首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S W Shaver  M Kadekaro  P M Gross 《Peptides》1990,11(3):557-563
Angiotensin infusion increased glucose metabolism in 4 of 7 subdivisions of the rat subfornical organ, the effect being stronger in ventromedial compared to dorsolateral zones across the rostrocaudal axis. [Sar1-Leu8]Angiotensin II attenuated metabolic responses to intravenous angiotensin in all subfornical organ subregions. Brattleboro rats, having high circulating levels of angiotensin, displayed greater rates of glucose metabolism than Long-Evans rats in all subregions, differences that were eliminated by captopril, an inhibitor of angiotensin converting enzyme. The studies reveal focal subfornical organ zones where in vivo metabolic activity corresponds to cytoarchitectonic evidence for topographical processing within this angiotensin-sensitive structure.  相似文献   

2.
Binding sites for rat atrial natriuretic peptide (6-33) (ANP) were quantitated in the subfornical organ of chronically dehydrated homozygous Brattleboro rats unable to synthesize vasopressin; heterozygous Brattleboro rats, their controls, Long Evans rats and Long Evans rats after 4 days of water deprivation. Brain sections were incubated in the presence of 125I-ANP and the results analyzed by autoradiography coupled to computerized microdensitometry and comparison to 125I-standards. Brattleboro rats and water deprived Long Evans rats presented a higher number of ANP binding sites than their normally hydrated controls. Our results suggest a role of ANP binding sites in the subfornical organ in the central regulation of fluid balance and vasopressin secretion.  相似文献   

3.
Angiotensin II infused intravenously into sinoaortic-denervated rats induced drinking and increased glucose utilization in the subfornical organ and pituitary neural lobe in amounts not different from those observed in sham-operated animals. We suggest that inputs from baroreceptors have a negligible influence on glucose metabolism in the subfornical organ during infusion of angiotensin II.  相似文献   

4.
We applied [14C]deoxyglucose autoradiography and imaging techniques to determine rates of glucose metabolism in distinct subdivisions of the subfornical organ (SFO) of conscious Brattleboro rats. Seven anatomically-defineD SFO subregions were discerned having metabolic activities that differed from one another by as much as 29% in water-sated Brattleboro rats. The highest metabolic activity was found in the ventromedial zone of central and caudal subregions where previous studies identified the greatest densities of neurons, capillaries, putative angiotensin receptors, and angiotensin-immunoreactive fibers. Homozygous Brattleboro rats had rates of glucose metabolism that were 39-68% greater than those in corresponding SFO subregions of Long-Evans rats; these differences were accentuated by about 50% following 18 h of water deprivation. Exogenous treatment of Brattleboro rats with vasopressin uniformly normalized subregional glucose metabolism in the SFO. In Sprague-Dawley rats, water deprivation over 120 h provoked greater increases in metabolism of ventromedial than of dorsolateral SFO zones in amounts similar to the differences between Long-Evans and Brattleboro rats. The findings identify focal areas of high metabolic activity within subregions of the SFO where central responses are likely initiated to defend against homeostatic disturbances. The data represent further evidence for the probability that angiotensin II, as both hormone and neurotransmitter, is a metabolic stimulant of its target cells in the nervous system.  相似文献   

5.
Quantitative autoradiography was used to localize and characterize atrial natriuretic peptide (ANP) receptors in the rat brain and to study their regulation. Peptide receptors are selectively located to circumventricular organs outside the blood brain barrier, such as the subfornical organ, and to brain areas involved in fluid and cardiovascular regulation. Dehydration, either by water deprivation of normal rats, or chronic dehydration present in homozygous Brattleboro rats lacking vasopressin, results in large increases in ANP binding in receptor number in the subfornical organ. In the deoxycorticosterone acetate (DOCA)-salt hypertensive model, only salt treatment, but not DOCA alone or the combination of DOCA-salt, increased the ANP receptor number in the subfornical organ and the choroid plexus. Both young and adult genetically hypertensive rats have a greatly decreased ANP receptor number in the subfornical organ and the choroid plexus. Selective displacement with an inactive analog lacking the disulfide bond (ANP 111-126) suggests that genetically hypertensive rats may lack C (clearance) atrial natriuretic peptide receptors. Our results implicate brain atrial natriuretic peptide receptors in the central response to alterations in fluid regulation and blood pressure.  相似文献   

6.
The pituitary neural lobe of homozygous Brattleboro rats has high rates of glucose utilization not affected by chronic treatment with exogenous vasopressin, despite attenuation of polydipsia and polyuria. We evaluated whether this effect may result from the inability of vasopressin to affect the hypothalamo-neurohypophysial metabolism or from the development of resistance to chronic vasopressin treatment. We used the [14C]deoxyglucose method to compare 28-h effects of vasopressin treatment (5 U/kg, i.m., twice a day) with that of desmopressin (100 micrograms/kg, i.p., once a day), a long-lasting antidiuretic hormone, on glucose utilization of the hypothalamo-neurohypophysial system and related structures in conscious homozygous Brattleboro rats. Vasopressin and desmopressin reduced water intake, plasma osmolality and plasma Na+ concentration similarly. Vasopressin decreased glucose utilization in the supraoptic nucleus, subfornical organ and median preoptic nucleus, but did not alter activity in the paraventricular nucleus and neural lobe. Desmopressin decreased glucose utilization in all these structures. The results indicate that desmopressin has a more potent inhibitory action on the hypothalamo-neurohypophysial system than vasopressin over this short duration of treatment. The lack of response in the neural lobe from chronic treatment with vasopressin seems to be due to its inability to affect the paraventricular nucleus metabolism. The maintenance of metabolic activity in the paraventricular nucleus of vasopressin-treated Brattleboro rats suggests that this structure contributes importantly to the metabolism of neural lobe.  相似文献   

7.
Tanaka J  Kariya K  Nomura M 《Peptides》2003,24(6):881-887
In the present study we used intracerebral microdialysis techniques to examine whether angiotensin II (ANG II) modulates the release of serotonin (5-hydroxytryptamine, 5-HT) in the subfornical organ (SFO) in freely moving rats. Extracellular concentrations of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the region of the SFO were significantly decreased by microinjection of ANG II (10 pmol, 50 nl), but not by vehicle, into the dialysis site. No significant changes in the 5-HT and 5-HIAA levels caused by ANG II were observed in the sites away from the SFO. Water ingestion significantly enhanced the amount of the decrease in the 5-HT and 5-HIAA concentrations in the SFO area elicited by the ANG II injection. These results show that ANG II may reduce the release of 5-HT in the SFO area, and imply that the 5-HT receptor mechanism in the SFO area may participate in the elicitation of the drinking behavior to ANG II.  相似文献   

8.
Ushigome A  Tanaka J  Kariya K  Nomura M 《Peptides》2002,23(12):2169-2175
The present study was designed to examine the role of noradrenergic systems in the hypothalamic paraventricular nucleus (PVN) in the drinking response induced by microinjection of angiotensin II (ANG II) into the subfornical organ (SFO) in the awake rat. Intracerebral microdialysis techniques were utilized to quantify the extracellular concentration of noradrenaline (NA) in the region of the PVN. Injections of ANG II (10−6 M, 0.2 μl) into the SFO significantly increased NA release in the PVN area. The increase in the NA concentration caused by the ANG II injection was significantly attenuated by water ingestion. In urethane-anesthetized rats, injections of ANG II into the SFO elicited an elevation in mean arterial pressure (MAP). On the other hand, intravenous injections of the -agonist metaraminol (5 μg) slightly decreased the release of NA in the PVN area that accompanied an elevation in MAP. These results show that the noradrenergic system in the PVN area may be involved in the dipsogenic response induced by ANG II acting at the SFO.  相似文献   

9.
CD1 mice injected peripherally with either ANG I or ANG II failed to drink substantial amounts of water or NaCl, yet showed strong Fos immunoreactivity (ir) in subfornical organ (SFO). Mice injected with furosemide showed modest stimulation of NaCl intake either 3 or 24 h later, were hypovolemic, and showed elevated plasma renin activity (PRA). The pattern of Fos-ir in the brain after furosemide was similar to that seen after peripheral injection of ANG II. Mice became hypovolemic after subcutaneous injection of polyethylene glycol (PEG), showed large increases in PRA, aldosterone, and water intake, but did not show sodium appetite. PEG-treated mice had strong activation of SFO as well as other brain regions previously shown to be related to ANG-associated drinking in rats. ANG II appears to have a modified role in the behavioral response to fluid loss in mice compared with rats.  相似文献   

10.
Previous studies clearly demonstrated acute actions of angiotensin II (ANG II) at one of the central circumventricular organs, the subfornical organ (SFO), but studies demonstrating a role for the SFO in the chronic actions of ANG II remain uncertain. The purpose of this study was to examine the role of the SFO in the chronic hypertensive phase of ANG II-induced hypertension. We hypothesized that the SFO is necessary for the full hypertensive response observed during the chronic phase of ANG II-induced hypertension. To test this hypothesis, male Sprague-Dawley rats were subjected to sham operation (sham rats) or electrolytic lesion of the SFO (SFOx rats). After 1 wk, the rats were instrumented with venous catheters and radiotelemetric transducers for intravenous administration of ANG II and measurement of blood pressure and heart rate, respectively. Rats were then allowed 1 wk for recovery. After 3 days of saline control infusion (7 ml of 0.9% NaCl/day), sham and SFOx rats were infused with ANG II at 10 ng.kg(-1).min(-1) i.v. for 10 consecutive days and then allowed to recover for 3 days. A 0.4% NaCl diet and distilled water were provided ad libitum. At day 5 of ANG II infusion, mean arterial pressure increased 11.7 +/- 3.0 mmHg in sham rats (n = 9) but increased only 3.7 +/- 1.4 mmHg in SFOx rats (n = 9). This trend continued through day 10 of ANG II treatment. These results support the hypothesis that the SFO is necessary for the full hypertensive response to chronic ANG II administration.  相似文献   

11.
12.
Angiotensin II (ANG II) and vasopressin (AVP) are two powerful vasoconstrictors, and atrial natriuretic peptide (ANP) is a potent vasorelaxant. The changes in the density or affinity of binding sites for these agents that may alter target organ responsiveness in hypertension are reviewed. ANG II binding in mesenteric arteries was unaltered in one-kidney, one-clip (1-K, 1-C) and in 2-K, 1-C hypertensive rats, while in deoxycorticosterone acetate (DOCA)-salt hypertensive rats ANG II binding to blood vessels was significantly increased. A role of mineralocorticoids to increase the number of vascular ANG II sites in some hypertensive models is suggested. In spontaneously hypertensive rats (SHR) ANG II receptors were increased in young rats in the prehypertensive stage with respect to Wistar-Kyoto (WKY) control rats, but normal in older rats. AVP binding in the vasculature of hypertensive rats was uniformly decreased in inverse correlation to plasma AVP levels, but vascular responsiveness to AVP was exaggerated. Inositol trisphosphate production by blood vessels of SHR in response to AVP showed that increased AVP receptor-coupled phospholipase C activity may mediate in part the exaggerated pressor response in spite of reduced or normal density of receptors for vasoconstrictor peptides. Vascular ANP sites in 2-K, 1-C, 1-K,1-C, and DOCA-salt hypertensive rats varied inversely with plasma concentrations of ANP. Normal densities of ANP receptors in saralasin-sensitive 2-K, 1-C hypertensive rats correlated with ANP sensitivity, while saralasin-insensitive 2-K, 1-C hypertensive rats, which did not respond to ANP, had significantly decreased density of ANP vascular receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We investigated the effect of the intravenous infusion of atrial natriuretic peptide (ANP) on the response of plasma arginine vasopressin (AVP) levels to intravenous infusion of angiotensin II (ANG II) in healthy individuals. Intravenous infusion of ANP (10 ng·kg(-1)·min(-1)) slightly but significantly decreased plasma AVP levels, while intravenous infusion of ANG II (10 ng·kg(-1)·min(-1)) resulted in slightly increased plasma AVP levels. ANG II infused significant elevations in arterial blood pressure and central venous pressure (CVP). Because the elevation in blood pressure could have potentially inhibited AVP secretion via baroreceptor reflexes, the effect of ANG II on blood pressure was attenuated by the simultaneous infusion of nitroprusside. ANG II alone produced a remarkable increase in plasma AVP levels when infused with nitroprusside, whereas the simultaneous ANP intravenous infusion (10 ng·kg(-1)·min(-1)) abolished the increase in plasma AVP levels induced by ANG II when blood pressure elevation was attenuated by nitroprusside. Thus, ANG II increased AVP secretion and ANP inhibited not only basal AVP secretion but also ANG II-stimulated AVP secretion in humans. These findings support the hypothesis that circulating ANP modulates AVP secretion, in part, by antagonizing the action of circulating ANG II.  相似文献   

14.
TGR(ASrAOGEN)680, a newly developed transgenic rat line with specific downregulation of astroglial synthesis of angiotensinogen, exhibits decreased brain angiotensinogen content associated with a mild diabetes insipidus and lower blood pressure. Autoradiographic experiments were performed on TGR(ASrAOGEN) (TG) and Sprague-Dawley (SD) control rats to quantify AT(1) and AT(2) receptor-binding sites in different brain nuclei and circumventricular organs. Dose-response curves for drinking response to intracerebroventricular injections of ANG II were compared between SD and TG rats. In most of the regions inside the blood-brain barrier [paraventricular nucleus (PVN), piriform cortex, lateral olfactory tract (LOT), and lateral preoptic area (LPO)], AT(1) receptor binding (sensitive to CV-11974) was significantly higher in TG compared with SD. In contrast, in the circumventricular organs investigated [subfornical organ (SFO) and area postrema], AT(1) receptor binding was significantly lower in TG. AT(2) receptors (binding sensitive to PD-123319) were detected at similar levels in the inferior olive (IO) of both strains. Angiotensin-binding sites sensitive to both CV-11974 and PD-123319 were detected in the LPO of SD rats and specifically upregulated in LOT, IO, and most notably PVN and SFO of TG. The dose-response curve for water intake after intracerebroventricular injections showed a higher sensitivity to ANG II of TG (EC(50) = 3.1 ng) compared with SD (EC(50) = 11.2 ng), strongly suggesting that the upregulation of AT(1) receptors inside the blood-brain barrier of TG rats is functional. Finally, we showed that downregulation of angiotensinogen synthesized by astroglial cells differentially regulates angiotensin receptor subtypes inside the brain and in circumventricular organs.  相似文献   

15.
The present study examined physiological and cellular responses to central application of ANG II in ovine fetuses and determined the fetal central ANG-mediated dipsogenic sites in utero. Chronically prepared near-term ovine fetuses (130 +/- 2 days) received injection of ANG II (1.5 microg/kg icv). Fetuses were monitored for 3.5 h for swallowing activity, after which animals were killed and fetal brains were perfused for subsequent Fos staining. Intracerebroventricular ANG II significantly increased fetal swallowing in near-term ovine fetuses (1.1 +/- 0.2 to 4.5 +/- 1.0 swallows/min). The initiation of stimulated fetal swallowing activity was similar to the latency of thirst responses (drinking behavior) elicited by central ANG II in adult animals. ANG II evoked increased Fos staining in putative dipsogenic centers, including the subfornical organ, organum vasculosum of the lamina terminalis, and median preoptic nucleus. Intracerebroventricular injection of ANG II also caused c-fos expression in the fetal hindbrain. These results indicate that an ANG II-mediated central dipsogenic mechanism is intact before birth, acting at sites consistent with the dipsogenic neural network. Central ANG II mechanisms likely contribute to fetal body fluid and amniotic fluid regulation.  相似文献   

16.
It is known that mice injected peripherally with ANG II do not show a drinking response but that cFos immunoreactivity (ir) is induced in brain regions similar to those in rats. We now show in Crl:CD1(ICR) mice that peripheral injection of the ANG II type 1 receptor antagonist losartan was sufficient to prevent this induction of Fos-ir in the subfornical organ (SFO). Injection of ANG II into the lateral cerebral ventricle produced a robust water intake in mice and induced Fos-ir in SFO, as well as in median preoptic (MnPO) and paraventricular (PVN) nuclei. Peripheral injection of losartan blocked this drinking response and prevented the induction of Fos-ir in each of these brain regions. Hypovolemia produced by polyethylene glycol (PEG) produced a robust water intake but no evidence of sodium appetite, and it induced Fos-ir in SFO, MnPO, and PVN. Peripheral injection of losartan did not affect this drinking response. Fos-ir induced by PEG in SFO and MnPO was reduced by treatment with losartan, while that induced in the PVN was further increased by losartan. Sodium depletion with furosemide and low-sodium diet produced a strong sodium appetite and induced Fos-ir in SFO and MnPO. Treatment with losartan completely blocked the sodium appetite, as well as the induction of Fos-ir in these brain regions. These data indicate that endogenous production of ANG II and action at forebrain receptors is critically involved in depletion-related sodium appetite in mice. The absence of an effect of losartan on PEG-induced drinking suggests the critical involvement of other factor(s) such as arterial or venous baroreceptor input, and we discuss how this factor could also explain why peripheral ANG II is not dipsogenic in mice.  相似文献   

17.
The mechanism by which lactating rats increase fluid consumption to meet the demands of milk production is unknown. Because ANG II is the most potent dipsogenic stimulus known, this study examined whether angiotensinergic signaling plays a role in enhanced drinking in lactating rats. ANG II administered intracerebroventricularly caused a significantly greater dipsogenic response in lactating rats than in control rats, suggesting that dipsogenic responsivity to ANG II is enhanced in the brains of lactating rats. The angiotensin type 1 (AT1) ANG II receptor subtype antagonist SKF-108566, also given intracerebroventricularly, caused a significant reduction in water consumption in lactating rats, whereas it did not significantly affect water intake in control rats. In contrast, stimulation of drinking by the muscarinic agonist carbachol, also administered intracerebroventricularly, did not differ between lactating and control rats. Inhibition of drinking by the muscarinic antagonist atropine also did not differ significantly between lactating and control rats. These results suggest that the increased drinking in lactating rats involves an increased responsivity to ANG II in neurons that mediate dipsogenesis, as well as an enhancement in the amount of angiotensinergic input to these ANG II-responsive neurons.  相似文献   

18.
We investigated the respiratory and metabolic effects of decreased osmolality, and the potential roles of angiotensin II (ANG II) and the subfornical organ (SFO) in mediating these effects, in conscious Sprague-Dawley (SD) rats. Gastric water loading was induced either by oral gavage or an externalized indwelling stomach tube (20 mL x kg(-1) distilled water at body temperature). Repeated measurements after oral gavage were obtained with and without water loading and with and without ANG II receptor block (saralasin, 1.3 microg x kg(-1) x min(-1) iv). At 15 min after water loading by oral gavage, ventilation (V, 1.14+/-0.08 L x kg(-1) x min(-1)) and tidal volume (10.7+/-0.6 mL x kg(-1)) were transiently higher (P < 0.05), at a time when plasma osmolality was decreased (-8+/-1 mOsm), compared with gavage tube alone (0.95+/-0.08 L x kg(-1) min(-1) and 9.1+/-0.7 mL x kg(-1), respectively). However, water loading via stomach tube did not stimulate V; only during the 60-s period of water infusion did V increase briefly, but this was due to increased respiratory frequency. Dye indicators demonstrated that oral gavage exposes upper airway and esophageal afferents to water, presumably accounting for respiratory stimulation. Lesions of the SFO did not affect respiration or metabolism. A decrease in osmolality, associated with both water loading techniques, caused a sustained increase in oxygen consumption (Vo2 ) and a decrease in the V/Vo2 ratio. ANG II receptor block reduced the Vo2 response and prevented the decrease in V/Vo2 following water loading by oral gavage, but did not affect the transient stimulation of V. Unlike larger mammals, decreased osmolality does not stimulate respiration in the SD rat.  相似文献   

19.
The autocrine modulation of cardiac K(+) currents was compared in ventricular and atrial cells (V and A cells, respectively) from Type 1 diabetic rats. K(+) currents were measured by using whole cell voltage clamp. ANG II was measured by ELISA and immunofluorescent labeling. Oxidative stress was assessed by immunofluorescent labeling with dihydroethidium, a measure of superoxide ions. In V cells, K(+) currents are attenuated after activation of the renin-angiotensin system (RAS) and the resulting ANG II-mediated oxidative stress. In striking contrast, these currents are not attenuated in A cells. Inhibition of the angiotensin-converting enzyme (ACE) also has no effect, in contrast to current augmentation in V cells. ANG II levels are enhanced in V, but not in A, cells. However, the high basal ANG II levels in A cells suggest that in these cells, ANG II-mediated pathways are suppressed, rather than ANG II formation. Concordantly, superoxide ion levels are lower in diabetic A than in V cells. Several findings indicate that high atrial natriuretic peptide (ANP) levels in A cells inhibit RAS activation. In male diabetic V cells, in vitro ANP (300 nM-1 muM, >5 h) decreases oxidative stress and augments K(+) currents, but not when excess ANG II is present. ANP has no effect on ventricular K(+) currents when the RAS is not activated, as in control males, in diabetic males treated with ACE inhibitor and in diabetic females. In conclusion, the modulation of K(+) currents and oxidative stress is significantly different in A and V cells in diabetic rat hearts. The evidence suggests that this is largely due to inhibition of RAS activation and/or action by ANP in A cells. These results may underlie chamber-specific arrhythmogenic mechanisms.  相似文献   

20.
The effects of atrial natriuretic peptide (ANP), angiotensin II (ANG II) and angiotensin III (ANG III) on norepinephrine (NE) uptake were studied in the adrenal medulla of the rat. One microM ANG II and 10 microM ANG III decreased NE uptake while 10 nM and 100 nM ANP increased it. Subthreshold concentrations of ANP (1 nM) blunted the inhibitory effect of 1 microM ANG II but did not modify the inhibitory effect of 10 microM ANG III. The increasing effects of 100 nM ANP on NE uptake were partially reversed by subthreshold concentrations of ANG II (1 nM) and blunted by 1 nM ANG III. The interaction between ANP and the renin-angiotensin system could contribute to modulate the sympathetic function in the adrenal medulla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号