首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinal cord     
Hochman S 《Current biology : CB》2007,17(22):R950-R955
  相似文献   

2.
3.
4.
5.
6.
7.
8.
Song XY  Li F  Zhang FH  Zhong JH  Zhou XF 《PloS one》2008,3(3):e1707

Background

The blood brain barrier (BBB) and truncated trkB receptor on astrocytes prevent the penetration of brain derived neurotrophic factor (BDNF) applied into the peripheral (PNS) and central nervous system (CNS) thus restrict its application in the treatment of nervous diseases. As BDNF is anterogradely transported by axons, we propose that peripherally derived and/or applied BDNF may act on the regeneration of central axons of ascending sensory neurons.

Methodology/Principal Findings

The present study aimed to test the hypothesis by using conditioning lesion of the sciatic nerve as a model to increase the expression of endogenous BDNF in sensory neurons and by injecting exogenous BDNF into the peripheral nerve or tissues. Here we showed that most of regenerating sensory neurons expressed BDNF and p-CREB but not p75NTR. Conditioning-lesion induced regeneration of ascending sensory neuron and the increase in the number of p-Erk positive and GAP-43 positive neurons was blocked by the injection of the BDNF antiserum in the periphery. Enhanced neurite outgrowth of dorsal root ganglia (DRG) neurons in vitro by conditioning lesion was also inhibited by the neutralization with the BDNF antiserum. The delivery of exogenous BDNF into the sciatic nerve or the footpad significantly increased the number of regenerating DRG neurons and regenerating sensory axons in the injured spinal cord. In a contusion injury model, an injection of BDNF into the footpad promoted recovery of motor functions.

Conclusions/Significance

Our data suggest that endogenous BDNF in DRG and spinal cord is required for the enhanced regeneration of ascending sensory neurons after conditioning lesion of sciatic nerve and peripherally applied BDNF may have therapeutic effects on the spinal cord injury.  相似文献   

9.
10.
Spinal cord injury (SCI) impairs sensory systems causing allodynia. To identify cellular and molecular causes of allodynia, sensitive and valid sensory testing in rat SCI models is needed. However, until recently, no single testing approach had been validated for SCI so that standardized methods have not been implemented across labs. Additionally, available testing methods could not be implemented acutely or when severe motor impairments existed, preventing studies of the development of SCI-induced allodynia(3). Here we present two validated sensory testing methods using von Frey Hair (VFH) monofilaments which quantify changes in tactile sensory thresholds after SCI. One test is the well-established Up-Down test which demonstrates high sensitivity and specificity across different SCI severities when tested chronically. The other test is a newly-developed dorsal VFH test that can be applied acutely after SCI when allodynia develops, prior to motor recovery. Each VFH monofilament applies a calibrated force when touched to the skin of the hind paw until it bends. In the up-down method, alternating VFHs of higher or lower forces are used on the plantar L5 dermatome to delineate flexor withdrawal thresholds. Successively higher forces are applied until withdrawal occurs then lower force VFHs are used until withdrawal ceases. The tactile threshold reflects the force required to elicit withdrawal in 50% of the stimuli. For the new test, each VFH is applied to the dorsal L5 dermatome of the paw while the rat is supported by the examiner. The VFH stimulation occurs in ascending order of force until at least 2 of 3 applications at a given force produces paw withdrawal. Tactile sensory threshold is the lowest force to elicit withdrawal 66% of the time. Acclimation, testing and scoring procedures are described. Aberrant trials that require a retest and typical trials are defined. Animal use was approved by Ohio State University Animal Care and Use Committee.  相似文献   

11.
Spinal pattern generation and sensory gating mechanisms   总被引:1,自引:0,他引:1  
Sensory gating mechanisms are deployed during vertebrate locomotion to ensure that adaptive and appropriate motor responses to afferent input occur during all phases of the movement cycle. Recent animal studies on the integration of cutaneous information have investigated the roles of interneurones in sensory gating. Premotor interneurones, rhythmically active during locomotion, as well as 'sensory' interneurones appear to be intimately involved in sensory gating, receiving synaptic inputs from the spinal rhythm generator to gate the flow of sensory information in the spinal cord.  相似文献   

12.
13.
Substance P release from spinal cord slices by capsaicin   总被引:19,自引:0,他引:19  
R Gamse  A Molnar  F Lembeck 《Life sciences》1979,25(7):629-636
The release of substance P (SP) from slices of hypothalamus, substantia nigra and spinal cord of the rat was studied. In contrast to 47 mM potassium, capsaicin induced SP release from spinal cord slices only. The SP release was not reduced by 10?6 M tetrodotoxin but was abolished by a Ca2+ free medium containing 3 mM ethylene-glycol-bis- (β-aminoethyl-ether) N,N-tetraacetic acid (EGTA). Capsaicin induced SP release was dose-dependent and exhibited tachyphylaxis. The ability of capsaicin to release SP supports the hypothesis that SP is involved in pain transmission and in neurogenic plasma extravasation.  相似文献   

14.
Although spontaneous regeneration of lesioned fibres is limited in the adult central nervous system, many people that suffer from incomplete spinal cord injuries show significant functional recovery. This recovery process can go on for several years after the injury and probably depends on the reorganization of circuits that have been spared by the lesion. Synaptic plasticity in pre-existing pathways and the formation of new circuits through collateral sprouting of lesioned and unlesioned fibres are important components of this recovery process. These reorganization processes might occur in cortical and subcortical motor centres, in the spinal cord below the lesion, and in the spared fibre tracts that connect these centres. Functional and anatomical evidence exists that spontaneous plasticity can be potentiated by activity, as well as by specific experimental manipulations. These studies prepare the way to a better understanding of rehabilitation treatments and to the development of new approaches to treat spinal cord injury.  相似文献   

15.
16.
During acute and chronic inflammation visceral pain perception is altered. Conflicting data exist, however, on visceral pain perception in the postinflammatory phase. The aim of the present study was to investigate whether visceral pain perception is altered after resolution of dextran sodium sulfate (DSS)-induced inflammation of the colon. Visceral sensory function in mice was assessed by monitoring behavioral responses to intracolonic capsaicin instillation. Two hours later the number of c-Fos-positive neurons in lamina I/II and X of spinal cord segments T(12/13)-S1 was determined as a measure of neuronal activation. DSS colitis was induced by adding 1% of DSS to the drinking water. The course of DSS-induced colitis was assessed by determining the disease activity index score. Animals developed a transient colitis and had recovered at day 49. At this time point, cytokine levels and colon length were similar to control animals. Importantly, after resolution of DSS-induced colitis the behavioral response to intracolonic capsaicin was increased compared with control mice. Moreover, capsaicin-induced spinal cord neuronal c-Fos expression was significantly increased. Interestingly, after colitis animals also exhibited referred somatic hyperalgesia as measured with von Frey hairs on the abdominal wall. We conclude that postinflammatory visceral hyperalgesia occurs after resolution of DSS-induced colitis and that capsaicin-induced behavioral responses and spinal cord neuronal c-Fos activation are effective readouts for determination of visceral pain perception.  相似文献   

17.
18.

Background

Cord blood lipids are potential disease biomarkers. We aimed to determine if their concentrations were affected by delayed blood processing.

Method

Refrigerated cord blood from six healthy newborns was centrifuged every 12 h for 4 days. Plasma lipids were analysed by liquid chromatography/mass spectroscopy.

Results

Of 262 lipids identified, only eight varied significantly over time. These comprised three dihexosylceramides, two phosphatidylserines and two phosphatidylethanolamines whose relative concentrations increased and one sphingomyelin that decreased.

Conclusion

Delay in separation of plasma from refrigerated cord blood has minimal effect overall on the plasma lipidome.
  相似文献   

19.
Spinal cord stimulation in peripheral vascular pain   总被引:2,自引:0,他引:2  
Results in 12 patients suffering from pain due to peripheral vascular pathology and treated with spinal neurostimulation are reported. The best results were obtained in stage III of vascular disease; however, our results indicate that regression of the pain symptom and healing of trophic lesions do not always correspond to any variation in blood flow.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号