhibitory drive (mediated by GABA and glycine, their receptors, and possibly blockage of Ca(2+) entry by glutamate receptor subunit 2) and a decrease in excitatory drive (mediated by glutamate and its receptors). Our findings point to two critical periods during postnatal development of the rat when their respiratory system may be more vulnerable to respiratory insults.  相似文献   

2.
Previously, we reported that cytochrome oxidase (CO) activity in the rat pre-B?tzinger complex (PBC) exhibited a plateau on postnatal days (P) 3-4 and a prominent decrease on P12 (Liu and Wong-Riley, J Appl Physiol 92: 923-934, 2002). These changes were correlated with a concomitant reduction in the expression of glutamate and N-methyl-d-aspartate receptor subunit 1 and an increase in GABA, GABAB, glycine receptor, and glutamate receptor 2. To determine whether changes were limited to the PBC, the present study aimed at examining the expression of CO in a number of brain stem nuclei, with or without known respiratory functions from P0 to P21 in rats: the ventrolateral subnucleus of the solitary tract nucleus, nucleus ambiguus, hypoglossal nucleus, nucleus raphe obscurus, dorsal motor nucleus of the vagus nerve, medial accessory olivary nucleus, spinal nucleus of the trigeminal nerve, and medial vestibular nucleus (MVe). Results indicated that, in all of the brain stem nuclei examined, CO activity exhibited a general increase with age from P0 to P21, with MVe having the slowest rise. Notably, in all of the nuclei examined except for MVe, there was a plateau or decrease at P3-P4 and a prominent rise-fall-rise pattern at P11-P13, similar to that observed in the PBC. In addition, there was a fall-rise-fall pattern at P15-P17 in these nuclei, instead of a plateau pattern in the PBC. Our data suggest that the two postnatal periods with reduced CO activity, P3-P4 and especially P12, may represent common sensitive periods for most of the brain stem nuclei with known or suspected respiratory control functions.  相似文献   

3.
Previously, we reported that the pre-B?tzinger complex (PBC) exhibited a dramatic reduction in cytochrome oxidase activity at postnatal day (P) 12. This coincided in time with decreases in glutamate and NMDA receptor subunit 1 and increases in GABA, GABAB, glycine receptor, and glutamate receptor GluR2. To test our hypothesis that various alpha-subunits of GABAA receptors also undergo changes in their expression during postnatal development, as they do in other brain regions, we undertook an in-depth immunohistochemical study of GABAA receptor subunits alpha1, alpha2, and alpha3 in the PBC of P0 to P21 rats. We found that 1) GABAA alpha3-subunit was expressed at relatively high levels at P0, which then declined with age; 2) GABAA alpha1-subunit was expressed at relatively low levels at P0 but increased with age; 3) the developmental trends of subunits alpha1 and alpha3 intersected at P12; and 4) GABAA alpha2-subunit expression was moderate to light at P0 and remained quite constant during development, being lowest at P21. These findings suggest that the apparent switch in relative expressions of subunits alpha3 and alpha1 during development and the intersection of slopes around P12 may be associated with possible changes in GABAA receptor subtypes that would mediate different functional properties of GABA transmission, such as primarily a less efficient inhibitory transmission before P12 and a more mature inhibitory effect at P12 and thereafter, as suggested by the kinetics of distinct postsynaptic potentials. This mechanism may contribute partially to the dramatic reduction in cytochrome oxidase activity within the PBC at P12, as shown previously.  相似文献   

4.
We utilized cytochrome oxidase (CO) as a marker of neuronal functional activity to examine metabolic changes in brain stem respiratory nuclei of rats from newborn to 21 day of age. The pre-B?tzinger complex (PBC), upper airway motoneurons of nucleus ambiguus (NA(UAM)), ventrolateral nucleus of solitary tract (NTS(VL)), and medial and lateral parabrachial nuclei (PB(M) and PB(L), respectively) were examined at postnatal days (P) 0, 1, 2, 3, 4, 5, 7, 14, and 21. CO histochemistry was performed, and the intensity of CO reaction product was quantitatively analyzed by optical densitometry. In addition, CO histochemistry was combined with neurokinin-1 receptor (NK1R) immunogold-silver staining to doubly label neurons of PBC in P14 animals. The results showed that levels of CO activity generally increased with age in all of the nuclei examined. However, a significant decrease was found in NA(UAM) at P3 (P < 0.01), and a distinct plateau of CO activity was noted at P3 in PBC and at P3 and P4 in NTS(VL), PB(M), and PB(L). Of the neurons examined in PBC, 83% were doubly labeled with CO and NK1R. Of these, CO activity was high in 33.9%, moderate in 27.3%, and light in 38.8% of neurons, suggesting different energy demands in these metabolic groups that may be related to their physiological or synaptic properties. The transient decrease or plateau in CO activity at P3 and P4 implies a period of synaptic adjustment or reorganization during development, when there may be decreased excitatory synaptic drive or increased inhibitory synaptic drive, or both, in these brain stem respiratory nuclei. The adjustment, in turn, may render the system less responsive to respiratory insults. This may bear some relevance to our understanding of pathological events during postnatal development, such as occurs in sudden infant death syndrome.  相似文献   

5.
Previously, we reported that the expression of cytochrome oxidase in a number of brain stem nuclei exhibited a plateau or reduction at postnatal day (P) 3-4 and a dramatic decrease at P12, against a general increase with age. The present study examined the expression of glutamate, N-methyl-D-aspartate receptor subunit 1 (NMDAR1), GABA, GABAB receptors, glycine receptors, and glutamate receptor subunit 2 (GluR2) in the ventrolateral subnucleus of the solitary tract nucleus, nucleus ambiguus, hypoglossal nucleus, medial accessory olivary nucleus, dorsal motor nucleus of the vagus, and cuneate nucleus, from P2 to P21 in rats. Results showed that 1) the expression of glutamate increased with age in a majority of the nuclei, whereas that of NMDAR1 showed heterogeneity among the nuclei; 2) GABA and GABAB expressions decreased with age, whereas that of glycine receptors increased with age; 3) GluR2 showed two peaks, at P3-4 and P12; and 4) glutamate and NMDAR1 showed a significant reduction, whereas GABA, GABAB receptors, glycine receptors, and GluR2 exhibited a concomitant increase at P12. These features were present but less pronounced in hypoglossal nucleus and dorsal motor nucleus of the vagus and were absent in the cuneate nucleus. These data suggest that brain stem nuclei, directly or indirectly related to respiratory control, share a common developmental trend with the pre-Botzinger complex in having a transient period of imbalance between inhibitory and excitatory drives at P12. During this critical period, the respiratory system may be more vulnerable to excessive exogenous stressors.  相似文献   

6.
7.
Ethanol exposure produces alterations in GABA(A) receptor function and expression associated with CNS hyperexcitability, but the mechanisms of these effects are unknown. Ethanol is known to increase both GABA(A) receptor α4 subunits and protein kinase C (PKC) isozymes in vivo and in vitro. Here, we investigated ethanol regulation of GABA(A) receptor α4 subunit expression in cultured cortical neurons to delineate the role of PKC. Cultured neurons were prepared from rat pups on postnatal day 0-1 and tested after 18?days. GABA(A) receptor α4 subunit surface expression was assessed using P2 fractionation and surface biotinylation following ethanol exposure for 4?h. Miniature inhibitory post-synaptic currents were measured using whole cell patch clamp recordings. Ethanol increased GABA(A) receptor α4 subunit expression in both the P2 and biotinylated fractions, while reducing the decay time constant in miniature inhibitory post-synaptic currents, with no effect on γ2 or δ subunits. PKC activation mimicked ethanol effects, while the PKC inhibitor calphostin C prevented ethanol-induced increases in GABA(A) receptor α4 subunit expression. PKCγ siRNA knockdown prevented ethanol-induced increases in GABA(A) receptor α4 subunit expression, but inhibition of the PKCβ isoform with PKCβ pseudosubstrate had no effect. We conclude that PKCγ regulates ethanol-induced alterations in α4-containing GABA(A) receptors.  相似文献   

8.
Our aim was to determine the effects of carotid body denervation (CBD) on the ventilatory responses to focal acidosis and ibotenic acid (IA) injections into the medullary raphe area of awake, adult goats. Multiple microtubules were chronically implanted into the midline raphe area nuclei either before or after CBD. For up to 15 days after bilateral CBD, arterial PCO2 (PaCO2) (13.3 +/- 1.9 Torr) was increased (P < 0.001), and CO2 sensitivity (-53.0 +/- 6.4%) was decreased (P <0.001). Thereafter, resting PaCO2 and CO2 sensitivity returned (P <0.01) toward control, but PaCO2 remained elevated (4.8 +/- 1.9 Torr) and CO2 sensitivity reduced (-24.7 +/- 6.0%) > or =40 days after CBD. Focal acidosis (FA) at multiple medullary raphe area sites 23-44 days post-CBD with 50 or 80% CO(2) increased inspiratory flow (Vi), tidal volume (Vt), metabolic rate (VO2), and heart rate (HR) (P <0.05). The effects of FA with 50% CO2 after CBD did not differ from intact goats. However, CBD attenuated (P <0.05) the increase in Vi, Vt, and HR with 80% CO2, but it had no effect on the increase in VO2. Rostral but not caudal raphe area IA injections increased Vi, BP, and HR (P < 0.05), and these responses were accentuated (P <0.001) after CBD. CO2 sensitivity was attenuated (-20%; P <0.05) <7 days after IA injection, but thereafter it returned to prelesion values in CBD goats. We conclude the following: 1) the attenuated response to FA after CBD provides further evidence that the carotid bodies provide a tonic facilitory input into respiratory control centers, 2) the plasticity after CBD is not due to increased raphe chemoreceptor sensitivity, and 3) the "error-sensing" function of the carotid body blunts the effect of strong stimulation of the raphe.  相似文献   

9.
Toluene is a commonly abused solvent found in many industrial and commercial products. The neurobiological effects of toluene remain unclear, but many of them, like those of ethanol, may be mediated by gamma-aminobutyric acid (GABA) and glutamate receptors. Chronic ethanol administration has been shown to alter levels of specific subunits for GABA type A (GABA(A)), N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. However, little is known about the effects of toluene on subunit levels of these receptors. To examine this, rats were exposed to toluene vapors (8000 ppm) or air for 10 days (30 min/day), and afterwards GABA(A) alpha1, NR1 and NR2B (NMDA) and GluR1 and GluR2/3 (AMPA) receptor subunit levels were determined in discrete brain regions of these animals by Western blotting. Toluene increased GABA(A) alpha1, NR1, NR2B and GluR2/3 subunits in the medial prefrontal cortex and decreased GABA(A) alpha1 and NR1 subunits in the substantia nigra compacta. Toluene inhalation produced modest increases in GABA(A) alpha1 subunits in the striatum, as well as slight decreases in this subunit in the ventral tegmental area. NR2B subunit levels were also slightly increased within the nucleus accumbens by toluene. These studies show that toluene differentially alters the levels of specific GABAergic and glutamatergic receptor subunits in a regionally selective manner.  相似文献   

10.
Profound alterations in the function of GABA occur over the course of postnatal development. Changes in GABA(A) receptor expression are thought to contribute to these differences in GABAergic function, but how subunit changes correlate with receptor function in individual developing neurons has not been defined precisely. In the current study, we correlate expression of 14 different GABA(A) receptor subunit mRNAs with changes in the pharmacological properties of the receptor in individual hippocampal dentate granule cells over the course of postnatal development in rat. We demonstrate significant developmental differences in GABA(A) receptor subunit mRNA expression, including greater than two-fold lower expression of alpha1-, alpha4- and gamma2-subunit mRNAs and 10-fold higher expression of alpha5-mRNA in immature compared with adult neurons. These differences correlate both with regional changes in subunit protein level and with alterations in GABA(A) receptor function in immature dentate granule cells, including two-fold higher blockade by zinc and three-fold lower augmentation by type-I benzodiazepine site modulators. Further, we find an inverse correlation between changes in GABA(A) receptor zinc sensitivity and abundance of vesicular zinc in dentate gyrus during postnatal development. These findings suggest that developmental differences in subunit expression contribute to alterations in GABA(A) receptor function during postnatal development.  相似文献   

11.
The distribution of mRNA for the rho2 subunit of the GABA(C) receptor is much broader in organotypic SC cultures than in vivo, suggesting that GABA(C) receptor expression is regulated by environmental factors. Electrophysiological recordings indicate that neurons in SC cultures have functional GABA(C) receptors, although these receptors exhibited smaller conductance than in vivo, probably due to increased rho2 subunit expression. Adding cortical input, treatment with various neuromodulators, and blocking neuronal activity with TTX failed to affect the expression of rho2 subunits. Electrophysiological recordings revealed the presence of spontaneous Ca(2+) currents in SC cultures and preventing these, by treatment with blockers of L-type Ca(2+) channels, caused rho2 mRNA expression to decline to in vivo levels. In contrast, rho1 subunit mRNA levels remained unchanged, indicating that the two subunits are independently regulated. Surprisingly, both tonic activation and blockade of GABA(C) receptors upregulated rho1/rho2 mRNA expression. Further, NGF and BDNF promoted such expression during an early postnatal time window. In vivo, expression of the rho2 mRNA in the SC, and the rho2/rho3 mRNA in the retina increased with age. Expression of the rho2 mRNA in the visual cortex, and the rho1 mRNA in the retina and SC was constant. Subunit mRNA expression was similar in dark-reared animals, indicating that visual experience has no influence. These experiments suggest that GABA(C) receptor expression in the SC is regulated during postnatal development. While visual experience seems to have no influence on GABA(C) receptor subunits, spontaneous calcium currents selectively promote rho2 expression and both rho1 and rho2 are autoregulated both by GABA(C) receptor activity and by neurotrophic factors.  相似文献   

12.
The uptake and release of glutamate and of GABA, as well as the effect of high potassium concentrations (35 or 80 mM) hereupon, were studied by aid of 14C-labelled amino acids in brain cortex slices from rats of different ages between birth and adulthood. Both the extent of the uptake (i.e. the tissue/medium ratio of 14C at, or close to, equilibrium) and the rate of uptake (i.e. the tissue/ medium ratio of 14C after short (5 min) incubation periods) increased with age. Differences were, however, found between glutamate and GABA, and the extent of the GABA uptake had a distinct maximum during the second postnatal week. At all ages, high concentrations of potassium caused a decrease in the rate of GABA uptake but were without effect on the rate with which glutamate was taken up. The release of the two amino acids occurred with approximately the same half-time (50 min) in slices from animals of at least 14 days of age. Before that time the release of glutamate was somewhat faster, whereas that of GABA was much slower, especially during the first postnatal week (half-time 90 min). The ontogenetic alterations in the effect of excess potassium were complex and varied both between the two potassium concentrations used and between the two amino acids. The results are thus compatible with the existence of different transport systems for the two amino acids, They also suggest that glutamate may exert other functions in addition to its role as a putative transmitter.  相似文献   

13.
14.
Prolonged seizures in early childhood are associated with an increased risk of development of epilepsy in later life. The mechanism(s) behind this susceptibility to later development of epilepsy is unclear. Increased synaptic activity during development has been shown to permanently alter excitatory neurotransmission and could be one of the mechanisms involved in this increased susceptibility to the development of epilepsy. In the present study we determine the effect of status-epilepticus induced by lithium/pilocarpine at postnatal day 10 (P10 SE) on the expression of glutamate receptor and transporter mRNAs in hippocampal dentate granule cells and protein levels in dentate gyrus of these animals in adulthood. The results revealed a decrease in glutamate receptor 2 (GluR2) mRNA expression and protein levels as well as an increase in protein levels for the excitatory amino acid carrier 1 (EAAC1) in P10 SE rats compared to controls. Expression of glutamate receptor 1 (GluR1) mRNA was decreased in both P10 SE rats and identically handled, lithium-injected littermate controls compared to naive animals, and GluR1 protein levels were significantly lower in lithium-controls than in naive rats, suggesting an effect of either the handling or the lithium on GluR1 expression. These changes in EAA receptors and transporters were accompanied by an increased susceptibility to kainic acid induced seizures in P10 SE rats compared to controls. The current data suggest that early-life status-epilepticus can result in permanent alterations in glutamate receptor and transporter gene expression, which may contribute to a lower seizure threshold.  相似文献   

15.
16.

Background

Inhaled nitric oxide (iNO) is one of the most promising therapies used in neonates. However, little information is known about its impact on the developing brain submitted to excitotoxic challenge.

Methodology/Principal Findings

We investigated here the effect of iNO in a neonatal model of excitotoxic brain lesions. Rat pups and their dams were placed in a chamber containing 20 ppm NO during the first week of life. At postnatal day (P)5, rat pups were submitted to intracranial injection of glutamate agonists. At P10, rat pups exposed to iNO exhibited a significant decrease of lesion size in both the white matter and cortical plate compared to controls. Microglia activation and astrogliosis were found significantly decreased in NO-exposed animals. This neuroprotective effect was associated with a significant decrease of several glutamate receptor subunits expression at P5. iNO was associated with an early (P1) downregulation of pCREB/pAkt expression and induced an increase in pAkt protein concentration in response to excitotoxic challenge (P7).

Conclusion

This study is the first describe and investigate the neuroprotective effect of iNO in neonatal excitotoxic-induced brain damage. This effect may be mediated through CREB pathway and subsequent modulation of glutamate receptor subunits expression.  相似文献   

17.
Carotid body denervation (CBD) in neonatal goats and piglets results in minimal irregular breathing and no fatalities. Redundancy and/or plasticity of peripheral chemosensitivity and a relatively mature ventilatory control system at birth may contribute to the paucity of CBD effects in these species. In the present study, we tested the hypothesis that CBD mortality would be greater in neonates of a less mature species such as the rat. We found that the mortality in rats denervated at 2-3 and 7-8 days of age was significantly higher (P < 0.05) than in sham-CBD rats. In all surviving rats, pulmonary ventilation during hypoxia was lower in CBD than in sham operated rats 2 days after denervation. In surviving rats denervated during the 7th and 8th postnatal days, there was also reduced weight gain and pulmonary ventilation during eupnea, including apneas up to 20 s in duration. However, the effects of CBD were compensated within 3 wk after denervation. Local injections of NaCN indicated that aortic chemoreceptors might have been one of the sites of recovery of peripheral chemosensitivity. We concluded that CBD has higher mortality in newborn rats than in other mammals, possibly because of the relative immaturity of these animals at birth. Nonetheless, in survivors there was enough redundancy and plasticity in the control of breathing to eventually compensate for the consequences of CBD.  相似文献   

18.
Previous studies indicate that cerebral ischemia breaks the dynamic balance between excitatory and inhibitory inputs. The neural excitotoxicity induced by ionotropic glutamate receptors gain the upper hand during ischemia-reperfusion. In this paper, we investigate whether GluR5 (glutamate receptor 5)-containing kainate receptor activation could lead to a neuroprotective effect against ischemic brain injury and the related mechanism. The results showed that (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA), a selective GluR5 agonist, could suppress Src tyrosine phosphorylation and interactions among N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A), postsynaptic density protein 95 (PSD-95), and Src and then decrease NMDA receptor activation through attenuating tyrosine phosphorylation of NR2A and NR2B. More importantly, ATPA had a neuroprotective effect against ischemia-reperfusion-induced neuronal cell death in vivo. However, four separate drugs were found to abolish the effects of ATPA. These were selective GluR5 antagonist NS3763; GluR5 antisense oligodeoxynucleotides; CdCl(2), a broad spectrum blocker of voltage-gated calcium channels; and bicuculline, an antagonist of gamma-aminobutyric acid A (GABA(A)) receptor. GABA(A) receptor agonist muscimol could attenuate Src activation and interactions among NR2A, PSD-95 and Src, resulting the suppression of NMDA receptor tyrosine phosphorylation. Moreover, patch clamp recording proved that the activated GABA(A) receptor could inhibit NMDA receptor-mediated whole-cell currents. Taken together, the results suggest that during ischemia-reperfusion, activated GluR5 may facilitate Ca(2+)-dependent GABA release from interneurons. The released GABA can activate postsynaptic GABA(A) receptors, which then attenuates NMDA receptor tyrosine phosphorylation through inhibiting Src activation and disassembling the signaling module NR2A-PSD-95-Src. The final result of this process is that the pyramidal neurons are rescued from hyperexcitability.  相似文献   

19.
Hippocampal noradrenergic and cerebellar glutamatergic granule cell axon terminals possess GABA(A) receptors mediating enhancement of noradrenaline and glutamate release, respectively. The hippocampal receptor is benzodiazepine-sensitive, whereas the cerebellar one is not affected by benzodiazepine agonists, indicating the presence of an alpha6 subunit. We tested here the effects of Zn2+ on these two native GABA(A) receptor subtypes using superfused rat hippocampal and cerebellar synaptosomes. In the cerebellum, zinc ions strongly inhibited (IC50 approximately 1 microM) the potentiation of the K(+)-evoked [3H]D-aspartate release induced by GABA. In contrast, the GABA-evoked release of [3H]noradrenaline from hippocampal synaptosomes was much less sensitive to Zn2+ (IC50 > 30 microM). The effects of Zn2+ were then studied in two rat lines selected for high (ANT) and low (AT) alcohol sensitivity because granule cell GABA(A) receptors in ANT, but not AT, rats respond to benzodiazepine agonists due to a critical mutation in the alpha6 subunit. GABA increased the K(+)-evoked release of [3H]DCNS REGIONS-aspartate from cerebellar synaptosomes of AT and ANT rats, an effect prevented by the GABAA selective antagonist bicuculline. In AT rat cerebellum, the effect of GABA was strongly inhibited by Zn2+ (IC50 < or = 1 microM), whereas in ANT rats, the divalent cation was about 100-fold less potent. Thus, native benzodiazepine-sensitive GABAA receptors appear largely insensitive to functional inhibition by Zn2+ and vice versa. Changes in sensitivity to Zn2+ inhibition consequent to mutations in cerebellar granule cell GABA(A) receptor subunits may lead to changes in glutamate release from parallel fibers onto Purkinje cells and may play important roles in cerebellar dysfunctions.  相似文献   

20.
Abrupt antidepressant withdrawal after chronic treatment is associated with a stress response that may negatively affect the long-term outcome of depression, the neurochemical correlates, of which, remain undetermined. Prolonged depression involves the stress-related release of glucocorticoids and glutamate, while response to antidepressants involves gamma-amino butyric acid (GABA) and the glutamate N-methyl-D-aspartate (NMDA) receptor. Here, imipramine (IMI) was administered to rats for three weeks followed by acute withdrawal for seven days. Levels of GABA in the hippocampus (HC), and effects on swim stress immobility (SSI), were determined. Furthermore, glutamate/NMDA receptor binding properties were determined using [(3)H]-CGP-39653. Finally, the ability of dizocilpine (MK801), a glutamate NMDA antagonist, to reverse IMI withdrawal was determined. Chronic IMI (15 mg/kg ip) significantly reduced SSI together with a slight but insignificant decrease in HC GABA levels. However, IMI significantly reduced specific binding (B(max)) of [(3)H]-CGP-39653. Withdrawal of IMI for 7 days resulted in a loss of efficacy on SSI, a slight increase in GABA and a significant reversal of IMI effects on [(3)H]-CGP-39653 binding. MK801 (0.2 mg/kg ip) alone for seven days caused a significant decrease in SSI, a significant suppression of HC GABA, and significantly decreased [(3)H]-CGP-39653 B(max). MK801 during IMI-withdrawal significantly decreased GABA, prompted recovery on SSI, though not significantly, but significantly reversed withdrawal effects on [(3)H]-CGP-39653 B(max). In conclusion, acute antidepressant discontinuation is associated with subtle changes on HC GABA, a resurgence of NMDA receptor density and a loss of its anti-immobility response. These responses are reversed by a NMDA antagonist suggesting that abrupt antidepressant discontinuation mobilises glutamate activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号