首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we estimate the translation probability to amino acid from RNA codon. With the determined 183 translation probabilities and amino-acid composition of eight highly mutated proteins, we construct the theoretical distributions of mutated amino acids in these proteins and then compare them with their actual distributions affected by mutations. Thereafter we trace the pattern of translation probabilities from RNA codons to mutated amino acids of 1053 point missense mutations. Finally, we statistically conclude that the natural mutation trend goes along the theoretical translation probability.  相似文献   

2.
In this study, we determine the mutation relation among 333 H5N1 hemagglutinins of influenza A viruses according to their amino acid and RNA codon sequences. Then, we calculate seven probabilistic numbers, which have been developed by us since 1999, for each amino acid in these hemagglutinins. With the seven numeric numbers as independents and the probability of occurrence of mutation at each hemagglutinin position as dependent, we use the logistic regression to model 967 missense point mutations from 333 hemagglutinins to get the population estimates. Thereafter, we predict the future mutation positions in H5N1 hemagglutinin. Finally, we use the translation probabilities between RNA codons and mutated amino acids to predict the would-be-mutated amino acids in H5N1 hemagglutinin.  相似文献   

3.
In a continuation of our attempt to predict mutations in proteins from influenza A virus, this study attempted to answer the question of whether distinguishing between arginine, leucine and serine can improve the predictability as these residues are governed by different probabilistic mechanism translating from RNA codons to amino acids. In this study, we made the prediction based on the mutation relation among 299 H5N1 hemagglutinins of influenza A virus. Then, we compared the results based on the distinguishing of arginine, leucine and serine with the results without distinguishing of arginine, leucine and serine. The results show that the prediction together with distinguishing between arginine, leucine and serine is better than prediction without distinguishing between these residues.  相似文献   

4.
Genetic code development by stop codon takeover   总被引:5,自引:0,他引:5  
A novel theoretical consideration of the origin and evolution of the genetic code is presented. Code development is viewed from the perspective of simultaneously evolving codons, anticodons and amino acids. Early code structure was determined primarily by thermodynamic stability considerations, requiring simplicity in primordial codes. More advanced coding stages could arise as biological systems became more complex and precise in their replication. To be consistent with these ideas, a model is described in which codons become permanently associated with amino acids only when a codon-anticodon pairing is strong enough to permit rapid translation. Hence all codons are essentially chain-termination or "stop" codons until tRNA adaptors evolve having the ability to bind tightly to them. This view, which draws support from several lines of evidence, differs from the prevalent thinking on code evolution which holds that codons specifying newer amino acids were derived from codons encoding older amino acids.  相似文献   

5.
A. Fuglsang [Biochem. Biophys. Res. Commun. 317 (2004) 957-964] suggested that effective number of codons for individual amino acids (Nc-values) should be re-adjusted to the number of synonymous codons of those amino acids, in order to prevent the overestimation of the effective number of codons. Here, it is shown that re-adjustment at the level of individual amino acids results in loss of considerable amounts of information. Furthermore, we have shown that theoretical Nc-values are functions of GC3s (and GC1s); as a result, when an amino acid Nc-value exceeds the related theoretical Nc-value, the implication of re-adjustment depends on the GC composition of the gene.  相似文献   

6.
The complete nucleotide sequence of the influenza C/California/78 virus RNA 4 was obtained by using cloned cDNA derived from the RNA segment. This gene is 2,071 nucleotides long and can code for a polypeptide of 654 amino acids. Although there are no convincing sequence homologies between RNA 4 and the hemagglutinin genes of influenza A and B viruses, we suggest, on the basis of structural features, that RNA 4 of the influenza C virus codes for the hemagglutinin. The structural features which are common to the hemagglutinins of influenza A, B, and C viruses include (i) a hydrophobic signal peptide, (ii) an arginine cleavage site between the hemagglutinin 1 and 2 subunits, (iii) hydrophobic regions at the amino and carboxyl termini of the hemagglutinin 2 subunit, and (iv) several conserved cysteine residues. Additional evidence that RNA 4 of influenza C virus codes for the hemagglutinin is that the tripeptide Ile-Phe-Gly, known to be present at the amino terminus of the hemagglutinin 2 subunit of influenza C virus, is encoded by RNA 4 at a point immediately adjacent to the presumptive arginine cleavage site. The lack of primary sequence homology between the influenza C virus hemagglutinin and the influenza A or B virus hemagglutinins, which all have similar functions, might be attributed to convergent rather than divergent evolution. However, the structural similarities among the influenza A, B, and C virus hemagglutinins strongly suggest that the three hemagglutinin genes have diverged from a common precursor.  相似文献   

7.
Summary AGA and AGG (AGR) are arginine codons in the universal genetic code. These codons are read as serine or are used as stop codons in metazoan mitochondria. The arginine residues coded by AGR in yeast orTrypanosoma are coded by arginine CGN throughout metazoan mitochondria. AGR serine sites in metazoan mitochondria are occupied mainly in corresponding sites in yeast orTrypanosoma mitochondria by UCN serine, AGY serine, or codons for amino acids other than serine or arginine. Based on these observations, we propose the following evolutionary events. AGR codons became unassigned because of deletion of tRNA Arg (UCU) and elimination of AGR codons by conversion to CGN arginine codons. Upon acquisition by serine tRNA of pairing ability with AGR codons, some codons for amino acids other than arginine mutated to AGR, and were caputed by anticodon GCU in serine tRNA. During vertebrate mitochondrial evolution, AGR stop codons presumably were created from UAG stop by deletion of the first nucleotide U and by use of R as the third nucleotide that had existed next to the ancestral UAG stop.  相似文献   

8.
All living organisms encode the 20 natural amino acid units of polypeptides using a universal scheme of triplet nucleotide "codons". Disparate features of this codon scheme are potentially informative of early molecular evolution: (i) the absence of any codons for D-amino acids; (ii) the odd combination of alternate codon patterns for some amino acids; (iii) the confinement of synonymous positions to a codon's third nucleotide; (iv) the use of 20 specific amino acids rather than a number closer to the full coding potential of 64; and (v) the evolutionary relationship of patterns in stop codons to amino acid codons. Here I propose a model for an ancestral proto-anti-codon RNA (pacRNA) auto-aminoacylation system and show that pacRNAs would naturally manifest features of the codon table. I show that pacRNAs could implement all the steps for auto-aminoacylation: amino acid coordination, intermediate activation of the amino acid by the 5'-end of the pacRNA, and 3'-aminoacylation of the pacRNA. The anti-codon cradles of pacRNAs would have been able to recognize and coordinate only a small number of L-amino acids via hydrogen bonding. A need for proper spatial coordination would have limited the number of chargeable amino acids for all anti-codon sequences, in addition to making some anti-codon sequences unsuitable. Thus, the pacRNA model implies that the idiosyncrasies of the anti-codon table and L-amino acid homochirality co-evolved during a single evolutionary period. These results further imply that early life consisted of an aminoacylated RNA world with a richer enzymatic potential than ribonucleotides alone.  相似文献   

9.
The statistical study of polynucleotide sequences constituting the genes of E. coli, bacteriophages lambda and T7 reveals that constraints act upon nucleic acids (DNA or RNA) and contribute to determine the choice between the synonymous codons. The existence of synonymous codons seems to be the way of satisfying these constraints, keeping the possibility of specifying a large variety of polypeptides. At least in the case of amino acids with a small number of codons, these constraints are strong enough to influence the primary structure of proteins.  相似文献   

10.
Genetic code redundancy would yield, on the average, the assignment of three codons for each of the natural amino acids. The fact that this number is observed only for incorporating Ile and to stop RNA translation still waits for an overall explanation. Through a Structural Bioinformatics approach, the wealth of information stored in the Protein Data Bank has been used here to look for unambiguous clues to decipher the rationale of standard genetic code (SGC) in assigning from one to six different codons for amino acid translation. Leu and Arg, both protected from translational errors by six codons, offer the clearest clue by appearing as the most abundant amino acids in protein-protein and protein-nucleic acid interfaces. Other SGC hidden messages have been sought by analyzing, in a protein structure framework, the roles of over- and under-protected amino acids.  相似文献   

11.
RNA-ligand chemistry: a testable source for the genetic code   总被引:5,自引:3,他引:2       下载免费PDF全文
In the genetic code, triplet codons and amino acids can be shown to be related by chemical principles. Such chemical regularities could be created either during the code's origin or during later evolution. One such chemical principle can now be shown experimentally. Natural or particularly selected RNA binding sites for at least three disparate amino acids (arginine, isoleucine, and tyrosine) are enriched in codons for the cognate amino acid. Currently, in 517 total nucleotides, binding sites contain 2.4-fold more codon sequences than surrounding nucleotides. The aggregate probability of this enrichment is 10(-7) to 10(-8), had codons and binding site sequences been independent. Thus, at least some primordial coding assignments appear to have exploited triplets from amino acid binding sites as codons.  相似文献   

12.
We suggest that tRNA actively participates in the transfer of 3D information from mRNA to peptides - in addition to its well-known, "classical" role of translating the 3-letter RNA codes into the one letter protein code. The tRNA molecule displays a series of thermodynamically favored configurations during translation, a movement which places the codon and coded amino acids in proximity to each other and make physical contact between some amino acids and their codons possible. This specific codon-amino acid interaction of some selected amino acids is necessary for the transfer of spatial information from mRNA to coded proteins, and is known as RNA-assisted protein folding.  相似文献   

13.
The genetic code, understood as the specific assignment of amino acids to nucleotide triplets, might have preceded the existence of translation. Amino acids became utilized as cofactors by ribozymes in a metabolically complex RNA world. Specific charging ribozymes linked amino acids to corresponding RNA handles, which could basepair with different ribozymes, via an anticodon hairpin, and so deliver the cofactor to the ribozyme. Growing of the 'handle' into a presumptive tRNA was possible while function was retained and modified throughout. A stereochemical relation between some amino acids and cognate anticodons/codons is likely to have been important in the earliest assignments. Recent experimental findings, including selection for ribozymes catalyzing peptide-bond formation and those utilizing an amino acid cofactor, hold promise that scenarios of this major transition can be tested.  相似文献   

14.
By combining crystallographic and NMR structural data for RNA-bound amino acids within riboswitches, aptamers, and RNPs, chemical principles governing specific RNA interaction with amino acids can be deduced. Such principles, which we summarize in a “polar profile”, are useful in explaining newly selected specific RNA binding sites for free amino acids bearing varied side chains charged, neutral polar, aliphatic, and aromatic. Such amino acid sites can be queried for parallels to the genetic code. Using recent sequences for 337 independent binding sites directed to 8 amino acids and containing 18,551 nucleotides in all, we show a highly robust connection between amino acids and cognate coding triplets within their RNA binding sites. The apparent probability (P) that cognate triplets around these sites are unrelated to binding sites is ≅5.3 × 10−45 for codons overall, and P ≅ 2.1 × 10−46 for cognate anticodons. Therefore, some triplets are unequivocally localized near their present amino acids. Accordingly, there was likely a stereochemical era during evolution of the genetic code, relying on chemical interactions between amino acids and the tertiary structures of RNA binding sites. Use of cognate coding triplets in RNA binding sites is nevertheless sparse, with only 21% of possible triplets appearing. Reasoning from such broad recurrent trends in our results, a majority (approximately 75%) of modern amino acids entered the code in this stereochemical era; nevertheless, a minority (approximately 21%) of modern codons and anticodons were assigned via RNA binding sites. A Direct RNA Template scheme embodying a credible early history for coded peptide synthesis is readily constructed based on these observations.  相似文献   

15.
During protein synthesis, tRNA serves as the intermediary between cognate amino acids and their corresponding RNA trinucleotide codons. Aminoacyl-tRNA is also a biosynthetic precursor and amino acid donor for other macromolecules. AA-tRNAs allow transformations of acidic amino acids into their amide-containing counterparts, and seryl-tRNASer donates serine for antibiotic synthesis. Aminoacyl-tRNA is also used to cross-link peptidoglycan, to lysinylate the lipid bilayer, and to allow proteolytic turnover via the N-end rule. These alternative functions may signal the use of RNA in early evolution as both a biological scaffold and a catalyst to achieve a wide variety of chemical transformations.  相似文献   

16.
The aminoacyl-tRNA synthetases exist as two enzyme families which were apparently generated by divergent evolution from two primordial synthetases. The two classes of enzymes exhibit intriguing familial relationships, in that they are distributed nonrandomly within the codon-amino acid matrix of the genetic code. For example, all XCX codons code for amino acids handled by class II synthetases, and all but one of the XUX codons code for amino acids handled by class I synthetases. One interpretation of these patterns is that the synthetases coevolved with the genetic code. The more likely explanation, however, is that the synthetases evolved in the context of an already-established genetic code—a code which developed earlier in an RNA world. The rules which governed the development of the genetic code, and led to certain patterns in the coding catalog between codons and amino acids, would also have governed the subsequent evolution of the synthetases in the context of a fixed code, leading to patterns in synthetase distribution such as those observed. These rules are (1) conservative evolution of amino acid and adapter binding sites and (2) minimization of the disruptive effects on protein structure caused by codon meaning changes.  相似文献   

17.
An algebraic and geometrical approach is used to describe the primaeval RNA code and a proposed Extended RNA code. The former consists of all codons of the type RNY, where R means purines, Y pyrimidines, and N any of them. The latter comprises the 16 codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type), and the third, (YRN type) reading frames. In each of these reading frames, there are 16 triplets that altogether complete a set of 48 triplets, which specify 17 out of the 20 amino acids, including AUG, the start codon, and the three known stop codons. The other 16 codons, do not pertain to the Extended RNA code and, constitute the union of the triplets YYY and RRR that we define as the RNA-less code. The codons in each of the three subsets of the Extended RNA code are represented by a four-dimensional hypercube and the set of codons of the RNA-less code is portrayed as a four-dimensional hyperprism. Remarkably, the union of these four symmetrical pairwise disjoint sets comprises precisely the already known six-dimensional hypercube of the Standard Genetic Code (SGC) of 64 triplets. These results suggest a plausible evolutionary path from which the primaeval RNA code could have originated the SGC, via the Extended RNA code plus the RNA-less code. We argue that the life forms that probably obeyed the Extended RNA code were intermediate between the ribo-organisms of the RNA World and the last common ancestor (LCA) of the Prokaryotes, Archaea, and Eucarya, that is, the cenancestor. A general encoding function, E, which maps each codon to its corresponding amino acid or the stop signal is also derived. In 45 out of the 64 cases, this function takes the form of a linear transformation F, which projects the whole six-dimensional hypercube onto a four-dimensional hyperface conformed by all triplets that end in cytosine. In the remaining 19 cases the function E adopts the form of an affine transformation, i.e., the composition of F with a particular translation. Graphical representations of the four local encoding functions and E, are illustrated and discussed. For every amino acid and for the stop signal, a single triplet, among those that specify it, is selected as a canonical representative. From this mapping a graphical representation of the 20 amino acids and the stop signal is also derived. We conclude that the general encoding function E represents the SGC itself.  相似文献   

18.
Fifty years have passed since the genetic code was deciphered, but how the genetic code came into being has not been satisfactorily addressed. It is now widely accepted that the earliest genetic code did not encode all 20 amino acids found in the universal genetic code as some amino acids have complex biosynthetic pathways and likely were not available from the environment. Therefore, the genetic code evolved as pathways for synthesis of new amino acids became available. One hypothesis proposes that early in the evolution of the genetic code four amino acids—valine, alanine, aspartic acid, and glycine—were coded by GNC codons (N = any base) with the remaining codons being nonsense codons. The other sixteen amino acids were subsequently added to the genetic code by changing nonsense codons into sense codons for these amino acids. Improvement in protein function is presumed to be the driving force behind the evolution of the code, but how improved function was achieved by adding amino acids has not been examined. Based on an analysis of amino acid function in proteins, an evolutionary mechanism for expansion of the genetic code is described in which individual coded amino acids were replaced by new amino acids that used nonsense codons differing by one base change from the sense codons previously used. The improved or altered protein function afforded by the changes in amino acid function provided the selective advantage underlying the expansion of the genetic code. Analysis of amino acid properties and functions explains why amino acids are found in their respective positions in the genetic code.  相似文献   

19.
20.
Hydropathic anti-complementarity of amino acids based on the genetic code   总被引:15,自引:0,他引:15  
An interesting pattern in the genetic code has been discovered. Codons for hydrophilic and hydrophobic amino acids on one strand of DNA are complemented by codons for hydrophobic and hydrophilic amino acids on the other DNA strand, respectively. The average tendency of codons for "uncharged" (slightly hydrophilic) amino acids is to be complemented by codons for "uncharged" amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号