首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brassica rapa L. (rapid-cycling Brassica), was grown in environmentally controlled chambers to determine the interactive effects of ozone (O3) and increased root temperature (RT) on biomass, reproductive output, and photosynthesis. Plants were grown with or without an average treatment of 63 ppb O3. RT treatments were 13°C (LRT) and 18°C (HRT). Air temperatures were 25°C/15°C day/night for all RT treatments.
Ozone affected plant biomass more than did root temperature. Plants in O3 had significantly smaller total plant d. wt, shoot weight, leaf weight, leaf area and leaf number than plants grown without O3. LRT plants tended to have slightly smaller total plant d. wt, shoot weight, root weight, leaf weight, leaf area, and leaf number than HRT plants. For all variables, LRT plants grown in O3 had the smallest biomass, and plants grown in HRT without O3 had the largest biomass.
Ozone reduced both fruit weight and fruit number; LRT also reduced fruit weight but had no effect on fruit number. Ozone reduced photosynthesis but RT had no effect. Conductance and internal CO2 were unaffected by O3 or RT.
These studies indicate that plant growth with LRT might be more reduced in the presence of O3 than growth in plants with HRT, which might be able to compensate for O3-caused reductions in photosynthesis to avoid decreased biomass and reproductive output.  相似文献   

2.
Frost tolerance has been reported in the shoots of wild, tuberiferous potato species such as Solanum commersonii when the plants are grown in either field or controlled conditions. However, these plants can survive as underground tubers and avoid unfavorable environmental conditions altogether. As such, leaf growth and photosynthesis at low temperature may not be required for survival of the plants. In order to determine the temperature sensitivity of S. commersonii shoots, we examined leaf growth, development and photosynthesis in plants raised at 20/16°C (day/night). 12/9°C and 5/2°C. S. commersonii leaves grown at 5°C exhibited a marked decrease in leaf area and in total chlorophyll (Chl) content per leaf area when compared with leaves grown at 20°C. Furthermore, leaves grown at 5°C did not exhibit the expected decrease in either water content or susceptibility to low-temperature-induced photoinhibition that normally characterizes cold acclimation in frost-tolerant plants. Measurements of CO2-saturated O2 evolution showed that the photosynthetic apparatus of 5°C plants was functional, even though the efficiency of photosystem II photochemistry was reduced by growth at 5°C. A decrease in the resolution of the M-peak in the slow transients for Chl a fluorescence in leaves grown at 12 and 5°C and in all leaves exposed to high light at 5°C indicated that low temperature significantly affected processes on the reducing side of QA, the primary quinone electron acceptor in photosystem II. Thus S. commarsonii exhibits the characteristics of a plant that is limited by chilling temperatures. Although S. commersonii can tolerate light frosts, its sensitivity to chilling temperatures may result in shoot dieback in winter in its native habitat. The plants may avoid both chilling and freezing temperatures by overwintering as underground tubers.  相似文献   

3.
毒莴苣是我国东南沿海地区的新入侵杂草,也是国家进境植物的检疫对象.调查发现,毒莴苣植株高大,易在入侵地形成群落优势种;常见的伴生杂草有小飞蓬、野塘蒿、鬼针草、裂叶月见草、裂叶牵牛、狗尾草、野胡萝卜、苍耳、一年蓬、山莴苣、葎草、龙葵和钻形紫菀等.应用LCA 4光合蒸腾测定系统对毒莴苣进行净光合速率测定,结果表明:该种实测净光合速率高达21.22±0.45 μmol CO2·m-2·s-1,比入侵性杂草一年蓬、野塘蒿稍低,比藜、北美车前、山莴苣等高,是一种高光效植物;根据毒莴苣的光合-响应曲线,该外来入侵种的理论光补偿点为37.58 μmol·m-2·s-1, 光饱和点为1 480 μmol·m-2·s-1,理论最大净光合速率20.81 μmol CO2·m-2·s-1;毒莴苣的光合作用具有午休现象,是由于高光照和高温导致气孔阻力增加、气孔关闭,影响了植株对外的气体交换;影响净光合速率的主要因素是气孔导度、叶面光合有效辐射和叶片的蒸腾.  相似文献   

4.
High temperature injury to wheat ( Triticum aestivum L.) during grain development is manifested as acceleration of senescence. Experiments were conducted to elucidate the mode of senescence and site of high temperature responses. Wheat (cv. Chris) and rice ( Oryza sativa L. cv. Newbonnet), which have C3 photosynthesis but different temperature responses, were grown with and without inflorescences under three temperature regimes after anthesis. Plant growth and constituents associated with senescence were measured weekly until physiological maturity. Increasing temperatures from 25°C/15°C to 35°C/25°C day/night after anthesis decreased growth, leaf viability, chlorophyll and protein concentrations, and RuBP carboxylase activity and increased protease and RNase activities in wheat. Inflorescence removal increased vegetative weights and slowed most senescence processes more in wheat than in rice, but did not alter the course of high temperature responses. Results are interpreted as indicating that diversion of nutrients from roots by inflorescence sinks at normal temperatures and by increased respiration at high temperatures caused similar responses. Source and sink activities appeared to be regulated jointly, probably by cytokinins from roots, during senescence at normal and elevated temperatures.  相似文献   

5.
The temperature dependence of C3 photosynthesis may be altered by the growth environment. The effects of long-term growth in elevated CO2 on photosynthesis temperature response have been investigated in wheat ( Triticum aestivum L.) grown in controlled chambers with 370 or 700 μmol mol−1 CO2 from sowing through to anthesis. Gas exchange was measured in flag leaves at ear emergence, and the parameters of a biochemical photosynthesis model were determined along with their temperature responses. Elevated CO2 slightly decreased the CO2 compensation point and increased the rate of respiration in the light and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) Vcmax, although the latter effect was reversed at 15°C. With elevated CO2, Jmax decreased in the 15–25°C temperature range and increased at 30 and 35°C. The temperature response (activation energy) of Vcmax and Jmax increased with growth in elevated CO2. CO2 enrichment decreased the ribulose 1,5-bisphosphate (RuBP)-limited photosynthesis rates at lower temperatures and increased Rubisco- and RuBP-limited rates at higher temperatures. The results show that the photosynthesis temperature response is enhanced by growth in elevated CO2. We conclude that if temperature acclimation and factors such as nutrients or water availability do not modify or negate this enhancement, the effects of future increases in air CO2 on photosynthetic electron transport and Rubisco kinetics may improve the photosynthetic response of wheat to global warming.  相似文献   

6.
Changes in the temperature dependence of the photosynthetic rate depending on growth temperature were investigated for a temperate evergreen tree, Quercus myrsinaefolia . Plants were grown at 250 μ mol quanta m–2 s–1 under two temperature conditions, 15 and 30 °C. The optimal temperature that maximizes the light-saturated rate of photosynthesis at 350 μ L L–1 CO2 was found to be 20–25 and 30–35 °C for leaves grown at 15 and 30 °C, respectively. We focused on two processes, carboxylation and regeneration of ribulose-1,5-bisphosphate (RuBP), which potentially limit photosynthetic rates. Because the former process is known to limit photosynthesis at lower CO2 concentrations while the latter limits it at higher CO2 concentrations, we determined the temperature dependence of the photosynthetic rate at 200 and 1000 μ L L–1 CO2 under saturated light. It was revealed that the temperature dependence of both processes varied depending on the growth temperature. Using a biochemical model, we estimated the capacity of the two processes at various temperatures under ambient CO2 concentration. It was suggested that, in leaves grown at low temperature (15 °C), the photosynthetic rate was limited solely by RuBP carboxylation under any temperature. On the other hand, it was suggested that, in leaves grown at high temperature (30 °C), the photosynthetic rate was limited by RuBP regeneration below 22 °C, but limited by RuBP carboxylation above 22 °C. We concluded that: (1) the changes in the temperature dependence of carboxylation and regeneration of RuBP and (2) the changes in the balance of these two processes altered the temperature dependence of the photosynthetic rate.  相似文献   

7.
High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28?°C with an average temperature of 26, 29, 32 and 35?°C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2?°C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28?°C, respectively.  相似文献   

8.
We investigated seasonal variation in dark respiration and photosynthesis by measuring gas exchange characteristics on Pinus radiata and Populus deltoides under field conditions each month for 1 year. The field site in the South Island of New Zealand is characterized by large day-to-day and seasonal changes in air temperature. The rate of foliar respiration at a base temperature of 10 °C ( R 10) in both pine and poplar was found to be greater during autumn and winter and displayed a strong downward adjustment in warmer months. The sensitivity of instantaneous leaf respiration to a 10 °C increase in temperature ( Q 10) was also greater during the winter period. The net effect of this strong acclimation was that the long-term temperature response of respiration was essentially flat over a wide range of ambient temperatures. Seasonal changes in photosynthesis were sensitive to temperature but largely independent of leaf nitrogen concentration or stomatal conductance. Over the range of day time growth temperatures (5–32 °C), we did not observe strong evidence of photosynthetic acclimation to temperature, and the long-term responses of photosynthetic parameters to ambient temperature were similar to previously published instantaneous responses. The ratio of foliar respiration to photosynthetic capacity ( R d/ A sat) was significantly greater in winter than in spring/summer. This indicates that there is little likelihood that respiration would be stimulated significantly in either of these species with moderate increases in temperature – in fact net carbon uptake was favoured at moderately higher temperatures. Model calculations demonstrate that failing to account for strong thermal acclimation of leaf respiration influences determinations of leaf carbon exchange significantly, especially for the evergreen conifer.  相似文献   

9.
Three soybean ( Glycine max L. Merr.) cultivars (Maple Glen, Clark and CNS) were exposed to three CO2 concentrations (370, 555 and 740 μmol mol−1) and three growth temperatures (20/15°, 25/20° and 31/26°C, day/night) to determine intraspecific differences in single leaf/whole plant photosynthesis, growth and partitioning, phenology and final biomass. Based on known carboxylation kinetics, a synergistic effect between temperature and CO2 on growth and photosynthesis was predicted since elevated CO2 increases photosynthesis by reducing photorespiration and photorespiration increases with temperature. Increasing CO2 concentrations resulted in a stimulation of single leaf photosynthesis for 40–60 days after emergence (DAE) at 20/15°C in all cultivars and for Maple Glen and CNS at all temperatures. For Clark, however, the onset of flowering at warmer temperatures coincided with the loss of stimulation in single leaf photosynthesis at elevated CO2 concentrations. Despite the season-long stimulation of single leaf photosynthesis, elevated CO2 concentrations did not increase whole plant photosynthesis except at the highest growth temperature in Maple Glen and CNS, and there was no synergistic effect on final biomass. Instead, the stimulatory effect of CO2 on growth was delayed by higher temperatures. Data from this experiment suggest that: (1) intraspecific variation could be used to select for optimum soybean cultivars with future climate change; and (2) the relationship between temperature and CO2 concentration may be expressed differently at the leaf and whole plant levels and may not solely reflect known changes in carboxylation kinetics.  相似文献   

10.
Diurnal patterns of whole-plant and leaf gas exchange and 14C-export of winter wheat acclimated at 20 and 5°C were determined. The 5°C-acclimated plants had lower relative growth rates, smaller biomass and leaf area, but larger specific leaf weight than 20°C plants. Photosynthetic rates in 20°C and 5°C-acclimated leaves were similar; however, daytime export from 5°C-acclimated leaves was 45% lower. Photosynthesis and export remained steady in 20°C and 5°C-acclimated leaves during the daytime. By comparison, photosynthesis in 5°C-stressed leaves (20°C-acclimated plants exposed to 5°C 12 h before and during measurements) declined from 70 to 50% of the 20°C-acclimated leaves during the daytime, while export remained constant at 35% of the 20°C-acclimated and 60% of the 5°C-acclimated leaves. At high light and CO2, photosynthesis and export increased in both 20°C and 5°C-acclimated leaves, but rates in 5°C-stressed leaves remained unchanged. At all conditions daytime export was greater than nighttime export. Taken together, during cold acclimation photosynthesis was upregulated, whereas export was only partially increased. We suggest that this reflects a requirement of cold-acclimated plants to both sustain an increased leaf metabolic demand while concomitantly supporting translocation of photoassimilates to overwintering sinks.  相似文献   

11.
The effects on pigment composition and photosynthesis of low temperature during growth were examined in the third leaf of three chilling-tolerant and three chilling-sensitive genotypes of Zea mays L. The plants were grown under a controlled environment at 24 or 14 °C at a photon flux density (PFD) of 200 or 600 μ mol m–2 s–1. At 24 °C, the two classes of genotypes showed little differences in their photosynthetic activity and their composition of pigments. At 14 °C, photosynthetic activity was considerably reduced but the chilling-tolerant genotypes displayed higher photosynthetic rates than the chilling-sensitive ones. Plants grown at 14 °C showed a reduced chlorophyll (Chl) a + b content and a reduced Chl a / b ratio but an increased ratio of total carotenoids to Chl a + b . These changes in pigment composition in plants grown at low temperature were generally more pronounced in the chilling-sensitive genotypes than in the tolerant ones, particularly at high PFD. Furthermore, at 14 °C, all the genotypes showed increased ratios of lutein, neoxanthin and xanthophyll-cycle carotenoids to Chl a + b but a reduced ratio of β -carotene to Chl a + b , especially at high PFD. At 14 °C, the chilling-tolerant genotypes, when compared with the sensitive ones, were characterized by higher contents of β -carotene and neoxanthin, a lower content of xanthophyll-cycle carotenoids, a lower ratio of xanthophylls to β -carotene, and less of their xanthophyll-cycle carotenoid pool in the form of zeaxanthin. These differences between the two classes of genotypes were more pronounced at high PFD than at low PFD. The results are discussed in terms of the relationship that may exist in maize between pigment composition and the capacity to form an efficient photosynthetic apparatus at low growth temperature.  相似文献   

12.
The ability of leaves to acclimate photosynthetically to low temperature was examined during leaf development in winter rye plants ( Secale cereale L. cv. Puma) grown at 20°C or at 6°C. All leaves grown at 6°C exhibit increased chlorophyll (Chl) levels per leaf area, higher rates of uncoupled, light-saturated photosystem I (PSI) electron transport, and slower increases in photosystem II (PSII) electron transport capacity, when compared with 20°C leaves. The stoiehiometry of PSI and PSII was estimated for each leaf age class by quantifying Chl in elcctrophorctic separations of Chl-protein complexes. The ratio of PSII/PSI electron transport in 20°C leaves is highly correlated with the ratio of core Chl a -proteins associated with PSII (CPa) to those associated with PSI (CP1). In contrast, PSII/PSI electron transport in 6°C leaves is not as well correlated with CPa/CP1 and is related, in part, to the amount and organization of light-harvesting Chl a/b -proteins associated with PSII. CPa/CP1 increases slowly in 6°C leaves, although the ratio of CPa/CP1 in mature 20°C and 6°C leaves is not different. The results suggest that increased PSI activity at low temperature is not related to an increase in the relative proportion of PSI and may reflect, instead, a regulatory change. Photosynthetic acclimation to low environmental temperature involves increased PSI activity in mature leaves shifted to 6°C. In leaves grown entirely at 6°C, however, acclimation includes both increased PSI activity and modifications in the rate of accumlation of PSII and in the organization of LHCII.  相似文献   

13.
Abstract. There have been seven studies of canopy photosynthesis of plants grown in elevated atmospheric CO2: three of seed crops, two of forage crops and two of native plant ecosystems. Growth in elevated CO2 increased canopy photosynthesis in all cases. The relative effect of CO2 was correlated with increasing temperature: the least stimulation occurred in tundra vegetation grown at an average temperature near 10°C and the greatest in rice grown at 43°C. In soybean, effects of CO2 were greater during leaf expansion and pod fill than at other stages of crop maturation. In the longest running experiment with elevated CO2 treatment to date, monospecific stands of a C3 sedge, Scirpus olneyi (Grey), and a C4 grass, Spartina patens (Ait.) Muhl., have been exposed to twice normal ambient CO2 concentrations for four growing seasons, in open top chambers on a Chesapeake Bay salt marsh. Net ecosystem CO2 exchange per unit green biomass (NCEb) increased by an average of 48% throughout the growing season of 1988, the second year of treatment. Elevated CO2 increased net ecosystem carbon assimilation by 88% in the Scirpus olneyi community and 40% in the Spartina patens community.  相似文献   

14.
We investigated the effect of temperature during growth and development on the relationship between light-harvesting capacity, indicated by chlorophyll concentration, and light-utilization potential, indicated by light- and bicarbonate-saturated photosynthetic oxygen evolution, in Solanum tuberosum L. cv. Norland. Conal plantles were transplanted and grown at 20°C for 2 weeks before transfer to 12, 16, 20, 24 and 28°C for 6 weeks. After 4 weeks of the temperature treatments, leaf tissue fresh weights per area were one-third higher in plants grown at 12°C vs those grown at 28°C. Conversely, chlorophyll content per area in tissue grown at 12°C was less than one-half of that of tissue grown at 28°C at 4 weeks. Photosynthetic capacity measured at a common temperature of 20°C and expressed on a chlorophyll basis was inversely proportional to growth temperature. Leaf tissue from plants grown at 12°C for 4 weeks had photosynthetic rates that were 3-fold higher on a chlorophyll basis than comparable tissue from plants grown at 28°C. These results suggest that the relationship between light-harvesting capacity and light-utilization potential varies 3-fold in response to the growth temperatures examined. The role of this response in avoidance of photoinhibition is discussed.  相似文献   

15.
Acclimation of respiration to temperature is not well understood. To determine whether whole plant respiration responses to long-term temperature treatments can be described using the Q10 concept, the CO2 exchange rate of marigolds ( Tagetes patula L. 'Queen Sophia'), grown at 20°C or 30°C, was measured for 62 days. When plants of the same age were compared, plants grown at 20°C consistently had a higher specific respiration (Rspc) than plants grown at 30°C (long-term Q10= 0.71–0.97). This was due to a combination of greater dry mass at 30°C and a decrease in Rspc with increasing mass. When plants of the same dry mass were compared, the long-term Q10 was 1.35–1.55; i.e. Rspc was higher at 30°C than at 20°C. Whole plant respiration could be accurately described by dividing respiration into growth and maintenance components. The maintenance respiration coefficient was higher at 30°C than at 20°C, while the growth respiration coefficient was lower at 30°C, partly because of temperature-dependent changes in plant composition. These results suggest difficulties with interpreting temperature effects on whole plant respiration, because conclusions depend greatly on whether plants of the same age or mass are compared. These difficulties can be minimized by describing whole plant respiration on the basis of growth and maintenance components.  相似文献   

16.
Makino A  Nakano H  Mae T 《Plant physiology》1994,105(4):1231-1238
Effects of growth temperature on the photosynthetic gas-exchange rates and their underlying biochemical properties were examined in young, fully expanded leaves of rice (Oryza sativa L.). The plants were grown hydroponically under day/night temperature regimes of 18/15[deg]C, 23/18[deg]C, and 30/23[deg]C and all photosynthetic measurements were made at a leaf temperature of 25[deg]C and an irradiance of 1800 [mu]mol quanta m-2 s-1. Growth temperature affected the photosynthetic CO2 response curve. The relative ratio of the initial slope to the CO2-saturated photosynthesis increased with rising growth temperature. This was caused mainly by an increase in CO2-limited photosynthesis for a given leaf nitrogen content with rising growth temperature. However, there was no difference in ribulose-1,5-bisphosphate carboxylase (Rubisco) content at any given leaf nitrogen content among temperature treatments. In addition, the activation state and catalytic turnover rate of Rubisco were not affected by growth temperature. The increase in CO2-limited photosynthesis with rising growth temperature was the result of an increase in the CO2 transfer conductance between the intercellular airspaces and the carboxylation sites. The amounts of total chlorophyll and light-harvesting chlorophyll a/b protein II increased for the same leaf nitrogen content with rising growth temperature, but the amounts of cytochrome f and coupling factor 1 and the activities of cytosolic fructose-1,6-bisphosphatase and sucrose-phosphate synthase were the same between plants grown at 23/18[deg]C and those grown at 30/23[deg]C. Similarly, CO2-saturated photosynthesis was not different for the same leaf nitrogen content between these treatments. For the 18/15[deg]C-grown plants, a slight decrease in the amounts of cytochrome f and coupling factor 1 and an increase in the activities of cytosolic fructose-1,6-bisphosphatase and sucrose-phosphate synthase were found, but these were not reflected in CO2-saturated photosynthesis.  相似文献   

17.
Both responses to short-term changes of temperature and to chilling under high light were analyzed in populations of Echinochloa crus-galli var. crus-galli (L.) Beauv. from Québec. North Carolina and Mississippi to improve the understanding of C4 photosynthesis at low temperature. Comparison also included plants of Eleusine indica (L.) Gaertn. from Mississippi to provide for differences among species and populations. Plants were grown at two thermoperiods (28/22°C, 21/15°C). After transfer from cool (21/15°C) to warm (28/22°C) growth conditions, Echinochloa from Mississippi achieved the highest photosynthetic rates. Plants from Québec maintained the highest rates of CO2 uptake upon transfer to cool conditions. Exposure to 7°C for 3 days at a photon fluence rate of 1000 μmol m−2s−1 resulted in a reduction in the growth rates of all populations. This reduction was paralleled by a decrease in net photosynthesis and in stomatal conductance. Following chilling under hight light, the reduction in growth parameters was less important for plants from Québec than for the other populations. It suggests that, among other characteristics, northern plants had developed a certain tolerance to chilling under light.  相似文献   

18.
Ananas comosus L. (Merr.) (pineapple) was grown at three day/night temperatures and 350 (ambient) and 700 (elevated) μ mol mol–1 CO2 to examine the interactive effects of these factors on leaf gas exchange and stable carbon isotope discrimination ( Δ ,‰). All data were collected on the youngest mature leaf for 24 h every 6 weeks. CO2 uptake (mmol m–2 d–1) at ambient and elevated CO2, respectively, were 306 and 352 at 30/20 °C, 175 and 346 at 30/25 °C and 187 and 343 at 35/25 °C. CO2 enrichment enhanced CO2 uptake substantially in the day in all environments. Uptake at night at elevated CO2, relative to that at ambient CO2, was unchanged at 30/20 °C, but was 80% higher at 30/25 °C and 44% higher at 35/25 °C suggesting that phosphoenolpyruvate carboxylase was not CO2-saturated at ambient CO2 levels and a 25 °C night temperature. Photosynthetic water use efficiency (WUE) was higher at elevated than at ambient CO2. Leaf Δ -values were higher at elevated than at ambient CO2 due to relatively higher assimilation in the light. Leaf Δ was significantly and linearly related to the fraction of total CO2 assimilated at night. The data suggest that a simultaneous increase in CO2 level and temperature associated with global warming would enhance carbon assimilation, increase WUE, and reduce the temperature dependence of CO2 uptake by A. comosus .  相似文献   

19.
Abstract. Cyperus longus L. , which has a widespread but disjunct distribution throughout Europe and extends northwards into Britain, was found to be a C4 species based upon its Kranz leaf anatomy, low CO2 compensation point and the labelling of malate as an early product of 14CO2 fixation. The photosynthetic characteristics of C. longus are similar to many other C4 species with a high maximum rate of photosynthesis (> 1.5 mg CO2 m −2 s −1) and a relatively high temperature optimum (30–35°C), but unlike many C4 species the rate of photosynthesis does not decline rapidly below the optimum temperature and a substantial rate (0.6 mgCO2 m−2s−1)occursat 15°C. Leaf extension is very slow at 15°C and shows a curvilinear response to temperatures between 15 and 25°C. Leaves extend at a rate of almost 4 cm d−1 at 25°C.  相似文献   

20.
Mode of high temperature injury to wheat during grain development   总被引:5,自引:0,他引:5  
High temperature stress adversely affects wheat growth in many important production regions, but the mode of injury is unclear. Wheat ( Triticum aestivum L. cv. Newton) was grown under controlled conditions to determine the relative magnitude and sequences of responses of source and sink processes to high temperature stress during grain development. Regimes of 25°C day/15°C night, 30°C day/20°C night, and 35°C day/25°C night from 5 days after anthesis to maturity differentially affected source and sink processes. High temperatures accelerated the normal decline in viable leaf blade area and photosynthetic activities per unit leaf area. Electron transport, as measured by Hill reaction activity, declined earlier and faster than other photosynthetic processes at the optimum temperature of 25/15 °C and at elevated temperatures. Changes in RUBP carboxylase activities were similar in direction but smaller in magnitude than changes in photosynthesic rate. Increased protease activity during senscence was markedly accentuated by high temperature stress. Specific protease activity increased 4-fold at 25/15 °C and 28-fold at 35/25 °C from 0 to 21 days after initiation of temperature treatments. Grain-filling rate decreased from the lowest to the highest temperature, but the change was smaller than the decrease in grain-filling duration at the same temperatures. We concluded that a major effect of high temperature is acceleration of senescence, including cessation of vegetative and reproductive growth, deterioration of photosynthetic activities, and degradation of proteinaceous constituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号