首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ye X  Wang Y  Lin X 《Current microbiology》2011,63(5):477-483
Salmonella causes the majority of infections in humans and homeothermic animals. This article describes a specific polymerase chain reaction (PCR) method developed for a rapid identification of Salmonella. A gyrB-targeted species-specific primer pair, S-P-for (5′-GGT GGT TTC CGT AAA AGT A-3′) and S-P-rev (5′-GAA TCG CCT GGT TCT TGC-3′), was successfully designed. PCR with all the Salmonella strains produced a 366- bp DNA fragment that was absent from all the non-Salmonella strains tested. The detection limit of the PCR was 0.01 ng with genomic DNA or 3.2 cells per assay. Good specificity was also demonstrated by fecal samples, from which only the gyrB gene of Salmonella was amplified. Using the culture-PCR method, 27 isolates on Salmonella-Shigella (SS) medium were rapidly identified as Salmonella, which was confirmed by the sequencing of the gyrB gene.  相似文献   

2.
Aims: To develop a multiplex real‐time PCR assay using TaqMan probes for the simultaneous detection and discrimination of potato powdery scab and common scab, two potato tuber diseases with similar symptoms, and the causal pathogens Spongospora subterranea and plant pathogenic Streptomyces spp. Methods and Results: Real‐time PCR primers and a probe for S. subterranea were designed based on the DNA sequence of the ribosomal RNA ITS2 region. Primers and a probe for pathogenic Streptomyces were designed based on the DNA sequence of the txtAB genes. The two sets of primer pairs and probes were used in a single real‐time PCR assay. The multiplex real‐time PCR assay was confirmed to be specific for S. subterranea and pathogenic Streptomyces. The assay detected DNA quantities of 100 fg for each of the two pathogens and linear responses and high correlation coefficients between the amount of DNA and Ct values for each pathogen were achieved. The presence of two sets of primer pairs and probes and of plant extracts did not alter the sensitivity and efficiency of multiplex PCR amplification. Using the PCR assay, we could discriminate between powdery scab and common scab tubers with similar symptoms. Common scab and powdery scab were detected in some tubers with no visible symptoms. Mixed infections of common scab and powdery scab on single tubers were also revealed. Conclusions: This multiplex real‐time PCR assay is a rapid, cost efficient, specific and sensitive tool for the simultaneous detection and discrimination of the two pathogens on infected potato tubers when visual symptoms are inconclusive or not present. Significance and Impact of the Study: Accurate and quick identification and discrimination of the cause of scab diseases on potatoes will provide critical information to potato growers and researchers for disease management. This is important because management strategies for common and powdery scab diseases are very different.  相似文献   

3.
Aims: The aim of this study was to develop a sensitive real-time polymerase chain reaction (PCR) assay for the rapid detection of Cladosporium fulvum in tomato leaves. Methods and Results: Three PCR primer pairs were designed based on the nucleotide sequences of: (i) the internal transcribed spacer regions of ribosomal RNA; (ii) a microsatellite region amplified by the microsatellite primer M13; and (iii) the β-tubulin gene of C. fulvum. Each primer pair amplified the expected target DNA fragment from geographically diverse isolates of C. fulvum. No PCR products were amplified with these primer pairs from DNA of other fungal species. Among the three pairs of primers, the primer pair CfF1/CfR1 developed based on the microsatellite region was the most sensitive. Using this sensitive primer pair, a real-time PCR assay was developed to detect early infection of C. fulvum in tomato leaves. Significance and Impact of the Study: DNA regions amplified by the microsatellite primer M13 have a high potential for developing highly sensitive species-specific PCR primers for the detection of phytopathogenic fungi. The real-time PCR assay developed in this study is useful in monitoring early infection of C. fulvum, and can help growers make timely decisions on fungicide application.  相似文献   

4.
The previously developed magnetic-capture hybridization technique employing bacterial magnetic particles was applied to discriminate between Atlantic and Pacific subspecies of the northern bluefin tuna (Thunnus thynnus) using specific DNA sequences. Nucleotide sequences of a 925-bp fragment (ATCO) flanking the mitochondrial ATPase and cytochrome oxidase subunit III genes in these two subspecies were compared. Two regions having single-nucleotide and three-nucleotide differences between the subspecies were adopted to design DNA probes (NR1, 21-mer; NR2, 29-mer), and two internal primer sets were designed to amplify DNA fragments containing these regions. The DNA probes were immobilized on bacterial magnetic particles via streptavidin-biotin conjugation and subjected to magnetic-capture hybridization with the digoxigenin-labeled fragments amplified using the internal primers. The luminescence intensities of DNA on bacterial magnetic particles obtained by hybridization between the probes and the complementary fragments were higher than those obtained by hybridization with noncomplementary fragments. These data suggest that this system employing DNA on bacterial magnetic particles may be useful for discrimination of these two subspecies by recognizing a single-nucleotide difference. Received January 17, 2000; accepted January 28, 2000.  相似文献   

5.
基因芯片技术检测3种食源性致病微生物方法的建立   总被引:5,自引:0,他引:5  
建立一种运用多重PCR和基因芯片技术检测和鉴定志贺氏菌、沙门氏菌、大肠杆菌O157的方法, 为3种食源性致病菌的快速检测和鉴定提供了准确、快速、灵敏的方法。分别选取编码志贺氏菌侵袭性质粒抗原H基因(ipaH)、沙门氏菌肠毒素(stn)基因和致泻性大肠杆菌O157志贺样毒素(slt)基因设计引物和探针, 进行三重PCR扩增, 产物与含特异性探针的芯片杂交。对7种细菌共26株菌进行芯片检测, 仅3种菌得到阳性扩增结果, 证明此方法具有很高的特异性。3种致病菌基因组DNA和细菌纯培养物的检测灵敏度约为8 pg。对模拟食品样品进行直接检测, 结果与常规细菌学培养结果一致, 检测限为50 CFU/mL。结果表明:所建立的基因芯片检测方法特异性好, 灵敏度高, 为食源性致病菌的检测提供了理想手段, 有良好的应用前景。  相似文献   

6.
基因芯片技术检测3种肠道病原微生物方法的建立   总被引:2,自引:0,他引:2  
目的:建立一种运用多重PCR和基因芯片技术检测和鉴定伤寒沙门氏菌、痢疾杆菌和单核细胞增生利斯特菌的方法。方法:分别选取伤寒沙门氏菌染色体ViaB区域中编码调控Vi抗原表达的基因(vipR)、痢疾杆菌编码侵袭质粒抗原H基因(ipaH)和单核细胞增生利斯特菌溶血素基因(hlyA)设计引物和探针,探针3'端进行氨基修饰,下游引物标记荧光素Cy3。在优化的PCR和杂交反应条件下,进行三重PCR扩增,产物与包括3种致病菌特异性探针的基因芯片杂交。在评价基因芯片的特异性和灵敏度之后,对临床样本进行检测。结果:只有3种目的致病菌的PCR产物在相应探针位置出现特异性信号,其他阴性细菌均无信号出现;3种致病菌的检测灵敏度均可达到103CFU/mL;检测30例临床样本的结果与常规细菌学培养结果一致。结论:所建立的可同时检测伤寒沙门氏菌、痢疾杆菌和单核细胞增生利斯特菌的基因芯片方法快速、准确,特异性高,重复性好,为3种肠道致病菌的快速检测和鉴定提供了新方法和新思路。  相似文献   

7.
Using consensus regions in gene sequences encoding the two forms of nitrite reductase (Nir), a key enzyme in the denitrification pathway, we designed two sets of PCR primers to amplify cd1- and Cu-nir. The primers were evaluated by screening defined denitrifying strains, denitrifying isolates from wastewater treatment plants, and extracts from activated sludge. Sequence relationships of nir genes were also established. The cd1 primers were designed to amplify a 778 to 799-bp region of cd1-nir in the six published sequences. Likewise, the Cu primers amplified a 473-bp region in seven of the eight published Cu-nir sequences. Together, the two sets of PCR primers amplified nir genes in nine species within four genera, as well as in four of the seven sludge isolates. The primers did not amplify genes of nondenitrifying strains. The Cu primers amplified the expected fragment in all 13 sludge samples, but cd1-nir fragments were only obtained in five samples. PCR products of the expected sizes were verified as nir genes after hybridization to DNA probes, except in one case. The sequenced nir fragments were related to other nir sequences, demonstrating that the primers amplified the correct gene. The selected primer sites for Cu-nir were conserved, while broad-range primers targeting conserved regions of cd1-nir seem to be difficult to find. We also report on the existence of Cu-nir in Paracoccus denitrificans Pd1222.  相似文献   

8.
Species identification has been the core issue in all approaches of conservation of endangered wild life. In this regard molecular techniques for species authentication have proved indispensable. A novel multiplex PCR assay for the identification of three Indian snake species Python morulus, Ptyas mucosus, and Naja naja is successfully demonstrated using 16S rRNA gene. Three reverse primers and a common forward primer were designed to generate three different size species-specific PCR fragments. Absence of any PCR amplification in non-target species proves the specificity of the primers. These four primers were combined in a multiplex assay to enable identification of three snake species in a single reaction. The assay described here shows its utility in identifying unknown snake specimen and in case of samples yielding low quality DNA. This multiplex PCR technique using novel primers is an unprecedented approach offered for forensic identification of exhibits originating from three Indian snake species. It is expected that this endeavor will help strengthening conservation efforts for these species.  相似文献   

9.
Sorghum ergot is a serious disease that has caused major losses in sorghum growing regions worldwide. Claviceps africana, originally reported from Zimbabwe, is now the most widely distributed species causing ergot in many countries including the United States of America, whereas both C. africana and Claviceps sorghi exist in India. A third species (Claviceps sorghicola) has been described causing sorghum ergot in Japan. As the three species show morphological similarities, a DNA‐based assay is desirable for rapid identification in cases where ergot‐infected sorghum is found by regulatory authorities. We designed PCR primers and probes from the intron 3 region of the β‐tubulin gene (for C. africana and C. sorghi) and the intron 4 region of EF‐1α (for C. sorghicola) and tested them by real‐time PCR with purified DNA and ergot samples from the field and greenhouse. The primer and probe sets specifically amplified DNA from the respective species with a detection limit of c. 1 pg DNA. Genomic DNA from six other Claviceps species did not amplify in any of the three ergot species‐specific assays. The assays we describe will provide useful tools for detecting sorghum ergot pathogens in seed and grain shipments and for determining which species are present in the samples, thereby aiding in the regulatory decision‐making process.  相似文献   

10.
A pair of PCR primers, QH-OLS05/QH-OLS08 specific for strains of Xylella fastidiosa causing oleander leaf scorch was developed. The primers were designed according to a DNA sequence of a randomly amplified polymorphic DNA (RAPD)-polymerase chain reaction (PCR) product unique to oleander strains. The PCR assay using primer pair QH-OLS05/QH-OLS08 allowed quick and simple detection and identification of oleander strains in cultured bacterium and infected plant samples. The assay also can be applied to insect samples. Specific detection and identification of oleander strains of X. fastidiosa by PCR is useful for epidemiologic and etiologic studies of oleander leaf scorch by identifying what plants and insect vectors harbor or carry this particular strain of X. fastidiosa, especially in locations where mixed natural infections by oleander and other strains of X. fastidiosa occur.  相似文献   

11.
PCR detection of genes encoding nitrite reductase in denitrifying bacteria   总被引:2,自引:0,他引:2  
Using consensus regions in gene sequences encoding the two forms of nitrite reductase (Nir), a key enzyme in the denitrification pathway, we designed two sets of PCR primers to amplify cd1- and Cu-nir. The primers were evaluated by screening defined denitrifying strains, denitrifying isolates from wastewater treatment plants, and extracts from activated sludge. Sequence relationships of nir genes were also established. The cd1 primers were designed to amplify a 778 to 799-bp region of cd1-nir in the six published sequences. Likewise, the Cu primers amplified a 473-bp region in seven of the eight published Cu-nir sequences. Together, the two sets of PCR primers amplified nir genes in nine species within four genera, as well as in four of the seven sludge isolates. The primers did not amplify genes of nondenitrifying strains. The Cu primers amplified the expected fragment in all 13 sludge samples, but cd1-nir fragments were only obtained in five samples. PCR products of the expected sizes were verified as nir genes after hybridization to DNA probes, except in one case. The sequenced nir fragments were related to other nir sequences, demonstrating that the primers amplified the correct gene. The selected primer sites for Cu-nir were conserved, while broad-range primers targeting conserved regions of cd1-nir seem to be difficult to find. We also report on the existence of Cu-nir in Paracoccus denitrificans Pd1222.  相似文献   

12.
In this study, we describe a DNA microarray assay by using bead-mediated visible light-assisted signal detection for simultaneous screening of seven clinically important enteric pathogens, including Escherichia coli O157:H7, Vibrio cholerae, Vibrio parahaemolyticus, Salmonella spp., Staphylococcus aureus, Rotavirus, and Norwalk virus (including genogroup I and II). Seven pairs of primers, in which the forward primers were labeled with biotin at the 5′ end, were designed and two sets of multiplex asymmetric PCR system were established to amplify the target genes of the seven pathogens. Twelve type specific oligonucleotides were designed and immobilized onto the aldehyde radical modified glass slide to function as target capture probes. After hybridization and stringency washes, the hybridized biotinylated PCR products were detected by the streptavidin-coated magnetic beads. The final hybridization results were visible to the naked eyes and can be imaged by CCD or digital camera. A total of 86 samples previously identified by conventional microbiological methods and/or PCR method were randomly selected to assess the specificity of this assay by a blind study. A coincidence rate of 100% was obtained. Due to the simplicity and specificity of the magnetic bead based DNA microarray, it is especially appropriate for the diagnosis and monitoring of enteric infectious diseases in the community and seaport.  相似文献   

13.
Polymerase chain reaction (PCR) primers for O9 antigen (rfbE) and phase 1 flagellin antigen (fliC) were designed for the rapid identification and detection of Salmonella serovar Enteritidis and Dublin. The rfbE primer pairs selectively amplified the rfbE region of group O9 Salmonella serovars. The fliC primer pairs amplified the DNAs of g,m and g,p-type flagellar antigen; Salmonella serovar Enteritidis, Dublin, and Essen. However, DNA from flagellar-negative Salmonella serovar Gallinarum-Pullorum was also amplified. The sensitivity of PCR primer pairs was 10 CFU/assay by boiled DNA preparation and 102 CFU/assay by proteinase K-treated DNA preparation.  相似文献   

14.
A reliable, accurate and rapid multigene-based assay combining real time quantitative PCR (qPCR) and a Razor Ex BioDetection System (Razor Ex) was validated for detection of Xylella fastidiosa subsp. pauca (Xfp, a xylem-limited bacterium that causes citrus variegated chlorosis [CVC]). CVC, which is exotic to the United States, has spread through South and Central America and could significantly impact U.S. citrus if it arrives. A method for early, accurate and sensitive detection of Xfp in plant tissues is needed by plant health officials for inspection of products from quarantined locations, and by extension specialists for detection, identification and management of disease outbreaks and reservoir hosts. Two sets of specific PCR primers and probes, targeting Xfp genes for fimbrillin and the periplasmic iron-binding protein were designed. A third pair of primers targeting the conserved cobalamin synthesis protein gene was designed to detect all possible X. fastidiosa (Xf) strains. All three primer sets detected as little as 1 fg of plasmid DNA carrying X. fastidiosa target sequences and genomic DNA of Xfp at as little as 1 - 10 fg. The use of Razor Ex facilitates a rapid (about 30 min) in-field assay capability for detection of all Xf strains, and for specific detection of Xfp. Combined use of three primer sets targeting different genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a field-deployable rapid and reliable bioforensic detection and discrimination method for a bacterial phytopathogen based on multigene targets.  相似文献   

15.
A rapid and specific gyrB-based real-time PCR system has been developed for detecting Bacteroides fragilis as a human-specific marker of fecal contamination. Its specificity and sensitivity was evaluated by comparison with other 16S rRNA gene-based primers using closely related Bacteroides and Prevotella. Many studies have used 16S rRNA gene-based method targeting Bacteroides because this genus is relatively abundant in human feces and is useful for microbial source tracking. However, 16S rRNA gene-based primers are evolutionarily too conserved among taxa to discriminate between human-specific species of Bacteroides and other closely related genera, such as Prevotella. Recently, one of the housekeeping genes, gyrB, has been used as an alternative target in multilocus sequence analysis (MLSA) to provide greater phylogenetic resolution. In this study, a new B. fragilis-specific primer set (Bf904F/Bf958R) was designed by alignments of 322 gyrB genes and was compared with the performance of the 16S rRNA gene-based primers in the presence of B. fragilis, Bacteroides ovatus and Prevotella melaninogenica. Amplicons were sequenced and a phylogenetic tree was constructed to confirm the specificity of the primers to B. fragilis. The gyrB-based primers successfully discriminated B. fragilis from B. ovatus and P. melaninogenica. Real-time PCR results showed that the gyrB primer set had a comparable sensitivity in the detection of B. fragilis when compared with the 16S rRNA primer set. The host-specificity of our gyrB-based primer set was validated with human, pig, cow, and dog fecal samples. The gyrB primer system had superior human-specificity. The gyrB-based system can rapidly detect human-specific fecal source and can be used for improved source tracking of human contamination.  相似文献   

16.
Plasmids capable of horizontal transfer contribute to the adaptability of bacteria, as they may provide genes that enable their hosts to cope with different selective pressures. Only limited information is available on plasmids from Antarctic habitats, and up until now surveys have only used traditional methods of endogenous plasmid isolation. The method based on primer systems, designed on the basis of published sequences for plasmids from different incompatibility (Inc) groups, is appropriate to detect the replicon-specific regions of corresponding plasmids in cultured bacteria, or in total community DNA, which share sufficient DNA similarity with reference plasmids at the amplified regions. In this study, we applied broad-host-range plasmid-specific primers to DNA from microbial samples collected at six different locations in Northern Victoria Land (Antarctica). DNA preparations were used as targets for PCR (polymerase chain reaction) amplification with primers for the IncP (trfA2) and IncQ (oriV ) groups. PCR products were Southern blotted and hybridized with PCR-derived probes for trfA2 and oriV regions. This approach detected the occurrence of IncP-specific sequences in eight out of fifteen DNA samples, suggesting a gene-mobilizing capacity within the original habitats.  相似文献   

17.
Dwarf bunt of wheat, caused by Tilletia controversa Kühn, is an important international quarantine disease in many countries. The objective of this investigation was to develop a diagnostic molecular marker generated from intersimple sequence repeat (ISSR) for rapid identification of T. controversa. A total of 60 primers were tested by ISSR to detect DNA polymorphisms between T. controversa and related species. The primer ISSR818 generated a polymorphic pattern displaying a 952‐ bp DNA fragment specific for T. controversa. The marker was converted into a sequence characterized amplified region (SCAR), and specific primers (TCKSF2/TCKSR2) were designed for use in a PCR detection assay. Its detection limit was 1 ng of DNA, which could be yielded by 1.1 μg of teliospores in a 25‐ μl PCR. Conclusively, a method to distinguish T. controversa from similar pathogenic fungi has been successfully developed based on the use of a SCAR marker.  相似文献   

18.
Chang SS  Hsu HL  Cheng JC  Tseng CP 《PloS one》2011,6(5):e20303

Background

Bacterial DNA contamination in PCR reagents has been a long standing problem that hampers the adoption of broad-range PCR in clinical and applied microbiology, particularly in detection of low abundance bacteria. Although several DNA decontamination protocols have been reported, they all suffer from compromised PCR efficiency or detection limits. To date, no satisfactory solution has been found.

Methodology/Principal Findings

We herein describe a method that solves this long standing problem by employing a broad-range primer extension-PCR (PE-PCR) strategy that obviates the need for DNA decontamination. In this method, we first devise a fusion probe having a 3′-end complementary to the template bacterial sequence and a 5′-end non-bacterial tag sequence. We then hybridize the probes to template DNA, carry out primer extension and remove the excess probes using an optimized enzyme mix of Klenow DNA polymerase and exonuclease I. This strategy allows the templates to be distinguished from the PCR reagent contaminants and selectively amplified by PCR. To prove the concept, we spiked the PCR reagents with Staphylococcus aureus genomic DNA and applied PE-PCR to amplify template bacterial DNA. The spiking DNA neither interfered with template DNA amplification nor caused false positive of the reaction. Broad-range PE-PCR amplification of the 16S rRNA gene was also validated and minute quantities of template DNA (10–100 fg) were detectable without false positives. When adapting to real-time and high-resolution melting (HRM) analytical platforms, the unique melting profiles for the PE-PCR product can be used as the molecular fingerprints to further identify individual bacterial species.

Conclusions/Significance

Broad-range PE-PCR is simple, efficient, and completely obviates the need to decontaminate PCR reagents. When coupling with real-time and HRM analyses, it offers a new avenue for bacterial species identification with a limited source of bacterial DNA, making it suitable for use in clinical and applied microbiology laboratories.  相似文献   

19.
We designed five degenerate primers for detection of novel cry genes from Bacillus thuringiensis strains. An efficient strategy was developed based on a two-step PCR approach with these primers in five pair combinations. In the first step, only one of the primer pairs is used in the PCR, which allows amplification of DNA fragments encoding protein regions that include consensus domains of representative proteins belonging to different Cry groups. A second PCR is performed by using the first-step amplification products as DNA templates and the set of five primer combinations. Cloning and sequencing of the last-step amplicons allow both the identification of known cry genes encoding Cry proteins covering a wide phylogenetic distance and the detection and characterization of cry-related sequences from novel B. thuringiensis isolates.  相似文献   

20.
A small-oligonucleotide microarray prototype was designed with probes specific for the universal 16S rRNA and cpn60 genes of several pathogens that are usually encountered in wastewaters. In addition to these two targets, wecE-specific oligonucleotide probes were included in the microarray to enhance its discriminating power within the Enterobacteriaceae family. Universal PCR primers were used to amplify variable regions of 16S rRNA, cpn60, and wecE genes directly in Escherichia coli and Salmonella enterica serovar Typhimurium genomic DNA mixtures (binary); E. coli, S. enterica serovar Typhimurium, and Yersinia enterocolitica genomic DNA mixtures (ternary); or wastewater total DNA. Amplified products were fluorescently labeled and hybridized on the prototype chip. The detection sensitivity for S. enterica serovar Typhimurium was estimated to be on the order of 0.1% (104 S. enterica genomes) of the total DNA for the combination of PCR followed by microarray hybridization. The sensitivity of the prototype could be increased by hybridizing amplicons generated by PCR targeting genes specific for a bacterial subgroup, such as wecE genes, instead of universal taxonomic amplicons. However, there was evidence of PCR bias affecting the detection limits of a given pathogen as increasing amounts of a different pathogen were spiked into the test samples. These results demonstrate the feasibility of using DNA microarrays in the detection of waterborne pathogens within mixed populations but also raise the problem of PCR bias in such experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号