首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used a glucocorticoid receptor cDNA isolated from a mouse lymphoma cell line to characterize receptor mRNA and genomic sequences present in wild type and mutant rat hepatoma (HTC) and mouse thymoma (S49 and WEHI7) cells. Wild type rat and mouse cell lines contain two receptor mRNAs, 5 and 7 kilobase pairs (kb) in length, which differ in the length of their 3'-untranslated regions. Levels of receptor mRNA present in mutant HTC, WEHI7, and S49 cells of the r- (receptorless) phenotype are decreased compared to wild type cells. This decreased level of receptor mRNA parallels the decreased level of total immunoreactive receptor protein found in these cells. S49 nt- (nuclear transfer minus) cells contain receptor mRNA levels which parallel their hormone binding and immunoreactive receptor levels. Cells of the r- and nt- phenotype contain no detectable deletions or rearrangements of the receptor gene. We conclude that r- cells have lesions which affect the expression of receptor mRNA. Surprisingly, HTC cells of the r- phenotype differ from WEHI7 and S49 r- cells in that HTC r- cells contain a lower level of receptor DNA than does their parental wild type cell line. Although these cells may contain multiple lesions, it appears that loss of receptor genomic sequences is responsible, in part, for the phenotype of the HTC r- cells. The S49 nti (nuclear transfer increase) cells produce glucocorticoid receptors of molecular weights 40,000 and 94,000. These cells produce, in addition to the wild type 5- and 7-kb receptor mRNAs, two other receptor messages 5.5 and 3.5 kb in length. RNA blot analysis using various portions of our receptor cDNA indicates that these are 5' truncated messages and suggests that the 40-kDa nti receptor is truncated at its NH2-terminal end. These data also indicate that the hormone and DNA-binding regions of the receptor are located in the COOH-terminal half of the protein.  相似文献   

2.
3.
Chemical cross-linking of heteromeric glucocorticoid receptors   总被引:2,自引:0,他引:2  
M Rexin  W Busch  U Gehring 《Biochemistry》1988,27(15):5593-5601
Glucocorticoid receptors of wild-type and nti ("increased nuclear transfer") mutant S49.1 mouse lymphoma cells exist in extracts under low-salt conditions predominantly as high molecular weight species (Mr greater than or equal to 300,000). These receptor-hormone complexes are unable to bind to DNA. High salt (300 mM KCl) produces dissociated receptors of Mr 116,000 and 60-A Stokes radius (wild type) and Mr 60,000 and 38-A Stokes radius (nti mutant), both of which bind to DNA. We used reaction with bifunctional N-hydroxysuccinimide esters as well as oxidation with Cu2+/o-phenanthroline to stabilize the high molecular weight structures. These cross-linked complexes do not interact with DNA, but reductive cleavage again produces the dissociable receptor forms and restores their ability to bind to DNA. The protein modifying reagents iodoacetamide and diethyl pyrocarbonate also produce stabilized high molecular weight receptor complexes. Cross-linking of the high molecular weight receptor forms can also be achieved in intact cells. Immunochemical techniques were used to prove that the complexes cross-linked either in vivo or in cell extracts do contain the heat shock protein of Mr 90,000 as a common constituent. The data show that the high molecular weight receptor complexes are preexisting in intact cells and that dissociation generates DNA binding ability.  相似文献   

4.
Glucocorticoid receptors in wild type and mutant S49 mouse lymphoma cells were affinity labeled with [3H]dexamethasone 21-mesylate and analyzed directly by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of receptors in cytosol from wild type cells and nuclear transfer decreased (nt-) mutants was 97,000 (97 kDa). The molecular weight of receptors in cytosol from nuclear transfer increased (nti) mutants was 48 kDa. The 97 kDa receptor in cytosol from wild type cells was digested by chymotrypsin to a 40 kDa steroid-binding receptor fragment but the 48 kDa receptor in cytosol from nti mutants was resistant to digestion by chymotrypsin. In addition to the 48 kDa receptor, cytosol from nti mutants contained 40 and 18 kDa receptor fragments. Cytosol from the nt- mutants also contained 18 kDa receptor fragments. The 40 and 18 kDa receptor fragments were present in multiple subclones of a nti mutant cell line. Formation of these receptor fragments was not prevented by protease inhibitors and was not increased by extended incubation of cytosol samples. Both 48 and 40 kDa forms of the receptor, but not the 18 kDa form, could be activated and bound by DNA-cellulose.  相似文献   

5.
Nuclease digestion of nuclei from glucocorticoid sensitive and resistant lymphoma cell lines was used to study the nuclear compartmentalization of wild type and variant glucocorticoid receptors. In comparison with wild type, the variant line (S49 143r) had an increased capacity to translocate to the nucleus (nti), but was more completely released from nuclei by nuclease digestion. Approximately 20% of the receptor in wild type nuclei was resistant to release by DNase I digestion, while only less than 5% of the receptor from nti nuclei was retained under the same conditions. Studies with wild type nuclei show that the nuclease resistant portion of receptors was also more resistant to release by increased ionic strength.  相似文献   

6.
We characterized the glucocorticoid receptor fragments produced by neutrophil elastase and compared these receptor fragments to nuclear transfer increased (nti) mutant receptors. Neutrophil elastase and chymotrypsin digested [3H]dexamethasone 21-mesylate labeled receptors at different sites to produce 52 kDa and 42 kDa fragments respectively. Both the 52 kDa elastolytic receptor fragments and 42 kDa chymotryptic receptor fragments bound to DNA-cellulose and were immunoadsorbed by anti-glucocorticoid receptor monoclonal antibodies (BUGR2). More extensive digestion of labeled receptors by neutrophil elastase produced 29 kDa receptor fragments that did not bind to DNA-cellulose and did not react with BUGR2 antibodies. The size of nti mutant receptors from S49 mouse lymphoma cell variants is intermediate between that of the 52 kDa elastolytic receptor fragments and 42 kDa chymotryptic receptor fragments. The nti receptors bound to DNA-cellulose with the same affinity as the 52 kDa elastolytic receptor fragments. However, the nti receptors were not immunoadsorbed by BUGR2 antibodies and did not react with these antibodies on Western blot analysis of denatured cellular proteins. The results indicate that 52 kDa elastolytic receptor fragments, 42 kDa chymotryptic receptor fragments and nti mutant receptors correspond to the same region of the receptor molecule. The failure of nti receptors to react with BUGR2 antibodies suggests that the nti receptors may have an altered sequence compared to the corresponding region of normal receptors.  相似文献   

7.
Monoclonal antibodies raised against the rat liver glucocorticoid receptor were used to investigate receptors of wild-type and glucocorticoid-resistant variants of mouse lymphoma cells. Two of the variant types contained receptors of 'nuclear transfer deficient' (nt-) and 'increased nuclear transfer' (nti) phenotypes, respectively, while the third was of the 'receptorless' (r-) phenotype with negligible hormone binding activity. Three monoclonal antibodies of the IgM class and one of the IgG class reacted with both wild-type and nt- receptors but not with the steroid binding form of nti receptors. Some of the antibodies bound the wild-type and nt- receptors more efficiently after activation at 20 degrees C. By use of an immuno-competition assay we were able to detect cross-reacting material in considerable amounts in extracts of nti and r- cell variants. This material was further characterized by gel filtration and immunoblotting. The immunoreactive material of wild-type, nti and r- cells gave a major band of mol. wt. 94 000 upon SDS-gel electrophoresis while the steroid-binding polypeptides of wild-type and nti receptors have mol. wts. of 94 000 and 40 000, respectively. The data show that in S49.1 mouse lymphoma cells the products of two receptor alleles can be distinguished.  相似文献   

8.
9.
We previously reported that activated glucocorticoid receptor-steroid complexes from rat HTC cell cytosol exist as at least two sub-populations, one of which requires a low molecular weight (700–3000 Da) factor(s) for binding to DNA. This factor is removed by Sephadex G-50 chromatography and is found predominantly in extracts of crude HTC cell nuclei. We have now determined that factor is not limited to HTC cells since an apparently identical factor(s) was found in nuclear extracts of rat kidney and liver as well as human HeLa and MCF-7 cells. Furthermore, the DNA binding of a sub-population of human glucocorticoid receptors depends on factor. While these results were obtained with agonist (dexamethasone) bound receptors, a sub-population of HTC cell receptors covalently labeled by the antiglucocorticoid dexamethasone 21-mesylate also displayed factor-dependent DNA binding. This receptor heterogeneity was not an artifact of cell-free activation since the cell-free nuclear binding of dexamethasone mesylate labeled complexes was, as in intact cells, less than that for dexamethasone bound complexes. Earlier results suggested that the increased DNA binding with factor involved a direct interaction of receptor with factor(s). We now find that the factor-induced DNA binding is retained by amino terminal truncated (42 kDa) glucocorticoid receptors from HTC cells. Thus the ability of receptor to interact with factor(s) is encoded by the DNA and/or steroid binding domains. Two dimensional gel electrophoresis analysis of dexamethasone-mesylate labeled 98 kDa receptors revealed multiple charged isoforms for both sub-populations but no differences in the amount of the various isoforms in each sub-population. Finally, activated progesterone and estrogen receptor complexes were also found to be heterogeneous, with a similar, if not identical, small molecular weight factor(s) being required for the DNA binding of one sub-population. The observations that functional heterogeneity of receptors is not unique to glucocorticoid receptors, whether bound by an agonist or antagonist, and that the factor(s) is neither species nor tissue specific suggests that factor-assisted DNA binding may be a general mechanism for all steroid receptors.  相似文献   

10.
The effect of media conditions on the glucocorticoid response has been examined in three types of cultured cells. In rat pituitary tumor cells (GC cells) growth hormone production was stimulated by glucocorticoids provided fresh culture media was present (enriched media conditions). In contrast, dexamethasone either failed to induce or deinduce growth hormone synthesis if added to cultures which had not received fresh media for 3 days (depleted media condition). With human skin fibroblasts, cortisol stimulated [3H]thymidine incorporation in the enriched condition but inhibited this response in the depleted condition. In mouse lymphoma (S49) cells the enriched media conditions significantly delayed the killing response to glucocorticoids (20% killing after 24 h versus 90% killing after 24 h for the depleted condition). Thus, the magnitude and in some cases, the direction of the glucocorticoid response are sensitive to the conditions to which the cells are exposed. In all three cell types the steroid also rapidly (detectable by 15 min, maximal by 2 h) altered chromatin structure as detected by a change in the number of initiation sites for Escherichia coli RNA polymerase assayed under cell-free conditions. This early nuclear response could be in a positive or negative direction and was also affected by the culture conditions; enriched media favored a positive or less negative effect on the initiation sites by the steroid, while depleted media favored a steroid-induced inhibition of this chromatin function. In S49 and GC cells the kinetics and magnitude of the change in chromatin closely followed receptor . glucocorticoid complex binding to nuclei while removal of dexamethasone from the culture media resulted in a rapid (t 1/2 = approximately 20 min) disappearance of the effect which paralleled loss of bound hormone from the nucleus. The glucocorticoid effect on chromatin was not observed in two lines of glucocorticoid-resistant mutant S49 cells. One line (R-) lacks detectable glucocorticoid receptors; the other line (Nti) has receptors that bind the hormone normally, but the receptor . glucocorticoid complexes bind more avidly to the nucleus. These results suggest that the receptor is involved in both the stimulatory and the inhibitory effects on chromatin. The findings in the Nti cells and of a slight lag between nuclear binding of receptors and initiation site alteration implies that some receptor property, in addition to nuclear binding per se, is responsible for the influence on chromatin. These results are discussed in terms of a model in which steroid hormones initiate their actions by influencing a reaction that modifies chromatin structure. The direction and magnitude of the reaction, and its effect on the expression of specific genes, are dictated by the metabolic state and differentiation of the cell.  相似文献   

11.
12.
The involvement of a vicinally spaced dithiol group in steroid binding to the glucocorticoid receptor has been deduced from experiments with the thiol-specific reagent methyl methanethiolsulfonate and the vicinal dithiol-specific reagent sodium arsenite. The vicinally spaced dithiol appears to reside in the 16-kDa trypsin fragment of the receptor, which is thought to contain 3 cysteines (Cys-640, -656, and -661 of the rat receptor) and binds hormone with an approximately 23-fold lower affinity than does the intact 98-kDa receptor. We now report that the steroid binding specificity of preparations of this 16-kDa fragment and the intact receptor are virtually identical. This finding supports our designation of the 16-kDa fragment as a steroid-binding core domain and validates our continued use of this tryptic fragment in studies of steroid binding. To identify the cysteines which comprise the vicinally spaced dithiol group, and to examine further the role of cysteines in steroid binding, a total of five point mutant receptors were prepared: cysteine-to-serine for each suspected cysteine, cysteine-to-glycine for Cys-656, and the C656,661S double mutant. Unexpectedly, each receptor with a single point mutation still bound steroid. Even the double mutant (C656,661S) bound steroid with wild type affinity. These results suggest that none of these cysteines are directly required either for steroid binding to the glucocorticoid receptor or for heat shock protein 90 association with the receptor. However, the presence of Cys-656 was obligatory for covalent labeling of the receptor by [3H]dexamethasone 21-mesylate. Studies with preparations of the 98 and 16 kDa forms of these mutant receptors revealed both that Cys-656 and -661 comprise the vicinally spaced dithiols reacting with arsenite and that any two of the three thiols could form an intramolecular disulfide after treatment with low concentrations of methyl methanethiolsulfonate. These data, in conjunction with those from experiments on the effects of steric bulk on various receptor functions, support a model for the ligand binding cavity of the receptor that involves all three thiols in a flexible cleft but where thiol-steroid interactions are not essential for binding.  相似文献   

13.
14.
15.
The molecular basis for the loss of steroid binding activity in receptorless (r-) glucocorticoid-resistant (dexr) mutants isolated from the glucocorticoid-sensitive (dexs) cell line CEM-C7 was investigated. Although there was little binding of the reversibly associating ligand [3H]dexamethasone in r- mutants, labeling with the covalent affinity ligand [3H] dexamethasone 21-mesylate revealed significant amounts of a 92 kilodalton human glucocorticoid receptor (hGR) protein. Immunoblots of hGR protein in r- and normal cells showed that r- mutants expressed approximately half the amount of immunoreactive hGR protein seen in dexs cells. Comparison of the genomic organization of the hGR genes in normal and mutant cells revealed no discernable differences in the structure, or dosage, indicating that the r- phenotype was not the result of gross deletion or rearrangement of the hGR genes. In addition, r- cells expressed the same 7 kilobase mRNA as normal cells. More importantly, the amount of hGR mRNA expressed in r- cells was never significantly less, and in some cases was greater than, that seen in normal cells, indicating that the decrease in immunoreactive hGR protein seen in r- cells is not the result of loss of hGR mRNA expression. Taken together with the known mutation rate of the hGR gene(s) in these cells, these results suggest that the hGR genes in dexs CEM-C7 cells are allelic and that dexs cells express both a normal hGR protein and one with an altered steroid binding site. Furthermore, they suggest that the r- phenotype is acquired as the result of mutation within the coding region of the originally functional allele, leading to loss of ligand binding and expression of immunoreactive product.  相似文献   

16.
We have studied the presence and functional implications of membrane glucocorticoid receptor (mGR) in several wild type (WT) and mutant mouse lymphoid cell lines (nuclear transfer decrease, NT(-); nuclear transfer increase, NT(i); and receptorless, R(-)). Direct fluorescent antibody staining revealed large aggregates of mGR-specific fluorescing antigens in the plasma membrane of the WT and mGR-enriched (mGR(++)) S-49 cells. While R(-) cells totally lacked mGR, this receptor level was low in NT(-) and NT(i) groups. FACS analysis corroborated these results, showing a approximately 4-10-fold difference between the highest mGR levels (mGR(++)) and the R(-) and NT(i) cells. Membrane extracts were analyzed for mGR by immunoblotting. Multiple receptor forms, ranging in M(r) from 94,000 to > 200,000, were observed in the WT cells, while only smaller peptides (85,000-94,000) were found in NT(-) cells. No detectable immunoreactive bands were identified in either membrane or cytosol immunoprecipitates of NT(i) and R(-) cell groups. Within 48 h post dexamethasone exposure > 98% of WT and mGR(++) S-49 cells underwent apoptosis, compared to 0-30% in the mutant cells, albeit the total receptor number is two to three times higher in NT(i) compared to WT. These results suggest a better correlation between the quantity and quality of mGRs (rather than total cellular GRs) and the ability of glucocorticoids (GCs) to lyse lymphoid cells.  相似文献   

17.
A kinetic pulse-chase labeling technique was used to measure the intracellular half-life of the glucocorticoid receptor in S49 mouse lymphoma cells. Cells were pulse-labeled with [35S]methionine for 30 min and then cultured in the presence of unlabeled methionine (chase). Labeled receptors were quantitated at periodic time points during the chase by immunoadsorption to protein A-Sepharose using the BuGR2 monoclonal antireceptor antibody. The decay of labeled receptors during the chase was linear on a semilog plot, consistent with first order kinetics. Receptor half-life was 9 h when cells were cultured in either phenol red-containing medium supplemented with fetal calf serum or in phenol red free-medium supplemented with charcoal extracted serum, indicating that endogenous steroids do not affect receptor half-life. Receptor half-life was also unchanged when cells were cultured in the presence of 0.1 microM dexamethasone, a glucocorticoid hormone, or 0.1 microM RU486 (11 beta-(4-dimethylamino-phenyl)-17 beta-hydroxy-17 alpha-(propynylestra-4,9- diene-3-one), an antiglucocorticoid hormone. We conclude that the intracellular half-life of the glucocorticoid receptor in S49 mouse lymphoma cells is not regulated by either glucocorticoid or antiglucocorticoid hormones.  相似文献   

18.
Active domains in wild-type and mutant glucocorticoid receptors.   总被引:4,自引:2,他引:2       下载免费PDF全文
[3H]Triamcinolone acetonide was used to tag covalently specific glucocorticoid receptors by photoaffinity labelling at lambda greater than or equal to 320 nm. Receptors of wild-type mouse lymphoma cells and two glucocorticoid resistant mutants of "nuclear transfer deficient" (nt-) and "increased nuclear transfer" (nti) phenotypes, respectively, were used. Wild-type and nt- receptors yielded radiolabelled polypeptide bands of mol. wt. 98 000 as revealed by gel electrophoresis under denaturing conditions and fluorography. In contrast, the nti receptor had a mol. wt. of 42 000. Partial proteolysis of the wild-type receptor with alpha-chymotrypsin resulted in a fragment of mol. wt. 39 000 which still contained the steroid binding site but had increased affinity for DNA indistinguishable from that of the nti receptor. Chymotrypsin thus removed a domain from the wild-type receptor polypeptide which is involved in modulating DNA binding. The same domain is missing from the nti receptor.  相似文献   

19.
Three phenotypically distinct isolates from lymphosarcoma P1798 have been compared with respect to properties of the glucocorticoid receptor. Wild type P1798 cells express functional receptors and glucocorticoid treatment of such cells causes cytolysis in vivo. Wild type cells do not undergo cytolysis in culture. Rather, such cells exhibit reversible inhibition of proliferation in the presence of dexamethasone. Two variant populations were selected from this background. One was selected for the ability to form tumors in mice receiving pharmacological doses of glucocorticoids. Cells from such tumors are resistant to the cytolytic effects of glucocorticoids in vivo, but are sensitive to the antiproliferative effects of the hormone in culture. Variants were also selected based upon their ability to proliferate in the presence of dexamethasone in culture. These variants were resistant to glucocorticoid-mediated cytolysis in vivo. Wild type P1798 cells express approximately 20,000 high affinity dexamethasone-binding sites per cell. Dexamethasone-mesylate labeling and immunoblotting experiments indicate that hormone binding is due to a polypeptide of Mr 90-100 K. This polypeptide is encoded in an mRNA species that resolved as a single entity of approximately 7000 nucleotides. Variants selected for resistance to cytolysis in vivo are indistinguishable in any of these respects from wild type cells. The receptors are fully functional, as evidenced by their ability to precipitate growth arrest of dexamethasone-treated cultures. Variants selected for resistance in culture harbor a receptor mutation. They express fewer than 500 dexamethasone-binding sites per cell. Such variants contain neither detectable dexamethasone-mesylate-binding protein nor any protein that is recognized by a receptor antibody.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Characterization of glucocorticoid receptor in HeLa-S3 cells   总被引:1,自引:0,他引:1  
H Hoschützky  O Pongs 《Biochemistry》1985,24(25):7348-7356
Glucocorticoid receptor of the human cell line HeLa-S3 has been characterized and has been compared to rat and to mouse glucocorticoid receptors. If HeLa cells were lysed in the absence of glucocorticoid, glucocorticoid receptor was isolated in a nonactivated form, which did not bind to DNA-cellulose. If HeLa cells were preincubated with glucocorticoid, glucocorticoid receptor was isolated in an activated, DNA-binding form. HeLa cell glucocorticoid receptor bound [3H]triamcinolone acetonide with a dissociation constant (KD = 1.3 nM at 0 degrees C) that was similar to those of mouse and rat glucocorticoid receptors. Similarly, the relative binding affinities for steroid hormones decreased in the order of triamcinolone acetonide greater than dexamethasone greater than promegestone greater than methyltrienolone greater than aldosterone greater than or equal to moxestrol. Nonactivated and activated receptors were characterized by high-resolution anion-exchange chromatography (FPLC), DNA-cellulose chromatography, and sucrose gradient centrifugation. Human, mouse, and rat nonactivated glucocorticoid receptors had very similar ionic and sedimentation properties. Activated glucocorticoid receptors were eluted at similar salt concentrations from DNA-cellulose columns but at different salt concentrations from the FPLC column. A monoclonal mouse anti-rat liver glucocorticoid receptor antibody [Westphal, H.M., Mugele, K., Beato, M., & Gehring, U. (1984) EMBO J. 3, 1493-1498] did not cross-react with HeLa cell glucocorticoid receptor. Glucocorticoid receptors of HeLa, HTC, and S49.1 cells were affinity labeled with [3H]dexamethasone and with [3H]dexamethasone 21-mesylate. The molecular weights of [3H]dexamethasone 21-mesylate labeled glucocorticoid receptors (MT 96 000 +/- 1000) were undistinguishable by polyacrylamide gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号