首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Saffron, a plant from the Iridaceae family, is the world’s most expensive spice. Gamma irradiation and silver nano particles whose uses are gradually increasing worldwide, have positive effects on preventing decay by sterilizing the microorganisms and by improving the safety without compromising the nutritional properties and sensory quality of the foods. In the present study combination effects of gamma irradiation and silver nano particles packaging on the microbial contamination of saffron were considered during storage. A combination of hurdles can ensure stability and microbial safety of foods. For this purpose, saffron samples were packaged by Poly Ethylene films that posses up to 300 ppm nano silver particles as antimicrobial agents and then irradiated in cobalt-60 irradiator (gamma cell Model: PX30, dose rate 0.55 Gry/Sec) to 0, 1, 2,3 and 4 kGy at room temperature. The antimicrobial activities against Total Aerobic Mesophilic Bacteria, Entrobacteriace, Escherichia Coli and Clostridium Perfringines were higher in the irradiated samples, demonstrating the inhibition zone for their growth. Irradiation of the saffron samples packaged by Poly Ethylene films with nano silver particles showed the best results for decreasing microbial contamination at 2 kGy and for Poly Ethylene films without silver nano particles; it was 4 kGy.  相似文献   

2.
The present work describes radiation-induced effects on vegetative, reproductive traits and psoralen content in Psoralea corylifolia L. The effects of gamma radiation on Psoralea seeds were investigated by exposing seeds with doses of 2.5, 5, 10, 15 and 20 kGy at dose rate of 1.65 kGyh−1 and studying the plant growth at three developmental stages: preflowering, flowering and post flowering (seed to seed) after irradiation. Irradiation with lower doses of gamma rays significantly improved vegetative traits while higher doses proved depressing for same parameters. Similar trend was followed in reproductive traits. Psoralen, showed highest concentration in seeds (7.56%) at 20 kGy and lowest in control roots (0.23%). Increment in psoralen was striking for higher gamma doses applied. These long-term changes in plant development may be attributed to alteration in plant genome induced by irradiation. The results show in depth development stimulation and enhancement of secondary metabolite in Psoralea corylifolia L. following low and high dose treatment respectively depicting the potential of gamma rays in plant biotechnology and metabolomics.  相似文献   

3.
Gamma irradiation can be used as one of the most efficient methods to reduce microorganisms in food. The irradiation of food is used for a number of purposes, including microbiological control, insects control and inhibition of sprouting and delay of senescence of living food. The aim of this study was to study effects of gamma irradiation, refrigeration and frozen storage as the combination process for improvement of red meat shelf-life. The bovine meat samples were treated with 0, 0.5, 1, 2 and 3 kGy of gamma irradiation and kept in refrigerator for 3 weeks and in freezer for 8 months. The control and irradiated samples were stored at 4–7°C and at −18°C for refrigeration and frozen storage, respectively; and microbial and chemical analyze was done at 1 week and 2 months intervals. In this study the optimum dose of gamma radiation in order to decrease the total count of Mesophilic bacteria, Coliforms, Staphylococcus aureus and especially for elimination of Salmonella was obtained at 3 kGy. Microbial analysis indicated that irradiation and storage at low temperature had a significant effect on the reduction of microbial loads. There was no significant difference in chemical characteristics during freezing storage in bovine meat. Also, irradiated meat samples (3 kGy) were stored in 4–7°C for 14 days, compared to 3 days for non irradiated samples.  相似文献   

4.
Cryptosporidium parvum is a well-known waterborne intracellular protozoan that causes severe diarrheal illness in immunocompromised individuals. This organism is highly resistant to harsh environmental conditions and various disinfectants, and it exhibits one of the highest known resistances to gamma irradiation. We investigated rejoining of gamma-ray-induced DNA damage in C. parvum by neutral comet assay. Oocysts were gamma irradiated at various doses (1, 5, 10, and 25 kGy) and were incubated for various periods (6-96 h) after exposure to 10 kGy. The comet tail moment showed that the number of DNA double-strand breaks increased concomitantly with the gamma irradiation dose. When investigating rejoining after irradiation at 10 kGy, double-strand breaks peaked at 6 h postirradiation, and rejoining was highest at 72 h postirradiation. The observed rejoining pattern suggests that repair process occurs slowly even when complex DNA double-strand breaks in C. parvum were induced by high dose irradiation, 10 kGy.  相似文献   

5.
Sporotrichosis is a subcutaneous mycosis caused by Sporothrix schenckii. Zoonotic transmission to man can occur after scratches or bites of animals, mainly cats. In this study, the gamma radiation effects on yeast of S. schenckii were analyzed with a view of developing a radioattenuated vaccine for veterinary use. The cultures were irradiated at doses ranging from 1.0 to 9.0 kGy. The reproductive capacity was measured by the ability of cells to form colonies. No colonies could be recovered above 8.0 kGy, using inocula up to 107 cells. Nevertheless, yeast cells irradiated with 7.0 kGy already were unable to produce infection in immunosuppressed mice. Evaluation by the FungaLight™ Kit (Invitrogen) indicated that yeast cells remained viable up to 9.0 kGy. At 7.0 kGy, protein synthesis, estimated by the incorporation of [L-35S] methionine, continues at levels slightly lower than the controls, but a significant decrease was observed at 9.0 kGy. The DNA of 7.0 kGy irradiated cells, analyzed by electrophoresis in agarose gel, was degraded. Cytoplasmic vacuolation was the main change verified in these cells by transmission electron microscopy. The dose of 7.0 kGy was considered satisfactory for yeast attenuation since irradiated cells were unable to produce infection but retained viability, metabolic activity, and morphology.  相似文献   

6.
The irradiation of hospital linen contaminated with radioresistant microorganisms or hospital microflora with gamma radiation in a dose of 10 kGy ensures the reliable microbial decontamination of such linen. Cotton linen has been found capable of withstanding 15 irradiation cycles in a dose of 10 kGy.  相似文献   

7.
We report that the halophilic archaeon Halobacterium sp. strain NRC-1 is highly resistant to desiccation, high vacuum and 60Co gamma irradiation. Halobacterium sp. was able to repair extensive double strand DNA breaks (DSBs) in its genomic DNA, produced both by desiccation and by gamma irradiation, within hours of damage induction. We propose that resistance to high vacuum and 60Co gamma irradiation is a consequence of its adaptation to desiccating conditions. Gamma resistance in Halobacterium sp. was dependent on growth stage with cultures in earlier stages exhibiting higher resistance. Membrane pigments, specifically bacterioruberin, offered protection against cellular damages induced by high doses (5 kGy) of gamma irradiation. High-salt conditions were found to create a protective environment against gamma irradiation in vivo by comparing the amount of DSBs induced by ionizing radiation in the chromosomal DNA of Halobacterium sp. to that of the more radiation-sensitive Escherichia coli that grows in lower-salt conditions. No inducible response was observed after exposing Halobacterium sp. to a nonlethal dose (0.5 kGy) of gamma ray and subsequently exposing the cells to either a high dose (5 kGy) of gamma ray or desiccating conditions. We find that the hypersaline environment in which Halobacterium sp. flourishes is a fundamental factor for its resistance to desiccation, damaging radiation and high vacuum.  相似文献   

8.
Experiments were carried out to study the effect of different doses of gamma irradiation (0, 5, 10, 15 and 20 kilo gray; kGy) on some nutritive components and chemical aspects pertaining to quality of fish meal and meat-bone meal. The radiation doses required to reduce the total microbial load and Salmonella sp. one log cycle (D(10)) in fish meal and meat-bone meal were determined. Results indicated that gamma irradiation of fish meal and meat-bone meal with 5-20 kGy doses had no effects on the total acidity values but increased the values of lipid oxidation and total volatile basic nitrogen. D(10) of total microbial load and Salmonella sp. were 833 and 313 Gy for fish meal and 526 Gy and 278 Gy for meat-bone meal, respectively. It can be concluded that radiation processing could be employed in the recycling of fish and meat-bone meals by using them as feedstuffs in poultry diets with no fear of losing their nutritive components.  相似文献   

9.
The effect of electrons and gamma irradiation on the induction of micronuclei in cytokinesis-blocked human peripheral blood lymphocytes was investigated to understand the relative biological effectiveness (RBE) of electrons compared with gamma rays. Blood samples were irradiated with an 8 MeV pulsed electron beam, at a mean instantaneous dose rate of 2.6 × 105 Gy s−1. Gamma irradiation was carried out at a dose rate of 1.98 Gy min−1 using 60Co gamma source. A dose-dependent increase in micronuclei yield was observed. The dose–response relationships for induction of micronuclei fitted well to a linear–quadratic relationship and the coefficients α and β of the dose–response curve were estimated by fitting the data using error-weighted minimum χ 2 method. The RBE of 8 MeV electrons were found to be near unity as compared with gamma rays.  相似文献   

10.
Summary Amniotic membrane is widely used in the treatment of burn wounds and ulcers of various etiology. As it comes into contact with open wounds, it needs to be perfectly sterile to avoid the transmission of any disease. Accordingly, amniotic membrane needs to bear a high sterility assurance level (SAL). Conventionally, a radiation dose of 25 kGy is the generally accepted dose for sterilization. But to keep intact the biomechanical and other properties, it is sometimes proposed to use a lower dose without compromising an SAL of 10−6. The initial microbial contamination level and the radiation resistance of the contaminants determine the dose required for sterilization. The microbial species associated with the amniotic membrane from about 70 different batches were isolated. Twenty-two representative bacterial isolates were characterized and tested for survival in an incremental series of radiation doses from 0.5 to 5.0 kGy. The radiation decimal reduction dose (D10) values for the strains were determined. Relatively higher D10 values were recorded for the gram-positive isolates. The D10 values of microbial isolates ranged from 0.16 to 1.3 kGy, and most resistant Bacillus strain had a D10 value of 2.1 kGy. The radiation dose necessary to achieve an SAL of 10−6 was calculated based on the D10values of the isolated strains. For a bioburden of 1000 Bacillus organism, the sterilization dose of 18.9 kGy is obtained. However, based on the experimental determination of D10 of the radiation-resistant reference strain Bacillus pumilus, the adequate dose for radiation sterilization is found to be 19.8 kGy if bioburden level of 1000 is granted. The results substantiate that radiation dose of 25 kGy assures sterilization of amniotic membranes with bioburden level of 1000 colony forming units.  相似文献   

11.
Gamma radiation is established as a procedure for inactivating bacteria, fungal spores and viruses. Sterilization of soft tissue allografts with high dose 60Co gamma radiation has been shown to have adverse effects on allograft biomechanical properties. In the current study, bone-patellar tendon-bone (BPTB) allografts from 32 mature sheep were divided into two treatment groups: low-dose radiation at 15 kGy (n = 16) and high-dose radiation at 25 kGy (n = 16) with the contralateral limb serving as a 0 kGy (n = 32) non-irradiated control. Half of the tendons from all treatment groups were biomechanically tested to determine bulk BPTB mechanical properties, cancellous bone compressive properties, and interference screw pull-out strength. The remaining tissues were prepared, implanted, and mechanically tested in an acute in vitro anterior crucial ligament (ACL) reconstruction. Low-dose radiation did not adversely affect mechanical properties of the tendon allograft, bone, or ACL reconstruction compared to internal non-irradiated control. However, high-dose radiation compromised bulk tendon load at failure and ultimate strength by 26.9 and 28.9%, respectively (P < 0.05), but demonstrated no negative effect on the cancellous bone compressive properties or interference screw pull-out strength. Our findings suggest that low dose radiation (15 kGy) does not compromise the mechanical integrity of the allograft tissue, yet high dose radiation (25 kGy) significantly alters the biomechanical integrity of the soft tissue constituent.  相似文献   

12.
The distribution of pathogenic vibrios and other bacteria in eight samples of imported frozen shrimps and the effect of irradiation on these bacteria were investigated. Total aerobic bacteria were at 2×104 to 4×106/g. Coliforms consisted mainly ofEnterobacter. No salmonella were detected. A total of 66 isolates, includingVibrio parahaemolyticus, V. mimicus, V. alginolyticus, V. vulnificus, V. fluvialis and a few ofListeria monocytogenes, were obtained. The gamma-radiation dose needed to reduce by 10–4 the number of vibrio isolates andAeromonas hydrophila was about 3 kGy in frozen shrimps, whereas about 3.5 kGy was required forL. monocytogenes.  相似文献   

13.
Bacterial communities associated with roots of Panicum turgidum, exposed to arid conditions, were investigated with a combination of cultural and metataxonomic approaches. Traditional culture-based techniques were used and 32 isolates from the irradiated roots were identified as belonging to Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria phyla. Four actinobacterial strains were shown to be ionizing-radiation (IR)-resistant: Microbacterium sp. PT8 (4.8 kGy (kGy)), Micrococcus sp. PT11 (4.4 kGy), Kocuria rhizophila PT10 (2.9 kGy) and Promicromonospora panici PT9T (2.6 kGy), based on the D10 dose necessary for a 90% reduction in colony forming units (CFU). Concerning the investigation of microbial communities in situ, metataxonomic analyses of the diversity of IR-resistant microorganisms associated with irradiated roots revealed a marked dominance of Actinobacteria (46.6%) and Proteobacteria (31.5%) compared to Bacteroidetes (4.6%) and Firmicutes (3.2%). Gamma irradiation not only changed the structure of bacterial communities, but also affected their functional properties. Comparative analyses of metabolic profiles indicated the induction of several pathways related to adaptation to oxidative stress in irradiated roots, such as DNA repair, secondary metabolites synthesis, reactive oxygen species (ROS)-mitigating enzymes, etc. P. turgidum is emblematic of desert-adapted plants. Until now, there is no other work that has focused on the microbial profile of irradiated roots of this xerophyte.  相似文献   

14.
Decellularised porcine super flexor tendon (pSFT) offers a promising solution to the replacement of damaged anterior cruciate ligament. It is desirable to package and terminally sterilise the acellular grafts to eliminate any possible harmful pathogens. However, irradiation techniques can damage the collagen structure and consequently reduce the mechanical properties. The aims of this study were to investigate the effects of irradiation sterilisation of varying dosages on the viscoelastic properties of the decellularised pSFT.Decellularised pSFT tendons were subjected to irradiation sterilisation using either 30 kGy gamma, 55 kGy gamma, 34 kGy E-beam, 15 kGy gamma, 15 kGy E-beam and (15 + 15) kGy E-beam (fractionated dose). Specimens then underwent stress relaxation testing at 0 and 12 months post sterilisation to determine whether any effect on the viscoelastic properties was progressive.Significant differences were found which demonstrated that all irradiation treatments had an effect on the time-independent and time-dependent viscoelastic properties of irradiated tendons compared to peracetic acid only treated controls. No significant differences were found between the irradiated groups and no significant differences were found between groups at 0 and 12 months. These results indicate the decellularised pSFT graft has a stable shelf-life.  相似文献   

15.
Gamma irradiation (1.0 kGy) of intact, newly harvested, mature muskmelon fruit (Cucumis melo L. var. reticulatus Naud.) appears to have an immediate deleterious effect, but also a long-term beneficial effect, on the integrity and function of the plasma membrane (PM) of hypodermal mesocarp tissue. The initial consequences of gamma irradiation included an increase in the free sterol:phospholipid ratio, resulting at least in part from deglycosylation of steryl glycosides, a decrease in the spinasterol:7-stigmastenol ratio in each of the PM steryl lipids (free sterols, steryl glycosides, and acylated steryl glycosides), and a decrease in H+-ATPase activity. Irradiation did not increase protein loss, suggesting that the decrease in H+-ATPase activity resulted from either direct inactivation of the enzyme or altered PM ordering caused by the steryl lipid modifications. The long-term beneficial effects of irradiation, observed following 10 days of commercial storage, included greater retention of total PM protein, a diminished decline in total PM phospholipids (PL) and in the PL:protein ratio, and maintenance of greater overall H+-ATPase activity (activity was the same as in controls on a per mg protein basis, but there was > 30% more protein in the PM of stored irradiated fruit). These results indicate that 1 kGy gamma irradiation administered prior to storage slowes the progression of two key parameters of senescence, PM protein loss and PL catabolism.  相似文献   

16.
Contaminated sites from man-made activities such as old-fashioned tanneries are inhabited by virulent microorganisms that exhibit more resistance against extreme and toxic environmental conditions. We investigated the effect of different Gamma radiation doses on microbial community composition in the sediment of an old-fashioned tannery. Seven samples collected from the contaminated sites received different gamma radiation doses (I = 0.0, II = 5, III = 10, VI = 15, V = 20, VI = 25, and VII = 30 kGy) as an acute exposure. The shift in microbial community structure was assessed using the high throughput 454 pyrosequencing. Variations in diversity, richness, and the shift in operational taxonomic units (OTUs) were investigated using statistical analysis. Our results showed that the control sample (I) had the highest diversity, richness, and OTUs when compared with the irradiated samples. Species of Halocella, Parasporobacterium, and Anaerosporobacter had the highest relative abundance at the highest radiation dose of 30 kGy. Members of the Firmicutes also increased by 20% at the highest radiation dose when compared with the control sample (0.0 kGy). Representatives of Synergistetes decreased by 25% while Bacteroidetes retained a steady distribution across the range of gamma radiation intensities. This study provides information about potential “radioresistant” and/or “radiotolerant” microbial species that are adapted to elevated level of chemical toxicity such as Cr and Sr in tannery. These species can be of a high biotechnological and environmental importance.  相似文献   

17.
The validation and substantiation of sterilization dose for lyophilized human amnion membrane by gamma irradiation delivered by Co60 source were investigated. The validation experiments were conducted according to ISO 13409 method B. A total of 120 human amnion membranes were collected. Of these, 10 membranes were used for estimation of bioburden and 20 membranes were used for the individual sterility test at verification dose. The average bioburden per product unit with sample item portion (SIP = 1) for lyophilized human amnion membrane was 572 cfu. The verification dose experiments were done at dose of 8.1 kGy and the results of sterility tests showed that human amnion membrane got one positive. Consequently, the sterilization dose of 25 kGy was confirmed and substantiated.  相似文献   

18.
The increased use of allograft tissue for musculoskeletal repair has brought more focus to the safety of allogenic tissue and the efficacy of various sterilization techniques. Gamma irradiation is an effective method for providing terminal sterilization to biological tissue, but it is also reported to have deleterious effects on tissue mechanics in a dose-dependent manner. At irradiation ranges up to 25 kGy, a clear relationship between mechanical strength and dose has yet to be established. The aim of this study was to investigate the mechanical properties of bone and soft tissue allografts, irradiated on dry ice at a low absorbed dose (18.3–21.8 kGy) and a moderate absorbed dose (24.0–28.5 kGy), using conventional compressive and tensile testing, respectively. Bone grafts consisted of Cloward dowels and iliac crest wedges, while soft tissue grafts consisted of patellar tendons, anterior tibialis tendons, semitendinosus tendons, and fascia lata. There were no statistical differences in mechanical strength or modulus of elasticity for any graft irradiated at a low absorbed dose, compared to control groups. Also, bone allografts and two soft tissue allografts (anterior tibialis and semitendinosus tendon) that were irradiated at a moderate dose demonstrated similar strength and modulus of elasticity values to control groups. The results of this study support the use of low dose and moderate dose gamma irradiation of bone grafts. For soft tissue grafts, the results support the use of low dose irradiation.  相似文献   

19.
Thermoluminescence (TL) measurements were carried out on europium (Eu) doped magnesium pyrophosphate (Mg2P2O7) nanopowders using gamma irradiation in the dose range of 0.1 to 3 kGy. The powder samples were successfully synthesized by chemical co‐precipitation synthesis route. The formation and crystallinity of the compound was confirmed by powder X‐ray diffraction (PXRD) pattern. The estimated particle size was found to be in nanometer scale by using Debye Scherer's formula. A scanning electron microscopy (SEM) study was carried out for the morphological characteristics of as synthesized Mg2P2O7:Eu phosphor. Photoluminescence (PL) study was carried out to confirm the presence of the rare‐earth ion and its valence state. The TL analysis of synthesized samples were performed after the irradiation of Mg2P2O7:Eu with cobalt‐60 (60Co) gamma rays. The high and low intensity peaks of TL glow curve appeared at around 400 K, 450 K, 500 K and 596 K respectively. The appreciable shift in peak positions has been observed for different concentrations of Eu ion. The trapping parameters, namely activation energy (E), order of kinetics (b) and frequency factor (s) have been determined using thermal cleaning process, peak shape (Chen's) method and glow curve deconvolution (GCD) functions.  相似文献   

20.
To evaluate the effects of different gamma irradiation doses on PEGd,lPLA and PEG-PLGA multiblock copolymers. The behaviour of the multiblock copolymers to irradiation was compared to that of PLA, PLGA polymers. PEGd,lPLA, PEG-PLGA, PLA and PLGA polymers were irradiated by using a 60Co irradiation source at 5, 15, 25 and 50 kGy total dose. Characterization was performed on all samples before and after irradiation, by nuclear magnetic resonance (NMR), infrared absorption spectrophotometry (FTIR) and gel permeation chromatography (GPC). The effect of gamma irradiation on polymer stability was also evaluated. Results of NMR and FTIR suggest an increase in -OH and -COOH groups, attributed to scission reactions induced by irradiation treatment. Data of GPC analysis showed that the weight average molecular weight (Mw) of polymer samples decreased with increasing irradiation dose. The extent of Mw degradation expressed as percentage of Mw reduction was more prominent for polymers with high molecular weight as PEGd,lPLA and PLA. The dominant effect of gamma-irradiation on both polymer samples was chain scission. The multiblock copolymer PEGd,lPLA presented higher sensitivity to irradiation treatment with respect to PLA, likely due to the presence of PEG in the matrix. The effect of gamma irradiation continues over a much longer period of time after gamma irradiation has been performed. It is suggested that the material reacts with oxygen to form peroxyl free radicals, which may further undergo degradation reactions during storage after irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号