首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An anaerobic, dehalogenating, sulfate-reducing bacterium, strain DCB-1, is described and nutritionally characterized. The bacterium is a Gram-negative, nonmotile, non-sporeforming large rod with an unusual morphological feature which resembles a collar. The microorganism reductively dehalogenates meta substituted halobenzoates and also reduces sulfate, sulfite and thiosulfate as electron acceptors. The bacterium requires nicotinamide, 1,4-naphthoquinone and thiamine for optimal growth in a defined medium. The microorganism can grow autotrophically on H2:CO2 with sulfate or thiosulfate as terminal electron acceptors. It can also grow heterotrophically with pyruvate, several methoxybenzoates, formate plus sulfate or benzoate plus sulfate. It ferments pyruvate to acetate and lactate in the absence of other electron acceptors. The bacterium is inhibited by MoO inf4 sup2- or SeO inf4 sup2- as well as tetracycline, chloramphenicol, kanamycin or streptomycin. Cytochrome c3 and desulfoviridin have been purified from cells grown in defined medium. 16S rRNA sequence analysis indicates the organism is a new genus of sulfate-reducing bacteria in the delta subdivision of the class Proteobacteria. We propose that the strain be named Desulfomonile tiedjei.Non-standard abbreviations PIPES piperazine-N,N-bis[2-ethanesulfonic acid] - MES 2-[N-morpholino]ethanesulfonic acid - TES N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid - HQNO 2-N-heptyl-4-hydroxy-quinoline-N-oxide - CCCP carbonyl-cyanide-m-chlorophenylhydrazine - CM carboxymethyl  相似文献   

3.
4.
Strain DCB-1 is an obligately anaerobic bacterium which carries out the reductive dehalogenation of halobenzoates and was previously known to grow only on pyruvate plus 20% ruminal fluid. When various electron acceptors were supplied, thiosulfate and sulfite were found to stimulate growth. Sulfide was produced from thiosulfate. Cytochrome c and desulfoviridin were detected. The mol% G+C was 49 (at the thermal denaturation temperature). Of 55 carbon sources tested, only pyruvate supported growth as the sole carbon source in mineral medium. Lactate, acetate, L- and D-malate, glycerol, and L- and D-arabinose stimulated growth when supplemented with 10% ruminal fluid and 20 mM thiosulfate. In mineral medium, pyruvate was converted to acetate and lactate, with small amounts of succinate and fumarate accumulating transiently. During growth with thiosulfate, all of these products accumulated transiently. Addition of excess hydrogen to pyruvate-grown cultures resulted in diversion of carbon to formate, lactate, and butyrate, which caused a decrease in cell yield. We conclude that strain DCB-1 is a new type of sulfidogenic bacterium.  相似文献   

5.
6.
Aims: Our goal was to find a novel, biosurfactant‐producing bacterium from Pacific Ocean deep‐sea sediments. Methods and Results: An oil‐degrading biosurfactant‐producing bacterium TW53 was obtained from deep‐sea sediment, and was identified through 16S rDNA analysis as belonging to the genus Rhodococcus. It lowered the surface tension of its culture to 34·4 mN m?1. Thin layer chromatography (TLC) showed that the crude biosurfactants of TW53 were composed of lipopeptides and free fatty acids (FA). The lipopeptides were purified with column chromatography and then hydrolysed with 6 mol l?1 HCl. Gas chromatography‐mass spectrometry analysis showed that the hydrolyte in the hydrophobic fraction contained five kinds of FA with chain lengths of C14–C19, and C16H32O2 was a major component making up 59·18% of the total. However, 3‐hydroxyl FA was not found, although it is usually found in lipopeptides. Silica gel TLC revealed that the hydrolyte in the hydrophilic fraction was composed of five kinds of amino acids; consistently, ESI‐Q‐TOF‐MS analysis confirmed the composition results and provided their sequence tentatively as Ala‐Ile‐Asp‐Met‐Pro. Furthermore, the yield and CMC (critical micelle concentrations) of purified lipopeptides were examined. The purified product reduced the surface tension of water to 30·7 mN m?1 with a CMC value of 23·7 mg l?1. These results suggest that Rhodococcus sp. TW53 produces a novel lipopeptide that we have named rhodofactin. Conclusion: The deep‐sea isolate Rhodococcus sp. TW53 was the first reported lipopeptide‐producing bacterium of this genus. The lipopeptides had novel chemical compositions. Significance and Impact of the Study: Rhodococcus sp. TW53 has potential in the exploration of new biosurfactants and could be used in bioremediation of marine oil pollution.  相似文献   

7.
Rhodococcus sp. 33 can tolerate and efficiently degrade various concentrations of benzene, one of the most toxic and prevailing environmental pollutants. This strain produces a large quantity of extracellular polysaccharide (33 EPS), which plays an important role in the benzene tolerance in Rhodococcus sp. 33, especially by helping the cells to survive an initial challenge with benzene. This EPS has been reported to be composed of D-galactose, D-glucose, D-mannose, D-glucuronic acid, and pyruvic acid at a molar ratio of 1:1:1:1:1. To understand the protective effect of 33 EPS, we determined its chemical structure by using 1H and 13C NMR spectroscopy including 2D DQF-COSY, TOCSY, HMQC, HMBC, and NOESY experiments. The polysaccharide was shown to consist of tetrasaccharide repeating units with the following structure: [structure: see text].  相似文献   

8.
Based on the finding of a novel berberine (BBR)-utilizing bacterium, Rhodococcus sp. strain BD7100, we investigated the degradation of BBR and its analog berberrubine (BRU). Resting cells of BD7100 demethylenated BBR and BRU, yielding benzeneacetic acid analogs. Isolation of benzeneacetic acid analogs suggested that BD7100 degraded the isoquinoline ring of the protoberberine skeleton. This work represents the first report of cleavage of protoberberine skeleton by a microorganism.  相似文献   

9.
Strain DCB-1 is an obligately anaerobic bacterium which carries out the reductive dehalogenation of halobenzoates and was previously known to grow only on pyruvate plus 20% ruminal fluid. When various electron acceptors were supplied, thiosulfate and sulfite were found to stimulate growth. Sulfide was produced from thiosulfate. Cytochrome c and desulfoviridin were detected. The mol% G+C was 49 (at the thermal denaturation temperature). Of 55 carbon sources tested, only pyruvate supported growth as the sole carbon source in mineral medium. Lactate, acetate, L- and D-malate, glycerol, and L- and D-arabinose stimulated growth when supplemented with 10% ruminal fluid and 20 mM thiosulfate. In mineral medium, pyruvate was converted to acetate and lactate, with small amounts of succinate and fumarate accumulating transiently. During growth with thiosulfate, all of these products accumulated transiently. Addition of excess hydrogen to pyruvate-grown cultures resulted in diversion of carbon to formate, lactate, and butyrate, which caused a decrease in cell yield. We conclude that strain DCB-1 is a new type of sulfidogenic bacterium.  相似文献   

10.
We have recently isolated a biofilm-producing strain (C208) of Rhodococcus ruber that degraded polyethylene at a rate of 0.86% per week (r 2=0.98). Strain C208 adheres to polyethylene immediately upon exposure to the polyolefin. This initial biofilm differentiates (in a stepwise process that lasts about 20 h) into cell-aggregation-forming microcolonies. Further organization yields “mushroom-like” three-dimensional structures on the mature biofilm. The ratio between the population densities of the biofilm and the planktonic C208 cells after 10 days of incubation was about 60:1, indicating a high preference for the biofilm mode of growth. Analysis of extracellular polymeric substances (EPS) in the biofilm of C208 revealed that the polysaccharides level was up to 2.5 folds higher than that of the protein. The biofilm showed a high viability even after 60 days of incubation, apparently due to polyethylene biodegradation.  相似文献   

11.
The biofilm thickness in membrane biofilm reactors (MBfRs) is an important factor affecting system performance because excessive biofilm formation on the membrane surface inhibits gas diffusion to the interior of the biofilm, resulting in a significant reduction in the performance of contaminant removal. This study provides innovative insights into the control of biofilm thickness in O2-based MBfRs by using the quorum quenching (QQ) method. The study was carried out in MBfRs operated at different gas pressures and hydraulic retention times (HRTs) using QQ beads containing Rhodococcus sp. BH4 at different amounts. The highest performance was observed in reactors operated with 0.21 ml QQ bead/cm2 membrane surface area, 12 HRTs and 1.40 atm. Over this period, the performance increase in chemical oxygen demand (COD) removal was 25%, while the biofilm thickness on the membrane surface was determined to be 250 μm. Moreover, acetate and equivalent oxygen flux results reached 6080 and 10 640 mg·m−2·d−1 maximum values, respectively. The extracellular polymeric substances of the biofilm decreased significantly with the increase of gas pressure and QQ beads amount. Polymerase chain reaction denaturing gradient gel electrophoresis results showed that the microbial community in the MBfR system changed depending on operating conditions and bead amount. The results showed that the QQ method was an effective method to control the biofilm thickness in MBfR and provide insights for future research.  相似文献   

12.
Hou Y  Tao J  Shen W  Liu J  Li J  Li Y  Cao H  Cui Z 《FEMS microbiology letters》2011,323(2):196-203
An enrichment culture which completely degraded fenoxaprop-ethyl (FE) was acquired by using FE as sole carbon source. An efficient FE-degrading strain T1 was isolated from the enrichment culture and identified as Rhodococcus sp. Strain T1 could degrade 94% of 100 mg L(-1) FE within 24 h and the metabolite fenoxaprop acid (FA) was identified by HPLC/MS analysis. This strain converted FE by cleavage of the ester bond, but could not further degrade FA. Strain T1 could also efficiently degrade haloxyfop-R-methyl, quizalofop-p-ethyl, cyhalofop-butyl and clodinafop-propargyl. FE hydrolase capable of hydrolysing FE to FA was found in the cell-free extract of strain T1 by zymogram analysis. A novel gene feh encoding FE hydrolase was cloned by shotgun library construction and successfully expressed in Escherichia coli.  相似文献   

13.
Hydrogen peroxide (H2O2) tolerance of Rhodococcus sp. strain APG1, previously isolated from the aquatic fern Azolla pinnata, was examined in relation to nitric oxide (NO) production by cells cultured on a variety of C sources. Cells inoculated onto A. pinnata fronds established a surface-sterilant resistant density of 2-4x10(7) cells g(-1) without causing disease. Compared to cultures containing glucose, fructose, mannitol, or glycerol, those provided only with sucrose displayed, on a per C basis, substantially lower (<10%) growth yields and higher resistance to H2O2. NO, a positive regulator of catalase synthesis in bacteria, was produced in larger amounts in sucrose-grown cells as evidence by eightfold greater per cell accumulations in the medium of nitrite (NO2-), a stable oxidation product of NO. Addition to cells of L-arginine, the substrate for nitric oxide synthase (NOS), stimulated production of NO, detected both by fluorometric reaction with diaminofluorescein-FM diacetate (DAF-FM DA) and by increased levels of NO2- in the culture medium. These results suggest that sucrose may enhance H2O2 tolerance of Rhodococcus APG1 by increasing cellular NO producing capacity. We propose a regulatory role for NOS in promoting tolerance of Rhodococcus APG1 to oxidative stress in the phyllosphere.  相似文献   

14.
Fixation by strain DCB-1 of CO2 carbon into cell material and organic acids occurred during growth on pyruvate both with and without thiosulfate. By using sodium [14C]bicarbonate and sodium [2-14C]pyruvate, the isotopic composition of products and cells was investigated. Up to 70% of cell carbon was derived from CO2. CO2 carbon was also incorporated into succinate, formate, and acetate. Both carbons of acetate underwent exchange reactions with CO2, although the carboxyl-group exchange was twice as fast. Because strain DCB-1 uses CO2 as its major but not sole carbon source while deriving energy from pyruvate metabolism, we describe its metabolism as mixotrophic. Other mixotrophic conditions also supported growth. Lactate or butyrate, which could not support growth in mineral medium, could replace pyruvate as the oxidizable substrate only when acetate was added to the medium.  相似文献   

15.
红球菌DS-3脱除二苯并噻吩中有机硫的性能初探   总被引:1,自引:0,他引:1  
从孤岛油田分离到一株红球菌(Rhodococcus sp.)DS\|3,能专一地切断二苯并噻吩(DBT)中的C—S键,沿4S途径代谢,生成二羟联苯。实验证明,以2%的接种量脱除50μg/mL DBT底物中的硫效果最佳。在此条件下,适宜菌株生长和脱硫的碳源为葡萄糖,氮源为硝酸铵,初始pH为8.2,生长温度为30℃,15mmol/L的硫酸根离子能使其丧失脱硫能力。在上述适宜条件下,培养72 h后DBT中34.04%的硫被脱除。  相似文献   

16.
利用响应面法对假丝酵母脂肪酶喷雾干燥工艺条件进行优化,考察进口温度、雾化速度、保护剂含量对脂肪酶活力收率的影响。确定了最佳喷雾条件:保护剂为10~15 g/L的阿拉伯胶,进口温度115~120℃,雾化速度0.4 L/h,可得到收率最高为60.5%的脂肪酶酶粉。制得的固定化酶用于手性拆分(R,S)-1-苯乙醇,光学产率最高可达到53.6%;用于催化合成生物柴油,转化率最高可达到90.2%。在4、30℃下密封保存,半衰期可分别达到15个月、3个月。  相似文献   

17.
红球菌DS—3脱除二苯并噻吩中有机硫的性能初探   总被引:16,自引:2,他引:16  
从孤岛油田分离到一株红球菌(Rhodococcus sp.)DS—3,能专一地切断二苯并噻吩(DBT)中的C-S键,沿4S途径代谢,生成二羟联苯。实验证明,以2%的接种量脱除50μg/mL DBT底物中的硫效果最佳。在此条件下,适宜菌株生长和脱硫的碳源为葡萄糖,氯源为硝酸铵,初始PH为8.2,生长温度为30℃,15mmol/L的硫酸根离子能使其丧失脱硫能力。在上述适宜条件下,培养72h后DBT中34.04%的硫被脱除。  相似文献   

18.
19.
Rhodococcus sp. strain IGTS8 possesses an enzymatic pathway that can remove covalently bound sulfur from dibenzothiophene (DBT) without breaking carbon-carbon bonds. The DNA sequence of a 4.0-kb BstBI-BsiWI fragment that carries the genes for this pathway was determined. Frameshift and deletion mutations established that three open reading frames were required for DBT desulfurization, and the genes were designated soxABC (for sulfur oxidation). Each sox gene was subcloned independently and expressed in Escherichia coli MZ1 under control of the inducible lambda pL promoter with a lambda cII ribosomal binding site. SoxC is an approximately 45-kDa protein that oxidizes DBT to DBT-5,5'-dioxide. SoxA is an approximately 50-kDa protein responsible for metabolizing DBT-5,5'-dioxide to an unidentified intermediate. SoxB is an approximately 40-kDa protein that, together with the SoxA protein, completes the desulfurization of DBT-5,5'-dioxide to 2-hydroxybiphenyl. Protein sequence comparisons revealed that the predicted SoxC protein is similar to members of the acyl coenzyme A dehydrogenase family but that the SoxA and SoxB proteins have no significant identities to other known proteins. The sox genes are plasmidborne and appear to be expressed as an operon in Rhodococcus sp. strain IGTS8 and in E. coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号