首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The asymmetric (20S) form of acetylcholinesterase (AChE) in 1-day-old chick muscle is a hybrid enzyme containing both AChE (110 kd) and butyrylcholinesterase (BuChE, 72 kd) catalytic subunits. However, we now report that the asymmetric AChE extracted or immunopurified from older adult chicken muscles, where it is the endplate form, shows a progressive developmental loss of the BuChE subunit and its activities, centred around 4 weeks of age, while the AChE and collagenous subunits remain. In confirmation, using differential labelling and co-sedimentation it was shown that the hybrid 20S AChE/BuChE form of 1-day chick muscle is gradually and completely replaced during muscle maturation by a 21.3S form, also collagen-tailed but otherwise homogeneous in AChE catalytic subunits. Two other changes occur concomitantly. Firstly, the AChE catalytic subunit of the adult form has a lower apparent mol. wt in gel electrophoresis, by 5 kd, than the same subunit in the 1-day hybrid enzyme; this difference does not reside in the carbohydrate attachments. Secondly, the collagen tail changes, in that some conformation-dependent epitopes on it disappear in the same period. Hence, a major reorganization of the asymmetric AChE, involving all three types of subunit, occurs in the course of muscle development.  相似文献   

2.
Abstract: In vertebrate neuromuscular junctions, the postsynaptic specializations include the accumulation of acetylcholinesterase (AChE) at the synaptic basal lamina and the muscle fiber. Several lines of evidence indicate that the presynaptic motor neuron is able to synthesize and secrete AChE at the neuromuscular junctions. By using anti-AChE catalytic subunit, anti-butyrylcholinesterase (BuChE) catalytic subunit, and anti-AChE collagenous tail monoclonal antibodies, we demonstrated that the motor neurons of chick spinal cord expressed AChE in vivo and the predominant AChE was the globular form of the enzyme. Neither asymmetric AChE nor BuChE was detected in the motor neurons. The molecular mass of AChE catalytic subunit in the motor neuron was ∼105 kDa, which was similar to that of the globular enzyme from low-salt extracts of muscle; both of them were ∼5 kDa smaller than the asymmetric AChE from high-salt extracts of muscle. The level of AChE expression in the motor neurons decreased, as found by immunochemical and enzymatic analysis, during the different stages of the chick's development and after nerve lesion. Thus, the AChE activity at the neuromuscular junctions that is contributed by the presynaptic motor neurons is primarily the globular, not the asymmetric, form of the enzyme, and these contributions decreased toward maturity and after denervation.  相似文献   

3.
To study the polymorphism of human cholinesterases (ChEs) at the levels of primary sequence and three-dimensional structure, a fragment of human butyrylcholinesterase (BuChE) cDNA was subcloned into the pEX bacterial expression vector and its polypeptide product analyzed. Immunoblot analysis revealed that the clone-produced BuChE peptides interact specifically with antibodies against human and Torpedo acetylcholinesterase (AChE). Rabbit polyclonal antibodies prepared against the purified clone-produced BuChE polypeptides interacted in immunoblots with denatured serum BuChE as well as with purified and denatured erythrocyte AChE. In contrast, native BuChE tetramers from human serum, but not AChE dimers from erythrocytes, interacted with these antibodies in solution to produce antibody-enzyme complexes that could be precipitated by second antibodies and that sedimented faster than the native enzyme in sucrose gradient centrifugation. Furthermore, both AChE and BuChE dimers from muscle extracts, but not BuChE tetramers from muscle, interacted with these antibodies. To reveal further whether the anti-cloned BuChE antibodies would interact in situ with ChEs in the neuromuscular junction, bundles of muscle fibers were microscopically dissected from the region in fetal human diaphragm that is innervated by the phrenic nerve. Muscle fibers incubated with the antibodies and with 125I-Protein A were subjected to emulsion autoradiography, followed by cytochemical ChE staining. The anti-cloned BuChE antibodies, as well as anti-Torpedo AChE antibodies, created patches of silver grains in the muscle endplate region stained for ChE, under conditions where control sera did not. These findings demonstrate that the various forms of human AChE and BuChE in blood and in neuromuscular junctions share sequence homologies, but also display structural differences between distinct molecular forms within particular tissues, as well as between similarly sedimenting molecular forms from different tissues.  相似文献   

4.
1. Acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BuChE, EC 3.1.1.8) are serine hydrolase enzymes that catalyze the hydrolysis of acetylcholine.2. (–) Huperzine A is an inhibitor of AChE and is being considered for the treatment of Alzheimer's disease.3. In addition to esterase activity, AChE and BuChE have intrinsic aryl acylamidase activity.4. The function of aryl acylamidase is unknown but has been speculated to be important in Alzheimer pathology.5. Kinetic effects of (–) huperzine A and ( ±)$ huperzine A on the aryl acylamidase activity of human cholinesterases were examined.6. (–) Huperzine A inhibited the aryl acylamidase activities of both AChE and BuChE.7. (±) Huperzine A inhibited this function in AChE but stimulated BuChE aryl acylamidase suggesting that the (+) enantiomer is a powerful activator of this enzyme activity.8. The two huperzine enantiomers may prove to be useful tools to examine the function of aryl acylamidase activity, including its role in Alzheimer pathology.  相似文献   

5.
6.
Acetylcholinesterase (AChE) from 1-day chicken brain was enriched over 2000-fold by affinity chromatography using N-methylacridinium-Sepharose. This preparation was used to prepare monoclonal antibodies (mAb) directed against AChE, of which two were extensively characterised for further application. Both mAbs bound to the enzyme from the chicken with high affinity (Kd approximately 8 X 10(-10) M) and one mAb, in addition, recognised AChE from quail brain and muscle. Neither mAb cross-reacted with mammalian or fish AChE. Both mAbs recognised AChE in the endplate region of adult chicken skeletal muscle and bound with equal affinity to the three major oligomeric forms found in early ambryonic muscle. One mAb was used to immunopurify chicken brain AChE to homogeneity (over 12000-fold enrichment), with nearly complete recovery of the enzyme and without detectable proteolytic breakdown. The other mAb recognised AChE after immunoblotting and was used to screen crude brain extracts from individual chickens for allelic variations. Evidence is presented to show that two allelic forms occur, represented in SDS-PAGE by a doublet polypeptide of Mr approximately 110,000, this pattern is maintained after deglycosylation of the N-linked oligosaccharides. This variation was found throughout development and in both the brain and the muscle of individuals. We conclude that the gene encoding the catalytic subunit of chicken AChE is polymorphic with either one or two equally active alleles being expressed.  相似文献   

7.
Immunochemistry of mammalian cholinesterases   总被引:1,自引:0,他引:1  
Advances in the study of cholinesterase biology have been facilitated by the development of polyclonal and monoclonal antibodies to acetylcholinesterase (AChE) (EC 3.1.1.7) and butyrylcholinesterase (BuChE) (EC 3.1.1.8) in several laboratories. Our work has focused on murine monoclonal antibodies to the mammalian enzymes. Two dozen antibodies are now in hand, with primary specificity for the AChE of human red blood cells, rabbit brain, and rat brain, and for the BuChE of human plasma. These antibodies exhibit a restricted but useful range of affinities for other mammalian cholinesterases of corresponding types. Several applications are described, including an analysis of BuChE phylogeny within the higher primates, an immunodisplacement assay of AChE in normal human red blood cells and cells from patients with paroxysmal nocturnal hemoglobinuria, a study of immunochemical differences between membrane-associated and soluble AChE of rabbit brain, and initial work on the immunofluorescence cytochemistry of the rat brain.  相似文献   

8.
Acetylcholinesterase (EC 3.1.1.7.; AChE) and butyrylcholinesterase (EC 3.1.1.8.; BuChE) from chicken muscle exist as sets of structurally homologous forms with very similar properties. The collagenase sensitivity and aggregation properties of the 'heavy' forms of both enzymes indicate that they possess a collagen-like tail, and their stepwise dissociation by trypsin confirms that they correspond to triple (A12) and double (A8) collagen-tailed tetramers. In addition to this dissociating effect, trypsin digests an important fraction of the catalytic units of AChE, in a progressive manner, removing as much as 30% of the enzyme's mass, without inactivation of the tetramers and of the tailed molecules. The trypsin-modified AChE forms closely resemble the corresponding mammalian AChE forms in their hydrodynamic properties. It is not known whether the trypsin-digestible peptides, which do not appear to be involved in the ionic or hydrophobic interactions of the enzymes, are a fragment of the catalytic subunit or whether they constitute distinct polypeptides.  相似文献   

9.
Nine hybridoma cell lines secreting monoclonal antibodies (mAbs) against Trichinella spiralis muscle larvae (ML) excretory/secretory antigens (ESA) were developed. Two mAbs, 6-D8-E3 (6D8) and 6-B1-G10 (6B1), were studied in detail. Western blot analysis using ML ESA showed that 6D8 recognized 35- and 40-kDa constituents whereas 6B1 identified a doublet of 33 kDa. However, Western blots of SDS-PAGE of crude ML homogenate showed that 6D8 identified proteins of approximately 35 and 43-60 kDa, whereas 6B1 recognized bands of 42-50 kDa. These results indicated substantial apparent MW differences between secreted and nonsecreted proteins recognized by both mAbs. Neither 6D8 nor 6B1 reacted with adult worm ESA, but both recognized antigens in aqueous extracts of homogenates of whole adult worms. Competitive inhibition experiments using ML ESA as a target demonstrated that the antigen epitopes recognized by monoclonals 6D8, 6B1, a rat mAb, 9D4, and a 37-kDa antigen previously defined were noncross-reactive. MAbs 6D8, 6B1, and 9D4 were used to isolate proteins possessing target determinants by affinity chromatography from crude ML homogenates. Each mAb isolated distinct protein species as determined by SDS-PAGE (6B1, approximately 42 kDa; 6D8, approximately 28, 37, and 61 kDa; 9D4, approximately 29, 33, 38-57, 80, and 86 kDa). NFS mice responded in a dose-dependent manner to affinity-purified antigens and were 25-fold more effective (by weight of antigen) than either C3Heb/Fe(C3H) or B10.BR mice. Immunization of mice with 6D8, 6B1, or 9D4 antigens induced strong protection against a subsequent challenge infection in NFS mice as indicated by accelerated intestinal adult worm expulsion, reduced fecundity of the female worms, and reduction of ML burden. Affinity-isolated antigens stimulated in vitro proliferation of spleen and MLN cells from immune mice; however, the mitogenic response to these antigens barely varied among NFS, C3H, and B10.BR strains.  相似文献   

10.
Cultured pectoral muscle from 11-day-old chick embryos was treated for 48 h with phenytoin (diphenylhydantoin, DPH) in concentrations ranging from 15 to 270 microgram/ml on days 7-9 in vitro. Acetylcholinesterase (AChE, EC 3.1.1.7), creatine phosphokinase (CPK, EC 2.7.3.2), and lactic dehydrogenase (LDH, EC 1.1.1.27) activities, [3H]leucine incorporation into protein, and total protein of the cultures decreased in a dose-related manner with DPH concentrations of 30 microgram/ml and greater. Total AChE activity and AChE activity released into the medium were specifically decreased with 15 microgram DPH per millilitre. In cultures treated chronically with 15 microgram DPH per millilitre on days 5-13 in vitro, total AChE activity and AChE activity released into the medium were 66.0 +/- 13.2 and 64.7 +/- 11.8% of untreated controls, respectively, but cellular AChE activity, cell protein, and [3H]leucine incorporation into protein were unaffected. The results indicate that DPH specifically decreases the total net synthesis of AChE activity by a direct action on cultured chick embryo muscle.  相似文献   

11.
《Biochimie》1987,69(2):147-156
We studied the reactivity of monoclonal antibodies (mAbs) raised against acetylcholinesterase (AChE) purified from Electrophorus and Torpedo electric organs. We obtained IgG antibodies (Elec-21, Elec-106, Tor-3E5, Tor-ME8, Tor-1A5), all of them directed against the catalytic subunit of the corresponding species, with no significant cross-reactivity. These antibodies do not inhibit the enzyme and recognize all molecular forms, globular (G) and asymmetric (A). Tor-ME8 reacts specifically with the denatured A and G subunits of Torpedo AChE, in immunoblots. Several hybridomas raised against Electrophorus AChE produced IgM antibodies (Elec-39, Elec-118, Elec-121). These antibodies react with the A forms of Electrophorus electric organs and also with a subset of dimers (G2) from Torpedo electric organ. In addition, they react with a number of non-AChE components, in immunoblots. In contrast, they do not recognize AChE from other Electrophorus tissues or A forms from Torpedo electric organs.  相似文献   

12.
13.
Abstract: Cercopithecus monkey brain acetylcholinesterase (AChE; EC 3.1.1.7) consists of about 15% hydrophilic, salt-soluble enzyme and 83% amphiphilic, detergent-soluble enzyme. Sucrose density gradient centrifugation showed that hydrophilic, salt-soluble AChE was composed of about 85% tetramer (10.3S) and 15% monomer (3.3S). In amphiphilic, detergent-soluble AChE, 85% tetramer (9.7S), 10% dimer (5.7S), and 5% monomer (3.2S) were seen. The enzyme is N -glycosylated, and no O-linked carbohydrate could be detected. Use of two monoclonal antibodies, one directed against the catalytic subunit and the other against the hydrophobic anchor, gave new insights into the subunit assembly of brain AChE. It is shown that in tetrameric AChE, not all of the subunits are disulfide-bonded and that two populations of tetramers exist, one carrying one and the other carrying two hydrophobic anchors.  相似文献   

14.
Serine esterases react with [3H]diisopropylphosphofluoridate ([3H]DFP) to produce radioactive adducts that can be resolved by denaturing slab gel electrophoresis. To identify an esterase or its catalytic subunit, a potential substrate was included in the reaction mixture with the expectation that it would suppress the enzyme's reaction with [3H]DFP. The nature of the enzyme could be inferred from the character of the substrates that suppress labeling. The validity of this analytical method was tested with two serine proteases, trypsin and alpha-chymotrypsin, and two serine esterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and several of their natural or model substrates or inhibitors. Application of the method to complex biological systems was tested with chicken embryo brain microsomes. Trypsin labeling with [3H]DFP was suppressed by alpha-N-benzoyl-l-arginine ethyl ester (BAEE) and poly-l-lysine but not by benzoyl-l-tyrosine ethyl ester (BTEE). [3H]DFP labeling of chymotrypsin was suppressed by both BAEE and BTEE. Labeling of AChE and BuChE was suppressed by their natural and some related substrates and inhibitors. [3H]DFP reacted with brain microsomes to produce nine distinct radioactive bands. When the relevant substrates and inhibitors of AChE were included in the reaction mixtures, labeling of only the 95-kDa band was suppressed, implicating it as AChE. Labeling of the 85- and 79-kDa bands was inhibited by butyrylcholine, suggesting that these proteins have BuChE activity.  相似文献   

15.
1. Acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BuChE, EC 3.1.1.8) are enzymes that catalyze the hydrolysis of esters of choline.2. Both AChE and BuChE have been shown to copurify with peptidases.3. BuChE has also been shown to copurify with other proteins such as transferrin, with which it forms a stable complex. In addition, BuChE is found in association with -amyloid protein in Alzheimer brain tissues.4. Since BuChE copurifies with peptidases, we hypothesized that BuChE interacts with these enzymes and that this association had an influence on their catalytic activities. One of the peptidases that copurifies with cholinesterases has specificity similar to trypsin, hence, this enzyme was used as a model to test this hypothesis.5. Purified BuChE causes a concentration-dependent enhancement of the catalytic activity of trypsin while trypsin does not influence the catalytic activity of BuChE.6. We suggest that, in addition to its esterase activity, BuChE may assume a regulatory role by interacting with other proteins.  相似文献   

16.
Bradyrhizobium japonicum strain 110spc4 was capable of chemolithoautotrophic growth with carbon monoxide (CO) as a sole energy and carbon source under aerobic conditions. The enzyme carbon monoxide dehydrogenase (CODH; EC 1.2.99.2) has been purified 21-fold, with a yield of 16% and a specific activity of 58 nmol of CO oxidized/min/mg of protein, by a procedure that involved differential ultracentrifugation, anion-exchange chromatography, hydrophobic interaction chromatography, and gel filtration. The purified enzyme gave a single protein and activity band on nondenaturing polyacrylamide gel electrophoresis and had a molecular mass of 230,000 Da. The 230-kDa enzyme was composed of large (L; 75-kDa), medium (M; 28.4-kDa), and small (S; 17.2-kDa) subunits occurring in heterohexameric (LMS)(2) subunit composition. The 75-kDa polypeptide exhibited immunological cross-reactivity with the large subunit of the CODH of Oligotropha carboxidovorans. The B. japonicum enzyme contained, per mole, 2.29 atoms of Mo, 7.96 atoms of Fe, 7.60 atoms of labile S, and 1.99 mol of flavin. Treatment of the enzyme with iodoacetamide yielded di(carboxamidomethyl)molybdopterin cytosine dinucleotide, identifying molybdopterin cytosine dinucleotide as the organic portion of the B. japonicum CODH molybdenum cofactor. The absorption spectrum of the purified enzyme was characteristic of a molybdenum-containing iron-sulfur flavoprotein.  相似文献   

17.
The accumulation of acetylcholinesterase (AChE), the changes in AChE-specific activity and in AChE molecular form distribution were studied in slow-tonic anterior latissimus dorsi (ALD) and in fast-twitch posterior latissimus dorsi (PLD) muscles of the chick embryo. From stage 36 (day 11) to stage 42 (day 17) of Hamburger and Hamilton, the AChE-specific activity decreased, while the relative proportion of asymmetric A 12 and A 8 forms increased. Repetitive injection of curare resulted at stage 42 (day 17) in a decrease in AChE-specific activity, in the accumulation of the synaptic AChE and in the expression of AChE asymmetric forms. Electrical stimulation at a relatively high frequency (40 Hz) of curarized ALD and PLD muscles resulted in a normal increase in AChE asymmetric forms, whereas a lower frequency (5 Hz) resulted in a dominance of globular forms. Both patterns of stimulation partly prevented the loss in synaptic AChE accumulations. These results suggest that in chick embryo muscles, muscle activity and its rhythms are involved in the normal evolution of AChE.  相似文献   

18.
In an attempt to identify proteins that assemble with the apical membrane Na(+)-H(+) exchanger isoform NHE3, we generated monoclonal antibodies (mAbs) against affinity-purified NHE3 protein complexes isolated from solubilized renal microvillus membrane vesicles. Hybridomas were selected based on their ability to immunoprecipitate NHE3. We have characterized in detail one of the mAbs (1D11) that specifically co-precipitated NHE3 but not villin or NaPi-2. Western blot analyses of microvillus membranes and immunoelectron microscopy of kidney sections showed that mAb 1D11 recognizes a 110-kDa protein highly expressed on the apical membrane of proximal tubule cells. Immunoaffinity chromatography was used to isolate the antigen against which mAb 1D11 is directed. N-terminal sequencing of the purified protein identified it as dipeptidyl peptidase IV (DPPIV) (EC ), which was confirmed by assays of DPPIV enzyme activity. We also evaluated the distribution of the NHE3-DPPIV complex in microdomains of rabbit renal brush border. In contrast to the previously described NHE3-megalin complex, which principally resides in a dense membrane population (coated pits) in which NHE3 is inactive, the NHE3-DPPIV complex was predominantly in the microvillar fraction in which NHE3 is active. Serial precipitation experiments confirmed that anti-megalin and anti-DPPIV antibodies co-precipitate different pools of NHE3. Taken together, these studies revealed an unexpected association of the brush border Na(+)-H(+) exchanger NHE3 with dipeptidyl peptidase IV in the proximal tubule. These findings raise the possibility that association with DPPIV may affect NHE3 surface expression and/or activity.  相似文献   

19.
A truncated soluble form of the human interleukin-2 receptor p55 chain (T-S-IL-2R) was expressed to high levels in RODENT (mammalian) cells and affinity-purified. Its biochemical behavior was analyzed by polyacrylamide gel electrophoresis (PAGE), gel filtration, and sucrose gradient centrifugation. It migrated as a single 40-kDa band on sodium dodecyl sulfate-PAGE (reducing or nonreducing conditions), whereas it ran as a 80-kDa component on native PAGE or as a 86-kDa component on gel filtration. The combination of gel filtration and density gradient sedimentation gave a Stokes radius of 4.0 nm and a sedimentation coefficient of 3.72 S. The deduced molecular mass was 67 kDa, and the fractional ratio was 1.516. These data therefore indicated that the T-S-IL-2R was secreted as an homodimer of two noncovalently associated 40-kDa subunits. Cross-linking experiments using bifunctional reagents enabled the materialization of the dimeric structure on sodium dodecyl sulfate-PAGE. Stoichiometric binding studies using two monoclonal antibodies (mAbs 33B3.1 and 11H2) reacting with separate epitopes on the p55 chain also strongly supported the dimeric structure. Indeed, there was one binding site for the 33B3.1 mAb (and Fab fragment) per T-S-IL-2R 40-kDa subunit, whereas the 11H2 mAb (or Fab fragment) could bind only half a site per subunit, a result which could only be explained when assuming more than one subunit for the native T-S-IL-2R. Soluble interleukin-2 receptor species were also purified from culture supernatants of either L cells transfected with the full-length p55 cDNA or a normal alloreactive T cell clone. Similar biochemical behavior and reactivities with the two mAbs were found. Finally, cell-surface p55 chains expressed either by pgL21 or 4AS cells bound the 33B3.1 and 11H2 mAbs in a 2:1 ratio, suggesting that the p55 chains are also associated as homodimers when imbedded in the membrane.  相似文献   

20.
The role of acetylcholinesterase (AChE) in the termination of the cholinergic response through acetylcholine (ACh) hydrolysis and the involvement of plasma butyrylcholinesterase (BuChE), mainly of hepatic origin, in the metabolism of xenobiotics with ester bonds is well known. Besides, BuChE has a crucial role in ACh hydrolysis, especially when selective anticholinesterases inhibit AChE. Herein, we analyzed the gender-related differences and the circadian changes of rat plasma cholinesterases. Plasma and liver cholinesterase activities were evaluated in control or 2–30-day castrated adult male and female rats. Plasma and liver AChE activities did not differ between genders and were not influenced by sex hormone deprivation. BuChE plasma activity was 7 times greater in female, reflecting gender differences in liver enzyme expression. Castration increased liver and plasma BuChE activity in male, while reduced it in female, abolishing gender differences in enzyme activity. Interestingly, female AChE and BuChE plasma activities varied throughout the day, reaching values 27% and 42% lower, respectively, between 2 p.m. and 6 p.m. when compared to the morning peaks at 8 a.m. Castration attenuated daily female BuChE oscillation. On the other hand, male plasma enzymes remained constant throughout the day. In summary, our results show that liver and plasma BuChE, but not AChE, expression is influenced by sex hormones, leading to high levels of blood BuChE in females. The fluctuation of female plasma BuChE during the day should be taken into account to adjust the bioavailability and the therapeutic effects of cholinesterase inhibitors used in cholinergic-based conditions such Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号