首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Live attenuated Salmonella enterica serovar Typhi Ty21a (Ty21a) is an important vaccine strain used in clinical studies for typhoid fever and as a vaccine vector for the expression of heterologous antigens. To facilitate the use of Ty21a in such studies, it is desirable to develop improved strategies that enable the stable chromosomal integration and expression of multiple heterologous antigens. The phage λ Red homologous recombination system has previously been used in various gram-negative bacteria species to mediate the accurate replacement of regions of chromosomal DNA with PCR-generated ‘targeting cassettes’ that contain flanking regions of shared homologous DNA sequence. However, the efficiency of λ Red-mediated recombineering in Ty21a is far lower than in Escherichia coli and other Salmonella typhimurium strains. Here, we describe an improved strategy for recombineering-based methods in Ty21a. Our reliable and efficient method involves the use of linear DNA-targeting cassettes that contain relatively long flanking ‘arms’ of sequence (ca. 1,000 bp) homologous to the chromosomal target. This enables multiple gene-targeting procedures to be performed on a single Ty21a chromosome in a straightforward, sequential manner. Using this strategy, we inserted three different influenza antigen expression cassettes as well as a green fluorescent protein gene reporter into four different loci on the Ty21a chromosome, with high efficiency and accuracy. Fluorescent microscopy and Western blotting analysis confirmed that strong inducible expression of all four heterologous genes could be achieved. In summary, we have developed an efficient, robust, and versatile method that may be used to construct recombinant Ty21a antigen-expressing strains.  相似文献   

2.

Background  

An Escherichia coli strain in which RecBCD has been genetically replaced by the bacteriophage λ Red system engages in efficient recombination between its chromosome and linear double-stranded DNA species sharing sequences with the chromosome. Previous studies of this experimental system have focused on a gene replacement-type event, in which a 3.5 kbp dsDNA consisting of the cat gene and flanking lac operon sequences recombines with the E. coli chromosome to generate a chloramphenicol-resistant Lac- recombinant. The dsDNA was delivered into the cell as part of the chromosome of a non-replicating λ vector, from which it was released by the action of a restriction endonuclease in the infected cell. This study characterizes the genetic requirements and outcomes of a variety of additional Red-promoted homologous recombination events producing Lac+ recombinants.  相似文献   

3.
Phosphoenolpyruvate (PEP) is an important precursor for anaerobic production of succinate and malate. Although inactivating PEP/carbohydrate phosphotransferase systems (PTS) could increase PEP supply, the resulting strain had a low glucose utilization rate. In order to improve anaerobic glucose utilization rate for efficient production of succinate and malate, combinatorial modulation of galactose permease (galP) and glucokinase (glk) gene expression was carried out in chromosome of an Escherichia coli strain with inactivated PTS. Libraries of artificial regulatory parts, including promoter and messenger RNA stabilizing region (mRS), were firstly constructed in front of β-galactosidase gene (lacZ) in E. coli chromosome through λ-Red recombination. Most regulatory parts selected from mRS library had constitutive strengths under different cultivation conditions. A convenient one-step recombination method was then used to modulate galP and glk gene expression with different regulatory parts. Glucose utilization rates of strains modulated with either galP or glk all increased, and the rates had a positive relation with expression strength of both genes. Combinatorial modulation had a synergistic effect on glucose utilization rate. The highest rate (1.64 g/L h) was tenfold higher than PTS strain and 39% higher than the wild-type E. coli. These modulated strains could be used for efficient anaerobic production of succinate and malate.  相似文献   

4.
This paper describes a rapid method of constructing homologous recombinant baculovirus inE. coli with PCR-amplified fragments. By using this method, the traditional steps of constructing transfer vector are omitted. The method is based on phage λ red system which can promote the recombination between the homologous fragments with the length above 36 bp. Taking HaSNPV as an example, this paper describes the rapid recombination process by using chloramphenicol resistance gene (Cm R ) to replaceorf135 in HaSNPV genome. A pair of primers with length of 60 bp was synthesized, in which 40 bp was homologous to the each end sequence oforf135, and the rest 20 bp was homologous to the each end sequence ofCm R . By using these primers, a linear fragment containing the completeCm R gene between 40 bp of homologous arms oforf135 was generated by PCR with the plasmid pKD3 which containsCm R as the template. By transforming the linear fragment into theE. coli containing the bacterial artificial chromosome of HaSNPV and with the help of a plasmid expressing λ recombinase, the recombinants on which the homologue replacement had taken place were selected by chloramphenicol resistance. This method greatly shortens the process of constructing recombinant baculovirus since the process was performed inE. coli and does not need to construct transfer vectors. It can be further used for gene replacement and gene deletion of other large viral genomes.  相似文献   

5.
An improved recombineering approach by adding RecA to λ Red recombination   总被引:2,自引:0,他引:2  
Recombineering is the use of homologous recombination in Escherichia coli for DNA engineering. Of several approaches, use of the λ phage Red operon is emerging as the most reliable and flexible. The Red operon includes three components: Redα, a 5′ to 3′ exonuclease, Redβ, an annealing protein, and Redλ, an inhibitor of the major E. coli exonuclease and recombination complex, RecBCD. Most E. coli cloning hosts are recA deficient to eliminate recombination and therefore enhance thestabulity of cloned DNAs. However, loss of RecA also impairs general cellular integrity. Here we report that transient RecA co-expression enhances the total numer of successful recombinations in bacterial artificial chromosomes (BACs), mostly because the E. coli host is more able to survive the stresses of DNA transformation procedures. We combined this practical improvement with the advantages of a temperature-sensitive version of the low copy pSC 101 plasmid to develop a protocol that is convenient and more efficient than any recombineering procedure, for use of either double-or single-stranded DNA, published to date.  相似文献   

6.
The unstable linear chromosome of Streptomyces lividans was circularized by homologous recombination and its terminal inverted repeats deleted. Strains with circularized chromosomes showed no obvious phenotypic disadvantages compared to the wild type. However, they segregated about 20 times more chloramphenicol-sensitive mutants than the wild type (24.3% vs. 1.4%), due to a higher incidence of large deletions. In addition, in all circularized chromosomes amplification of 30–60 kb fragments was observed at the new chromosomal junction, to levels of approximately 10 copies per chromosome. Arginine auxotrophs that arose spontaneously among the progeny of strains with a circularized chromosome showed high-copy-number amplification of the DNA element AUD1, as also seen in mutants of the wild type. These observations demonstrate that the circular form of the Streptomyces chromosome is more unstable than the linear one. Received: 28 July 1996 / Accepted: 18 November 1996  相似文献   

7.
We show that circular plasmids containing perfect palindromic regions of 2 × 1.1 kb can be propagated in sbcC strains of Escherichia coli, a result that is at variance with the well known observation that λ DNA cannot tolerate palindromic regions larger than 2 × 265 bp. However, a significant fraction of these palindrome-containing plasmids can be recovered from E. coli strains either as linear molecules with hairpins at their ends or as head-to-head dimers, both in a RuvC-and RusA-independent manner. Our results suggests that large palindromes may form cruciforms in E. coli. However, palindrome-associated DNA rearrangements occur by a process that does not require any known cruciform resolvase activity. Our data support a replication-dependent model for the induction of DNA rearrangements by perfect palindromes. Received: 11 May 1998 / Accepted: 24 June 1998  相似文献   

8.
Simple and low-cost recombinant enzyme-free seamless DNA cloning methods have recently become available. In vivo Escherichia coli cloning (iVEC) can directly transform a mixture of insert and vector DNA fragments into E. coli, which are ligated by endogenous homologous recombination activity in the cells. Seamless ligation cloning extract (SLiCE) cloning uses the endogenous recombination activity of E. coli cellular extracts in vitro to ligate insert and vector DNA fragments. An evaluation of the efficiency and utility of these methods is important in deciding the adoption of a seamless cloning method as a useful tool. In this study, both seamless cloning methods incorporated inserting DNA fragments into linearized DNA vectors through short (15–39 bp) end homology regions. However, colony formation was 30–60-fold higher with SLiCE cloning in end homology regions between 15 and 29 bp than with the iVEC method using DH5α competent cells. E. coli AQ3625 strains, which harbor a sbcA gene mutation that activates the RecE homologous recombination pathway, can be used to efficiently ligate insert and vector DNA fragments with short-end homology regions in vivo. Using AQ3625 competent cells in the iVEC method improved the rate of colony formation, but the efficiency and accuracy of SLiCE cloning were still higher. In addition, the efficiency of seamless cloning methods depends on the intrinsic competency of E. coli cells. The competency of chemically competent AQ3625 cells was lower than that of competent DH5α cells, in all cases of chemically competent cell preparations using the three different methods. Moreover, SLiCE cloning permits the use of both homemade and commercially available competent cells because it can use general E. coli recA? strains such as DH5α as host cells for transformation. Therefore, between the two methods, SLiCE cloning provides both higher efficiency and better utility than the iVEC method for seamless DNA plasmid engineering.  相似文献   

9.
The subject of this review covers modern experimental procedures for chromosomal gene replacement in Escherichia coli and related bacteria, which enable the specific substitution of targeted genome sequences with copies of those carrying defined mutations. Two principal methods for gene replacement were established. The first “in–out” method is based on integration of plasmid into bacterial chromosome and subsequent resolving of the cointegrate. The “linear fragment” method (recombineering) is based on homologous recombination mediated by short homology arms at the ends of linear DNA molecule. Many new protocols and improvements in targeted gene replacement were introduced during the last 10 years. These methods are well suited for high-throughput functional gene studies and for many biotechnological applications.  相似文献   

10.
Genetic modifications of bacterial chromosomes are important for both fundamental and applied research. In this study, we developed an efficient, easy-to-use system for genetic modification of the Escherichia coli chromosome, a two-plasmid method involving lambda Red (λ-Red) recombination and I-SceI cleavage. An intermediate strain is generated by integration of a resistance marker gene(s) and I-SceI recognition sites in or near the target gene locus, using λ-Red PCR targeting. The intermediate strain is transformed with a donor plasmid carrying the target gene fragment with the desired modification flanked by I-SceI recognition sites, together with a bifunctional helper plasmid for λ-Red recombination and I-SceI endonuclease. I-SceI cleavage of the chromosome and the donor plasmid allows λ-Red recombination between chromosomal breaks and linear double-stranded DNA from the donor plasmid. Genetic modifications are introduced into the chromosome, and the placement of the I-SceI sites determines the nature of the recombination and the modification. This method was successfully used for cadA knockout, gdhA knock-in, seamless deletion of pepD, site-directed mutagenesis of the essential metK gene, and replacement of metK with the Rickettsia S-adenosylmethionine transporter gene. This effective method can be used with both essential and nonessential gene modifications and will benefit basic and applied genetic research.  相似文献   

11.

Background  

Alpha (α)-hemolysin is a pore forming cytolysin and serves as a virulence factor in intestinal and extraintestinal pathogenic strains of E. coli. It was suggested that the genes encoding α-hemolysin (hlyCABD) which can be found on the chromosome and plasmid, were acquired through horizontal gene transfer. Plasmid-encoded α-hly is associated with certain enterotoxigenic (ETEC), shigatoxigenic (STEC) and enteropathogenic E. coli (EPEC) strains. In uropathogenic E. coli (UPEC), the α-hly genes are located on chromosomal pathogenicity islands. Previous work suggested that plasmid and chromosomally encoded α-hly may have evolved independently. This was explored in our study.  相似文献   

12.

Background  

A variety of techniques have been described which introduce scarless, site-specific chromosomal mutations. These techniques can be applied to make point mutations or gene deletions as well as insert heterologous DNA into bacterial vectors for vaccine development. Most methods use a multi-step approach that requires cloning and/or designing repeat sequences to facilitate homologous recombination. We have modified previously published techniques to develop a simple, efficient PCR-based method for scarless insertion of DNA into Salmonella enteritidis chromosome.  相似文献   

13.
Summary The terminus of replication (terC) of the chromosome of Escherichia coli is located between the rac (min 30.0) and manA (min 35.7) loci, presumably close to the trg (min 31.4) locus. We have used a strain containing reverse (min 30.0) and trg-2:: Tn10 (min 31.4) to obtain deletions of the entire 60 kilobase pair region that separates these elements. Strains harboring these deletions possessed fusion fragments that contained DNA homologous to both reverse and trg region DNA. In addition, chromosomal DNA normally present between min 30.0 and min 31.4 was absent in these strains. The strains had no readily apparent mutant phenotype, which demonstrates that this large region of DNA is not essential for normal growth.  相似文献   

14.
Summary Joint molecules of λ DNA formed in the absence of DNA replication, which may be involved in the process of genetic recombination can be observed as branched DNA derived from different phage particles. These molecules are associated through base-pair hydrogen bonding in synaptic regions, usually with short single-stranded gaps. Furthermore, joint molecules could be accumulated up to ten fold when λ was irradiated with ultraviolet light before infection ofpolI mutant ofE. coli. Infection at low multiplicity did not give rise to joint molecules. These results suggest that single-strand breaks and gaps introduced in duplex λ DNA facilitate the formation of joint molecules.  相似文献   

15.
16.
The construction of mutant fungal strains is often limited by the poor efficiency of homologous recombination in these organisms. Higher recombination efficiencies can be obtained by increasing the length of homologous DNA flanking the transformation marker, although this is a tedious process when standard molecular biology techniques are used for the construction of gene replacement cassettes. Here, we present a two-step technology which takes advantage of an Escherichia coli strain expressing the phage λ Red(gam, bet, exo) functions and involves (i) the construction in this strain of a recombinant cosmid by in vivo recombination between a cosmid carrying a genomic region of interest and a PCR-generated transformation marker flanked by 50 bp regions of homology with the target DNA and (ii) genetic exchange in the fungus itself between the chromosomal locus and the circular or linearized recombinant cosmid. This strategy enables the rapid establishment of mutant strains carrying gene knock-outs with efficiencies >50%. It should also be appropriate for the construction of fungal strains with gene fusions or promoter replacements.  相似文献   

17.
In vivo expression technology (IVET) has resulted in the isolation of more than 100 Salmonella typhimurium genes that are induced during infection. Many of these in vivo induced (ivi) genes, as well as other virulence genes, are clustered in regions of the chromosome that are specific for Salmonella and are not present in Escherichia coli (e.g., pathogenicity islands). It would be desirable to be able to delete such putative virulence regions of the chromosome, and if the deletion removes genes that play a role in pathogenesis subsequent efforts can then be focused on individual genes that reside within that region. We therefore have developed a strategy for constructing chromosomal deletions which are not limited in size, have defined endpoints with a selectable marker at the joint point, and are not dependent on prior knowledge of sequences contained within the deleted region. Such deletion strategies can be applied to almost any bacterium with homologous recombination and to plasmid-based mutational systems where homologous recombination is not desired or feasible. Received: 6 October 1997 / Accepted: 30 December 1997  相似文献   

18.
Summary Genetic studies indicate that the E. coli C chromosomal genes which are responsible for catabolism of the pentitol sugars, ribitol and D-arabitol, are not present in the closely related E. coli K12 strains (Reiner 1975). Molecular studies of these tightly linked genes reveal that they are surrounded by 1.4 kilobase inverted repeats of imperfect homology (Link and Reiner 1982). Here we report that E. coli C lacks genes for catabolism of the hexitol sugar galactitol, genes which are present in E. coli K12. Furthermore, the ribitol-arabitol and galactitol genes, which show no mutual homology, are mutually exclusive when exchanged (by homologous recombination) between E. coli C and K12. Physical characterization of specialized transducing phages carrying the ribitol-arabitol or galactitol genes demonstrates that this exclusion results because these genes have identical locations in their respective chromosomes. This novel type of allelic relationship between nonhomologous genes has not been previously described in prokaryotes. Analysis of the catabolic capabilities of a collection of natural E. coli strains suggests that this exclusion relationship extends to strains in the natural E. coli population. We suggest an insertion/deletion model to account for the origins of this unusual gene arrangement.  相似文献   

19.
Most existing genomic engineering protocols for manipulation of Escherichia coli are primarily focused on chromosomal gene knockout. In this study, a simple but systematic chromosomal gene knock-in method was proposed based on a previously developed protocol using bacteriophage λ (λ Red) and flippase–flippase recognition targets (FLP–FRT) recombinations. For demonstration purposes, DNA operons containing heterologous genes (i.e., pac encoding E. coli penicillin acylase and palB2 encoding Pseudozyma antarctica lipase B mutant) engineered with regulatory elements, such as strong/inducible promoters (i.e., P trc and P araB ), operators, and ribosomal binding sites, were integrated into the E. coli genome at designated locations (i.e., lacZYA, dbpA, and lacI-mhpR loci) either as a gene replacement or gene insertion using various antibiotic selection markers (i.e., kanamycin and chloramphenicol) under various genetic backgrounds (i.e., HB101 and DH5α). The expression of the inserted foreign genes was subjected to regulation using appropriate inducers [isopropyl β-d-1-thiogalactopyranoside (IPTG) and arabinose] at tunable concentrations. The developed approach not only enables more extensive genomic engineering of E. coli, but also paves an effective way to “tailor” plasmid-free E. coli strains with desired genotypes suitable for various biotechnological applications, such as biomanufacturing and metabolic engineering.  相似文献   

20.
Horizontal gene transfer is a key step in the evolution of bacterial pathogens. Besides phages and plasmids, pathogenicity islands (PAIs) are subjected to horizontal transfer. The transfer mechanisms of PAIs within a certain bacterial species or between different species are still not well understood. This study is focused on the High-Pathogenicity Island (HPI), which is a PAI widely spread among extraintestinal pathogenic Escherichia coli and serves as a model for horizontal transfer of PAIs in general. We applied a phylogenetic approach using multilocus sequence typing on HPI-positive and -negative natural E. coli isolates representative of the species diversity to infer the mechanism of horizontal HPI transfer within the E. coli species. In each strain, the partial nucleotide sequences of 6 HPI–encoded genes and 6 housekeeping genes of the genomic backbone, as well as DNA fragments immediately upstream and downstream of the HPI were compared. This revealed that the HPI is not solely vertically transmitted, but that recombination of large DNA fragments beyond the HPI plays a major role in the spread of the HPI within E. coli species. In support of the results of the phylogenetic analyses, we experimentally demonstrated that HPI can be transferred between different E. coli strains by F-plasmid mediated mobilization. Sequencing of the chromosomal DNA regions immediately upstream and downstream of the HPI in the recipient strain indicated that the HPI was transferred and integrated together with HPI–flanking DNA regions of the donor strain. The results of this study demonstrate for the first time that conjugative transfer and homologous DNA recombination play a major role in horizontal transfer of a pathogenicity island within the species E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号