首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mohan PM  Hosur RV 《Biochemistry》2008,47(23):6251-6259
Dynein light chain protein (DLC8), the smallest subunit of the dynein motor complex, acts as a cargo adaptor. The protein exists as a dimer under physiological conditions, and cargo binding occurs at the dimer interface. Dimer stability and relay of perturbations through the dimer interface can thus be anticipated to play crucial roles in the variety of functions the protein performs. Recent investigations point out that DLC8 also gets phosphorylated at Ser 88, which is located at the extreme C-terminal end. In this background, we investigate here by NMR the effects of a small perturbation by way of a single point mutation, S88A, on the structure, dynamics, and cargo binding efficacy of the DLC8 dimer. We observe that the perturbation travels far away along the sequence from the site of the mutation. This relay has been explained at the atomic level by looking into the packing of the side chains in the crystal structure of the protein. It follows that the interface is highly adaptable, which may account for the versatility of the dimer's cargo binding ability. Binding studies with a peptide indicate that the mutation compromises binding efficacy. These observations show how remote residues that may not be directly bound to a target can still affect the affinity of the protein to the target. Furthermore, the S88A mutational perturbations seen here in Drosophila DLC8 are dramatically different from those of the same mutation in human DLC8 (also known as DLC1) ( Song, C. , et al., ( 2008) J. Biol. Chem, 283, 4004- 4013. ) which differs from Drosophila DLC8 at only five locations. All of these observations put together highlight the sensitivity of dynein light chain protein to small perturbations, and this would have great functional implications.  相似文献   

2.
The 8-kDa light chain of dynein (DLC8) is ubiquitously expressed in various cell types. Other than serving as a light chain of the dynein complexes, this highly conserved protein has been shown to bind a larger number of proteins with diverse biological functions. DLC8 forms a homodimer via three-dimensional domain swapping of an internal beta-strand (the beta2-strand) at neutral pH. The protein undergoes non-reversible dimer-to-monomer dissociation when the pH value of the protein solution decreases. The three-dimensional structure of the DLC8 monomer determined by NMR spectroscopy at pH 3.0 showed that the protein is well folded. The major conformational change accompanied by dimer dissociation is in the beta2-strand of the protein, which undergoes transition from a beta-strand to a nascent alpha-helix. The monomer form of DLC8 is not capable of binding to target proteins. Insertion of two flexible amino acid residues in the tight beta1/beta2-loop dramatically stabilized the monomer conformation of the protein. NMR studies showed that the mutation altered the conformation as well as the three-dimensional domain swapping-mediated assembly of the DLC8 dimer. The mutant DLC8 was unable to bind to its targets even at physiological pH. The three-dimensional structure of the mutant protein in its monomeric form provides the structural basis of the mutation-induced stabilization of the monomer conformation. Based on the experimental data, we conclude that the formation of the beta2-strand swapping-mediated dimer is mandatory for the structure and function of DLC8. We further note that the DLC8 dimer represents a novel mode of three-dimensional domain swapping.  相似文献   

3.
Folding–unfolding caused by environmental changes play crucial regulatory roles in protein functions. To gain an insight into these for DLC8, a cargo adaptor in dynein motor complex, we investigated here the unfolding of homodimeric DLC8 by GdnHCl, a standard unfolding agent. Fluorescence spectroscopy revealed a three-state unfolding transition with midpoints at 1.5 and 4.0 M GdnHCl. The HSQC spectrum at 1.5 M GdnHCl displayed peaks belonging to a folded monomer. NMR chemical shift perturbations, line broadening effects and 15N relaxation measurements at low GdnHCl concentrations identified a hierarchy in the unfolding process, with the dimer interface – the cargo binding site – being the most susceptible followed by the helices in the interior. Similar observations were made earlier for small pH perturbations and thus the early unfolding events appear to be intrinsic to the protein. These, by virtue of their location, influence target binding efficacies and thus have important regulatory implications.  相似文献   

4.
Axonemal and cytoplasmic dyneins share a highly conserved 8 kDa light chain (DLC8) for motor assembly and function. Other than serving as a light chain of dynein complexes, DLC8 has been shown to bind a larger number of proteins with diverse biological functions including cell cycle control, apoptosis, and cell polarity maintenance. Therefore, DLC8 is likely a multifunctional regulatory protein. DLC8 exists as a dimer in solution, and the protein dimer is capable of binding to two target molecules. In this work, the backbone dynamics of DLC8, both in its apo- and target-peptide bound forms, were characterized by 15N NMR relaxation studies. The relaxation data were analyzed using model-free approach. We show that the target peptide-binding region of apo-DLC8 experiences microsecond-to-millisecond time scale conformational fluctuation, suggesting that the target-binding region of the protein is capable of adjusting its shape and size in responding to its various targets. The conformational breathing of the target-binding region of apo-DLC8 was also supported by backbone amide exchange experiment. Such segmental conformational motion of the protein is significantly reduced upon forming a complex with a target peptide. The dynamic properties of DLC8 in solution provide insight into the protein's diverse sequence-dependent target binding.  相似文献   

5.
Environment dependence of folding and unfolding of a protein is central to its function. In the same vein, knowledge of pH dependence of stability and folding/unfolding is crucial for many biophysical equilibrium and kinetic studies designed to understand protein folding mechanisms. In the present study we investigated the guanidine induced unfolding transition of dynein light chain protein (DLC8), a cargo adaptor of the dynein complex in the pH range 7-10. It is observed that while the protein remains a dimer in the entire pH range, its stability is somewhat reduced at alkaline pH. Global unfolding features monitored using fluorescence spectroscopy revealed that the unfolding transition of DLC8 at pH 7 is best described by a three-state model, whereas, that at pH 10 is best described by a two-state model. Chemical shift perturbations due to pH change provided insights into the corresponding residue level structural perturbations in the DLC8 dimer. Likewise, backbone (15)N relaxation measurements threw light on the corresponding motional changes in the dimeric protein. These observations have been rationalized on the basis of expected changes with increasing pH in the protonation states of the titratable residues on the structure of the protein. These, in turn provide an explanation for the change from three-state to two-state guanidine induced unfolding transition as the pH is increased from 7 to 10. All these results exemplify and highlight the role of environment vis-à-vis the sequence and structure of a given protein in dictating its folding/unfolding characteristics.  相似文献   

6.
7.
Dynein light chain 1 (DLC1, also known as DYNLL1, LC8, and PIN), a ubiquitously expressed and highly conserved protein, participates in a variety of essential intracellular events. Transition of DLC1 between dimer and monomer forms might play a crucial role in its function. However, the molecular mechanism(s) that control the transition remain unknown. DLC1 phosphorylation on Ser(88) by p21-activated kinase 1 (Pak1), a signaling nodule, promotes mammalian cell survival by regulating its interaction with Bim and the stability of Bim. Here we discovered that phosphorylation of Ser(88), which juxtapose each other at the interface of the DLC dimer, disrupts DLC1 dimer formation and consequently impairs its interaction with Bim. Overexpression of a Ser(88) phosphorylation-inactive DLC1 mutant in mammary epithelium cells and in a transgenic animal model caused apoptosis and accelerated mammary gland involution, respectively, with increased Bim levels. Structural and biophysical studies suggested that phosphorylation-mimicking mutation leads to dissociation of the DLC1 dimer to a pure folded monomer. The phosphorylation-induced DLC1 monomer is incapable of binding to its substrate Bim. These findings reveal a previously unrecognized regulatory mechanism of DLC1 in which the Ser(88) phosphorylation acts as a molecular switch for the transition of DLC1 from dimer to monomer, thereby modulating its interaction with substrates and consequently regulating the functions of DLC1.  相似文献   

8.
The dynein light chain LC8 is an integral subunit of the cytoplasmic dynein motor complex that binds directly to and promotes assembly of the dynein intermediate chain (IC). LC8 interacts also with a variety of putative dynein cargo molecules such as Bim, a proapoptotic Bcl2 family protein, which have the KXTQT recognition sequence and neuronal nitric oxide synthase (nNOS), which has the GIQVD fingerprint but shares the same binding grooves at the LC8 dimer interface. The work reported here investigates the interaction of LC8 with IC and a putative cargo, Swallow, which share the KXTQT recognition sequence, and addresses the apparent paradox of how LC8, as part of dynein, mediates binding to cargo. The structures of Drosophila LC8 bound to peptides from IC and Swallow solved by X-ray diffraction show that the IC and Swallow peptides bind in the same grooves at the dimer interface. Differences in flexibility between bound and free LC8 were evaluated from hydrogen isotope exchange experiments using heteronuclear NMR spectroscopy. Peptide binding causes an increase in protection from exchange primarily in residues that interact directly with the peptide, such as the beta-strand intertwined at the interface and the N-terminal end of helix alpha2. There is considerably more protection upon Swallow binding, consistent with tighter binding relative to IC. Comparison with the LC8/nNOS complex shows how both the GIQVD and KXTQT fingerprints are recognized in the same groove. The similar structures of LC8/IC and LC8/Swa and the tighter binding of Swallow call into question the role for LC8 as a cargo adaptor protein, and suggest that binding of LC8 to Swallow serves another function, possibly that of a dimerization engine, which is independent of its role in dynein.  相似文献   

9.
Conformational dynamics play a crucial role in biological function. Dynein light chain protein (DLC8) acts as a cargo adaptor, and exists as a dimer under physiological conditions and dissociates into monomer below pH 4. In the present NMR study, we identified some dynamic residues in the dimer using chemical shift perturbation approach by applying small pH change. As evidenced by gel filtration and CD studies, this small pH change does not alter the globular structural features of the protein. In fact, these changes result in small local stability perturbations as monitored using temperature dependence of amide proton chemical shifts, and influence the dynamics of the dimer substantially. Further, interaction studies of the protein with a peptide containing the recognition motif of cargo indicated that the efficacy of peptide binding decreases when the pH is reduced from 7 to 6. These observations taken together support the conception that dynamics can regulate cargo binding/trafficking by the DLC8 dimer.  相似文献   

10.
Cytoplasmic dynein is a large, multisubunit molecular motor that translocates cargoes toward the minus ends of microtubules. Proper functioning of the dynein motor requires precise assembly of its various subunits. Using purified recombinant proteins, we show that the highly conserved 8-kDa light chain (DLC8) binds to the intermediate chain of the dynein complex. The DLC8-binding region was mapped to a highly conserved 10-residue fragment (amino acid sequence SYSKETQTPL) C-terminal to the second alternative splicing site of dynein intermediate chain. Yeast two-hybrid screening using DLC8 as bait identified numerous additional DLC8-binding proteins. Biochemical and mutational analysis of selected DLC8-binding proteins revealed that DLC8 binds to a consensus sequence containing a (K/R)XTQT motif. The (K/R)XTQT motif interacts with the common target-accepting grooves of DLC8 dimer. The role of each conserved amino acid residue in this pentapeptide motif in supporting complex formation with DLC8 was systematically studied using site-directed mutagenesis.  相似文献   

11.
Tctex1 is a light chain found in both cytoplasmic and flagellar dyneins and is involved in many fundamental cellular activities, including rhodopsin transport within photoreceptors, and may function in the non-Mendelian transmission of t haplotypes in mice. Here, we present the NMR solution structure for the Tctex1 dimer from Chlamydomonas axonemal inner dynein arm I1. Structural comparisons reveal a strong similarity with the LC8 dynein light chain dimer, including formation of a strand-switched beta sheet interface. Analysis of the Tctex1 structure enables the dynein intermediate chain binding site to be identified and suggests a mechanism by which cargo proteins might be attached to this microtubule motor complex. Comparison with the alternate dynein light chain rp3 reveals how the specificity of dynein-cargo interactions mediated by these dynein components is achieved. In addition, this structure provides insight into the consequences of the mutations found in the t haplotype forms of this protein.  相似文献   

12.
Nyarko A  Cochrun L  Norwood S  Pursifull N  Voth A  Barbar E 《Biochemistry》2005,44(43):14248-14255
LC8 is a highly conserved light-chain subunit of cytoplasmic dynein that interacts with a wide variety of cellular proteins and is presumed to play a fundamental role in dynein assembly and cargo recruitment and in the assembly of protein complexes unrelated to dynein. LC8 is a dimer at physiological pH but dissociates to a folded monomer at pH < 4.8. We have suggested that acid-induced dimer dissociation is due to protonation of His 55, which is stacked against His 55' and completely buried in the dimer interface. In this work, we show that the pH-induced dissociation is reversible and indeed governed by the ionization state of His 55. Mutagenesis of His 55 to Lys results in a monomer in the pH range of 3-8, while the mutation to Ala results in a dimer in the same pH range. Mutations that disrupt intermolecular hydrogen bonds between Tyr 65 and Lys 44' and His 55 and Thr 67' do not change the association state of the dimer. Titration curves for His 55 and the two other histidines, His 72 and 68, were determined by (13)C-(1)H NMR for H55K and for WT-LC8 in the monomeric and dimeric states. The pK(a) values of His 72 and His 68 are 6 in the WT dimer and 6.2-6.5 in monomeric H55K, while the pK(a) of His 55 is about 4.5 in the WT dimer. These results indicate that deprotonation of His 55 is linked to dimer formation and that mutation of His 55 to a small neutral residue or to a positively charged residue uncouples the protonation and dissociation processes.  相似文献   

13.
The minus-ended microtubule motor cytoplasmic dynein contains a number of low molecular weight light chains including the 14-kDa Tctex-1. The assembly of Tctex-1 in the dynein complex and its function are largely unknown. Using partially deuterated, (15)N,(13)C-labeled protein samples and transverse relaxation-optimized NMR spectroscopic techniques, the secondary structure and overall topology of Tctex-1 were determined based on the backbone nuclear Overhauser effect pattern and the chemical shift values of the protein. The data showed that Tctex-1 adopts a structure remarkably similar to that of the 8-kDa light chain of the motor complex (DLC8), although the two light chains share no amino acid sequence homology. We further demonstrated that Tctex-1 binds directly to the intermediate chain (DIC) of dynein. The Tctex-1 binding site on DIC was mapped to a 19-residue fragment immediately following the second alternative splicing site of DIC. Titration of Tctex-1 with a peptide derived from DIC, which contains a consensus sequence R/KR/KXXR/K found in various Tctex-1 target proteins, indicated that Tctex-1 binds to its targets in a manner similar to that of DLC8. The experimental results presented in this study suggest that Tctex-1 is likely to be a specific cargo adaptor for the dynein motor complex.  相似文献   

14.
Local structural and dynamic modulations due to small environmental perturbations reflect the adaptability of the protein to different interactors. We have investigated here the preferential local perturbations in Dynein light chain protein (DLC8), a cargo adapter, by sub-denaturing urea concentrations. Equilibrium unfolding experiments by optical spectroscopic methods indicated a two state like unfolding of DLC8 dimer, with the transition mid-point occurring around 8.6 M urea. NMR studies identified the β3 and β4 strands, N-, C- terminal regions, loops connecting β1 to α1, α1 to α2 and β3 to β4 as the soft targets of urea perturbation and thus indicated potential unfolding initiation sites. Native-state hydrogen exchange studies suggested the unfolding to traverse from the edges towards the centre of the secondary structural elements. At 6 M urea the whole protein chain acts like a cooperative unit. These observations are expected to have important implications for the protein's multiple functions.  相似文献   

15.
Barbar E  Kleinman B  Imhoff D  Li M  Hays TS  Hare M 《Biochemistry》2001,40(6):1596-1605
Cytoplasmic dynein is a multisubunit ATPase that transforms chemical energy into motion along microtubules. LC8, a 10 kDa light chain subunit of the dynein complex, is highly conserved with 94% sequence identity between Drosophila and human. The precise function of this protein is unknown, but its ubiquitous expression and conservation suggest a critical role in the function of the dynein motor complex. We have overexpressed LC8 from Drosophila melanogaster and characterized its dimerization and folding using analytical ultracentrifugation, size-exclusion chromatography, circular dichroism, and fluorescence spectroscopy. Sedimentation equilibrium measurements of LC8 at pH 7 reveal a reversible monomer-dimer equilibrium with a dissociation constant of 12 microM at 4 degrees C. At lower pH, LC8 dissociates to a monomer, with a transition midpoint at pH 4.8. Far-UV CD and fluorescence spectra demonstrate that pH-dissociated LC8 retains native secondary and tertiary structures, while the diminished near-UV CD signal shows loss of quaternary structure. The observation that dimeric LC8 dissociates at low pH can be explained by titration of a histidine pair in the dimer interface. Equilibrium denaturation experiments with a protein concentration range spanning almost 2 orders of magnitude indicate that unfolding of LC8 dimer is a two-stage process, in which global unfolding is preceded by dissociation to a folded monomer. The nativelike tertiary structure of the monomer suggests a role for the monomer-dimer equilibrium of LC8 in dynein function.  相似文献   

16.
The Beclin 1-VPS34 complex plays a crucial role in the induction of the autophagic process by generating PtdIns(3)P-rich membranes, which act as platforms for ATG protein recruitment and autophagosome nucleation. Several cofactors, such as Ambra1, ATG14 and UVRAG, are necessary for Beclin 1 complex activity. However, the mechanism by which Beclin 1 complex activity is: stimulated by autophagic stimuli has not yet been fully elucidated. Recently, we reported that autophagosome formation in mammalian cells is primed by Ambra1 release from the dynein motor complex. We found that Ambra1 specifically binds the dynein motor complex under normal conditions through a direct interaction with DLC1. When autophagy is induced, Ambra1-DLC1 are released from the dynein complex in an ULK1-dependent manner, and relocalize to the endoplasmic reticulum, thus enabling autophagosome nucleation. In addition, we found that both DLC1 downregulation and Ambra1 mutations in its DLC1-binding sites strongly enhance autophagosome formation. Ambra1 is therefore not only a cofactor of Beclin 1 in favoring its kinase-associated activity, but also a crucial upstream regulator of autophagy initiation.  相似文献   

17.
Recent studies have identified dynein light chain-1 (DLC1), a component of the dynein motor, as a p21-activated kinase 1 (Pak1)-interacting substrate with binding sites mapped to amino acids 61-89 of DLC1 and phosphorylation site at serine 88. Here we investigated the role of DLC1 phosphorylation by Pak1 upon the process of macropinocytosis. We found that Pak1 associates with dynein motor and that Pak1-DLC1 interaction starts at the initiation of pinosome formation and persists in early and late endosomes. Pak1 phosphorylation of DLC1 on Ser-88 controls vesicle formation and trafficking functions, as Ser-88 substitution for alanine prevents macropinocytosis. A peptide spanning the C-terminal 19-amino acid region of DLC1 efficiently blocked Ser-88 phosphorylation and macropinocytosis. These results suggest that the regulation of DLC1 by Pak1 is a novel mechanism by which a signaling kinase might influence macropinocytosis.  相似文献   

18.
Several viruses target the microtubular motor system in early stages of the viral life cycle. African swine fever virus (ASFV) protein p54 hijacks the microtubule-dependent transport by interaction with a dynein light chain (DYNLL1/DLC8). This was shown to be a high-affinity interaction, and the residues gradually disappearing were mapped on DLC8 to define a putative p54 binding surface by nuclear magnetic resonance (NMR) spectroscopy. The potential of short peptides targeting the binding domain to disrupt this high-affinity protein-protein interaction was assayed, and a short peptide sequence was shown to bind and compete with viral protein binding to dynein. Given the complexity and number of proteins involved in cellular transport, the prevention of this viral-DLC8 interaction might not be relevant for successful viral infection. Thus, we tested the capacity of these peptides to interfere with viral infection by disrupting dynein interaction with viral p54. Using this approach, we report on short peptides that inhibit viral growth.To enter the host cell, a virus must cross several barriers to reach the nucleus. Many viruses hijack the microtubular network to be transported along the cytoplasm (7, 18). Dynein is a microtubular motor protein, part of a large macromolecular complex called the microtubular motor complex. Dynein is involved in early stages of the viral life cycle of diverse infections, the first stage being the intracellular transport of the incoming virus along microtubules. Once transported throughout the cytosol, the virus rapidly gains the perinuclear area or the nucleus, where virus replication takes place. The disruption of microtubules or microtubular motor dynein function impairs the transport of a number of viruses; however, the intrinsic mechanism of this transport is unclear. Also, it has not been firmly established whether there is a common mechanism by which these viruses hijack a component of the microtubular motor complex for this purpose (7). A direct interaction between a given viral protein and cytoplasmic dynein for transport has been reported for HIV, herpes simplex virus, African swine fever virus (ASFV), and rabies virus (4, 14, 22, 25). In adenoviruses, a direct interaction of the viral capsid hexon subunit with cytoplasmic dynein has been described recently (5).One of these viruses, ASFV, which is a large DNA virus, enters the cell by dynamin- and clathrin-dependent endocytosis (12), and its infectivity is dependent on the acidification of the endosome. ASFV protein p54, a major protein of virion membranes, interacts with the light-chain dynein of 8 kDa (DLC8), which allows the transport of the virus to the perinuclear area (4), in a region called the microtubular organizing center (MTOC). In this zone, the virus starts replication in the viral factory, a secluded compartment where newly formed virions assemble (11, 13). By binding DLC8, the virus masters intracellular transport to ensure successful infection. However, due to the complexity of the system, the mechanism of this interaction is still elusive.A variety of names have been used for the subunits of the cytoplasmic dynein complex. A new classification for mammalian cytoplasmic dynein subunit genes based on their phylogenetic relationships has been reported in which the DLC8 gene was named DYNLL1 (26).Light dynein chains are responsible for direct cargo binding in the cell, but how do they select so many different cargos? It is not known whether the mode and site of binding is the same for viral proteins and physiological cargos. Within these multimeric complexes, there are a number of molecules that theoretically could interact with a given viral protein. However, to date viral proteins have been described to bind only light or intermediate dynein chains, such as DLC8 and TcTex1 (4, 5, 8). A candidate viral protein would bind one of the DLC binding domains, which in DLC8 are located between the two dimers of the DLC8 molecule (LysXThrThr). Here, we analyzed this interaction between a viral protein and DLC8 in an attempt to elucidate its requirements and relevance for viral infection.To determine whether this interaction is crucial for viral replication or whether it is just one of a number of alternatives for the virus-host interplay, we analyzed the capacity of a set of inhibitor peptides targeting a determined binding domain of the DLC8 molecule to interfere with viral infection by disrupting dynein interaction with viral p54.  相似文献   

19.
Cytoplasmic dynein is responsible for a wide range of cellular roles. How this single motor protein performs so many functions has remained a major outstanding question for many years. Part of the answer is thought to lie in the diversity of dynein regulators, but how the effects of these factors are coordinated in vivo remains unexplored. We previously found NudE to bind dynein through its light chain 8 (LC8) and intermediate chain (IC) subunits (1), the latter of which also mediates the dynein-dynactin interaction (2). We report here that NudE and dynactin bind to a common region within the IC, and compete for this site. We find LC8 to bind to a novel sequence within NudE, without detectably affecting the dynein-NudE interaction. We further find that commonly used dynein inhibitory reagents have broad effects on the interaction of dynein with its regulatory factors. Together these results reveal an unanticipated mechanism for preventing dual regulation of individual dynein molecules, and identify the IC as a nexus for regulatory interactions within the dynein complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号