首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 144 毫秒
1.
The outer dynein arm of Chlamydomonas flagella, when isolated under Mg(2+)-free conditions, tends to dissociate into an 11 to 12S particle (12S dynein) containing the gamma heavy chain and a 21S particle (called 18S dynein) containing the alpha and beta heavy chains. We show here that functional outer arms can be reconstituted by the addition of 12S and 18S dyneins to the axonemes of the outer armless mutants oda1- oda6. A third factor that sediments at integral 7S is required for efficient reconstitution of the outer arms on the axonemes of oda1 and oda3. However, this factor is not necessary for reconstitution on the axonemes of oda2, oda4, oda5, and oda6. SDS-PAGE analysis indicates that the axonemes of the former two mutants lack a integral of 70-kD polypeptide that is present in those of the other mutants as well as in the 7S fraction from the wild-type extract. Furthermore, electron micrographs of axonemal cross sections revealed that the latter four mutants, but not oda1 or oda3, have small pointed structures on the outer doublets, at a position in cross section where outer arms normally occur. We suggest that the 7S factor constitutes the pointed structure on the outer doublets and facilitates attachment of the outer arm. The discovery of this structure raises a new question as to how the attachment site for the outer arm dynein is determined within the axoneme.  相似文献   

2.
A new allele of the Chlamydomonas oda4 flagellar mutant (oda4-s7) possessing abnormal outer dynein arms was isolated. Unlike the previously described oda4 axoneme lacking all three (alpha, beta, and gamma) outer-arm dynein heavy chains, the oda4-s7 axoneme contains the alpha and gamma heavy chains and a novel peptide with a molecular mass of approximately 160 kD. The peptide reacts with a mAb (18 beta B) that recognizes an epitope on the NH2-terminal part of the beta heavy chain. These observations indicate that this mutant has a truncated beta heavy chain, and that the NH2-terminal part of the beta heavy chain is important for the stable assembly of the outer arms. In averaged electron microscopic images of outer arms from cross sections of axonemes, the mutant outer arm lacks its mid-portion, producing a forked appearance. Together with our previous finding that the mutant oda11 lacks the alpha heavy chain and the outermost portion of the arm (Sakakibara, H., D. R. Mitchell, and R. Kamiya. 1991. J. Cell Biol. 113:615-622), this result defines the approximate locations of the three outer arm heavy chains in the axonemal cross section. The swimming velocity of oda4-s7 is 65 +/- 8 microns/s, close to that of oda4 which lacks the entire outer arm (62 +/- 8 microns/s) but significantly lower than the velocities of wild type (194 +/- 23 microns/s) and oda11 (119 +/- 17 microns/s). Thus, the lack of the beta heavy chain impairs outer-arm function more seriously than does the lack of the alpha heavy chain, suggesting that the alpha and beta chains play different roles in outer arm function.  相似文献   

3.
The inner dynein arm regulates axonemal bending motion in eukaryotes. We used cryo-electron tomography to reconstruct the three-dimensional structure of inner dynein arms from Chlamydomonas reinhardtii. All the eight different heavy chains were identified in one 96-nm periodic repeat, as expected from previous biochemical studies. Based on mutants, we identified the positions of the AAA rings and the N-terminal tails of all the eight heavy chains. The dynein f dimer is located close to the surface of the A-microtubule, whereas the other six heavy chain rings are roughly colinear at a larger distance to form three dyads. Each dyad consists of two heavy chains and has a corresponding radial spoke or a similar feature. In each of the six heavy chains (dynein a, b, c, d, e, and g), the N-terminal tail extends from the distal side of the ring. To interact with the B-microtubule through stalks, the inner-arm dyneins must have either different handedness or, more probably, the opposite orientation of the AAA rings compared with the outer-arm dyneins.  相似文献   

4.
The dynein arms of ciliary doublet microtubules cause adjacent axonemal doublets to slide apart with fixed polarity. This suggests that there is a unique mechanochemistry to the dynein arm with unidirectional force generation in all active arms and also that not all arms are active at once during a ciliary beat. Negative stain and thin-section images of arms in axonemes treated with beta, gamma methylene adenosine triphosphate (AMP-PCP) show a consistent subunit construction where the globular head of the arm interacts with subfiber B of doublet N+1. This interpretation differs from that provided by freeze etch and STEM interpretations of in situ arm construction and has implications for the mechanochemical cycle of the arm. A computer model of the arms in relation to other axonemal structures has been constructed to test these interpretations. Attachment of the head of the arm subfiber B is directly demonstrable in splayed axonemes in AMP-PCP. About half of the doublets in an axoneme show such attachments, while half do not. This might imply that about half the doublets in an axoneme are active at any given instant and can be identified as such. This information may be useful in probing questions of how active arms differ biochemically from inactive arms and of how microtubule translocators in general become active.  相似文献   

5.
An important challenge is to understand the functional specialization of dynein heavy chains. The ciliary outer arm dynein from Tetrahymena thermophila is a heterotrimer of three heavy chains, called alpha, beta and gamma. In order to dissect the contributions of the individual heavy chains, we used controlled urea treatment to dissociate Tetrahymena outer arm dynein into a 19S beta/gamma dimer and a 14S alpha heavy chain. The three heavy chains remained full-length and retained MgATPase activity. The beta/gamma dimer bound microtubules in an ATP-sensitive fashion. The isolated alpha heavy chain also bound microtubules, but this binding was not reversed by ATP. The 19S beta/gamma dimer and the 14S alpha heavy chain could be reconstituted into 22S dynein. The intact 22S dynein, the 19S beta/gamma dimer, and the reconstituted dynein all produced microtubule gliding motility. In contrast, the separated alpha heavy chain did not produce movement under a variety of conditions. The intact 22S dynein produced movement that was discontinuous and slower than the movement produced by the 19S dimer. We conclude that the three heavy chains of Tetrahymena outer arm dynein are functionally specialized. The alpha heavy chain may be responsible for the structural binding of dynein to the outer doublet A-tubule and/or the positioning of the beta/gamma motor domains near the surface of the microtubule track.  相似文献   

6.
Glass-adsorbed intact sea urchin outer arm dynein and its beta/IC1 subunit supports movement of microtubules, yet does not form a rigor complex upon depletion of ATP (16). We show here that rigor is a feature of the isolated intact outer arm, and that this property subfractionates with its alpha heavy chain. Intact dynein mediates the formation of ATP-sensitive microtubule bundles, as does the purified alpha heavy chain, indicating that both particles are capable of binding to microtubules in an ATP-sensitive manner. In contrast, the beta/IC1 subunit does not bundle microtubules. Bundles formed with intact dynein are composed of ribbon-like sheets of parallel microtubules that are separated by 54 nm (center-to-center) and display the same longitudinal repeat (24 nm) and cross-sectional geometry of dynein arms as do outer doublets in situ. Bundles formed by the alpha heavy chain are composed of microtubules with a center-to-center spacing of 43 nm and display infrequent, fine crossbridges. In contrast to the bridges formed by the intact arm, the links formed by the alpha subunit are irregularly spaced, suggesting that binding of the alpha heavy chain to the microtubules is not cooperative. Cosedimentation studies showed that: (a) some of the intact dynein binds in an ATP-dependent manner and some binds in an ATP-independent manner; (b) the beta/IC1 subunit does not cosediment with microtubules under any conditions; and (c) the alpha heavy chain cosediments with microtubules in the absence or presence of MgATP2-. These results suggest that the structural binding observed in the intact arm also is a property of its alpha heavy chain. We conclude that whereas force-generation is a function of the beta/IC1 subunit, both structural and ATP-sensitive (rigor) binding of the arm to the microtubule are mediated by the alpha subunit.  相似文献   

7.
The translocation of dynein along microtubules is the basis for a wide variety of essential cellular movements. Dynein was first discovered in the ciliary axoneme, where it causes the directed sliding between outer doublet microtubules that underlies ciliary bending. The initiation and propagation of ciliary bends are produced by a precisely located array of different dyneins containing eight or more different dynein heavy chain isoforms. The detailed clarification of the structural and functional diversity of axonemal dynein heavy chains will not only provide the key to understanding how cilia function, but also give insights applicable to the study of non-axonemal microtubule motors.  相似文献   

8.
Axonemal dyneins provide the driving force for flagellar/ciliary bending. Nucleotide-induced conformational changes of flagellar dynein have been found both in vitro and in situ by electron microscopy, and in situ studies demonstrated the coexistence of at least two conformations in axonemes in the presence of nucleotides (the apo and the nucleotide-bound forms). The distribution of the two forms suggested cooperativity between adjacent dyneins on axonemal microtubule doublets. Although the mechanism of such cooperativity is unknown it might be related to the mechanism of bending. To explore the mechanism by which structural heterogeneity of axonemal dyneins is induced by nucleotides, we used cilia from Tetrahymena thermophila to examine the structure of dyneins in a) the intact axoneme and b) microtubule doublets separated from the axoneme, both with and without additional pure microtubules. We also employed an ATPase assay on these specimens to investigate dynein activity functionally. Dyneins on separated doublets show more activation by nucleotides than those in the intact axoneme, both structurally and in the ATPase assay, and this is especially pronounced when the doublets are coupled with added microtubules, as expected. Paralleling the reduced ATPase activity in the intact axonemes, a lower proportion of these dyneins are in the nucleotide-bound form. This indicates a coordinated suppression of dynein activity in the axoneme, which could be the key for understanding the bending mechanism.  相似文献   

9.
Cytoplasmic dynein is an AAA(+)-type molecular motor whose major components are two identical heavy chains containing six AAA(+) modules in tandem. It moves along a single microtubule in multiple steps which are accompanied with multiple ATP hydrolysis. This processive sliding is crucial for cargo transports in vivo. To examine how cytoplasmic dynein exhibits this processivity, we performed in vitro motility assays of two-headed full-length or truncated single-headed heavy chains. The results indicated that four to five molecules of the single-headed heavy chain were required for continuous microtubule sliding, while approximately one molecule of the two-headed full-length heavy chain was enough for the continuous sliding. The ratio of the stroking time to the total ATPase cycle time, which is a quantitative indicator of the processivity, was approximately 0.2 for the single-headed heavy chain, while it was approximately 0.6 for the full-length molecule. When two single-headed heavy chains were artificially linked by a coiled-coil of myosin, the processivity was restored. These results suggest that the two heads of a single cytoplasmic dynein communicate with each other to take processive steps along a microtubule.  相似文献   

10.
To help understand the functional properties of inner and outer dynein arms in axonemal motility, sliding velocities of outer doublets were measured in disintegrating axonemes of Chlamydomonas mutants lacking either of the arms. Measurements under improved solution conditions yielded significantly higher sliding velocities than those observed in a previous study [Okagaki and Kamiya, 1986, J. Cell Biol. 103:1895-1902]. As in the previous study, it was found that the velocities in axonemes of wild type (wt) and a mutant (oda1) missing the outer arm differ greatly: 18.5 +/- 4.1 microns/sec for wt and 4.4 +/- 2.3 microns/sec for oda1 at 0.5 mM Mg-ATP. In contrast, axonemes of two types of mutants (ida2 and ida4) that lacked different sets of two inner-arm heavy chains displayed velocities almost identical with the wild-type velocity. Moreover, axonemes of a non-motile double mutant ida2 X ida4 underwent sliding disintegration at a similar high velocity, although less frequently than in axonemes of single mutants. These observations support the hypothesis that the inner and outer dynein arms in disintegrating axonemes drive microtubules at different speeds and it is the faster outer arm that determines the overall speed when both arms are present. The inner arm may be important for the initiation of sliding. The axoneme thus appears to be equipped with two (or more) types of motors with different intrinsic speeds.  相似文献   

11.
CCDC103 is an ∼29-kDa protein consisting of a central RPAP3_C domain flanked by N- and C-terminal coiled coils. Defects in CCDC103 lead to primary ciliary dyskinesia caused by the loss of outer dynein arms. This protein is present along the entire length of the ciliary axoneme and does not require other dynein or docking complex components for its integration. Unlike other known dynein assembly factors within the axoneme, CCDC103 is not solubilized by 0.6 m NaCl and requires more chaotropic conditions, such as 0.5 m KI. Alternatively, it can be extracted using 0.3% sarkosyl. CCDC103 forms stable dimers and other oligomers in solution through interactions involving the central domain. The smallest particle observed by dynamic light scattering has a hydrodynamic diameter of ∼25 nm. Furthermore, CCDC103 binds microtubules directly, forming ∼9-nm diameter particles that exhibit a 12-nm spacing on the microtubule lattice, suggesting that there may be two CCDC103 units per outer arm dynein repeat. Although the outer dynein arm docking complex is necessary to form arrays of dyneins along microtubules, it is not sufficient to set up a single array in a precise location on each axonemal doublet. We propose that CCDC103 helps generate a high-affinity site on the doublets for outer arm assembly, either through direct interactions or indirectly, perhaps by modifying the underlying microtubule lattice.  相似文献   

12.
The “9+2” axoneme is a highly specific cylindrical machine whose periodic bending is due to the cumulative shear of its 9 outer doublets of microtubules. Because of the discrete architecture of the tubulin monomers and the active appendices that the outer doublets carry (dynein arms, nexin links and radial spokes), this movement corresponds to the relative shear of these topological verniers, whose characteristics depend on the geometry of the wave train. When an axonemal segment bends, this induces the compressed and dilated conformations of the tubulin monomers and, consequently, the modification of the spatial frequencies of the appendages that the outer doublets carry. From a dynamic point of view, the adjustments of the spatial frequencies of the elements of the two facing verniers that must interact create different longitudinal periodic patterns of distribution of the joint probability of the molecular interaction as a function of the location of the doublet pairs around the axonemal cylinder and their spatial orientation within the axonemal cylinder. During the shear, these patterns move along the outer doublet intervals at a speed that ranges from one to more than a thousand times that of sliding, in two opposite directions along the two opposite halves of the axoneme separated by the bending plane, respecting the polarity of the dynein arms within the axoneme. Consequently, these waves might be involved in the regulation of the alternating activity of the dynein arms along the flagellum, because they induce the necessary intermolecular dialog along the axoneme since they could be an element of the local dynamic stability/instability equilibrium of the axoneme. This complements the geometric clutch model [Lindemann, C., 1994. A “geometric clutch” hypothesis to explain oscillations of the axoneme of cilia and flagella. J. Theor. Biol. 168, 175-189].  相似文献   

13.
14.
Dyneins are minus end directed microtubule motors that play a critical role in ciliary and flagellar movement. Ciliary dyneins, also known as axonemal dyneins, are characterized based on their location on the axoneme, either as outer dynein arms or inner dynein arms. The I1 dynein is the best-characterized subspecies of the inner dynein arms; however the interactions between many of the components of the I1 complex and the axoneme are not well defined. In an effort to elucidate the interactions in which the I1 components are involved, we performed zero-length crosslinking on axonemes and studied the crosslinked products formed by the I1 intermediate chains, IC138 and IC140. Our data indicate that IC138 and IC140 bind directly to microtubules. Mass-spectrometry analysis of the crosslinked product identified both α- and β-tubulin as the IC138 and IC140 binding partners. This was further confirmed by crosslinking experiments carried out on purified I1 fractions bound to Taxol-stabilized microtubules. Furthermore, the interaction between IC140 and tubulin is lost when IC138 is absent. Our studies support previous findings that intermediate chains play critical roles in the assembly, axonemal targeting and regulation of the I1 dynein complex.  相似文献   

15.
Our goal was to assess the microtubule translocating ability of individual ATPase subunits of outer arm dynein. Solubilized outer arm dynein from sea urchin sperm (Stronglocentrotus purpuratus) was dissociated into subunits by low ionic strength buffer and fractionated by zonal centrifugation. Fractions were assessed by an in vitro functional assay wherein microtubules move across a glass surface to which isolated dynein fractions had been absorbed. Microtubule gliding activity was coincident with the 12-S beta-heavy chain-intermediate chain 1 ATPase fractions (beta/IC1). Neither the alpha-heavy chain nor the intermediate chains 2 and 3 fractions coincided with microtubule gliding activity. The beta/IC1 ATPase induced very rapid gliding velocities (9.7 +/- 0.88 micron/s, range 7-11.5 micron/s) in 1 mM ATP-containing motility buffers. In direct comparison, isolated intact 21-S outer arm dynein, from which the beta/IC1 fraction was derived, induced slower microtubule gliding rates (21-S dynein, 5.6 +/- 0.7 micron/s; beta/IC1, 8.7 +/- 1.2 micron/s). These results demonstrate that a single subdomain in dynein, the beta/IC1 ATPase, is sufficient for microtubule sliding activity.  相似文献   

16.
Outer-arm dynein from the sperm of the sea urchin S. purpuratus was adsorbed to mica flakes and visualized by the quick-freeze, deep-etch technique. Replicas reveal particles comprised of two globular heads joined by two irregularly shaped stems which make contact along their length. One head is pear-shaped (18.5 X 12.5 nm) and the other is spherical (14.5-nm diam). The stems are decorated by a complex of bead-like subunits. The same two-headed protein is found in the 21S dynein-1 fraction of sucrose gradients. The beta-heavy chain/intermediate chain 1 (beta/IC-1) dynein subfraction, produced by low-salt dialysis and zonal centrifugation of the high-salt-extracted dynein-1, contains only single-headed molecules with single stems. These heads are predominantly pear-shaped (18.5 X 12.5 nm). Since 21S dynein-1 contains two heavy chains (alpha and beta), and the beta/IC-1 subfraction is comprised of only the beta-heavy chain (Tang et al., 1982, J. Biol. Chem. 257: 508-515), we conclude that each head is formed by a heavy chain, that the pear-shaped head contains the beta-heavy chain, and that the spherical head contains the alpha-heavy chain. The in situ outer dynein arms of demembranated sperm were also studied by the quick-freeze, deep-etch method. When frozen in reactivation buffer devoid of ATP, each arm consists of a large globular head that attaches to the A-microtubule by distally skewed subunits and attaches to the B-microtubule by a slender stalk. In ATP, this head shifts its orientation such that it can be seen to be constructed from two globular domains. We offer possible correlates between the in situ and the in vitro images, and we compare the structure of sea-urchin dynein with dynein previously described from Chlamydomonas and Tetrahymena.  相似文献   

17.
Generating the complex waveforms characteristic of beating cilia requires the coordinated activity of multiple dynein isoforms anchored to the axoneme. We previously identified a complex associated with the C1d projection of the central apparatus that includes primary ciliary dyskinesia protein 1 (Pcdp1). Reduced expression of complex members results in severe motility defects, indicating that C1d is essential for wild-type ciliary beating. To define a mechanism for Pcdp1/C1d regulation of motility, we took a functional and structural approach combined with mutants lacking C1d and distinct subsets of dynein arms. Unlike mutants completely lacking the central apparatus, dynein-driven microtubule sliding velocities are wild type in C1d- defective mutants. However, coordination of dynein activity among microtubule doublets is severely disrupted. Remarkably, mutations in either outer or inner dynein arm restore motility to mutants lacking C1d, although waveforms and beat frequency differ depending on which isoform is mutated. These results define a unique role for C1d in coordinating the activity of specific dynein isoforms to control ciliary motility.  相似文献   

18.
The axonemal core of motile cilia and flagella consists of nine doublet microtubules surrounding two central single microtubules. Attached to the doublets are thousands of dynein motors that produce sliding between neighboring doublets, which in turn causes flagellar bending. Although many structural features of the axoneme have been described, structures that are unique to specific doublets remain largely uncharacterized. These doublet-specific structures introduce asymmetry into the axoneme and are likely important for the spatial control of local microtubule sliding. Here, we used cryo-electron tomography and doublet-specific averaging to determine the 3D structures of individual doublets in the flagella of two evolutionarily distant organisms, the protist Chlamydomonas and the sea urchin Strongylocentrotus. We demonstrate that, in both organisms, one of the nine doublets exhibits unique structural features. Some of these features are highly conserved, such as the inter-doublet link i-SUB5-6, which connects this doublet to its neighbor with a periodicity of 96 nm. We also show that the previously described inter-doublet links attached to this doublet, the o-SUB5-6 in Strongylocentrotus and the proximal 1–2 bridge in Chlamydomonas, are likely not homologous features. The presence of inter-doublet links and reduction of dynein arms indicate that inter-doublet sliding of this unique doublet against its neighbor is limited, providing a rigid plane perpendicular to the flagellar bending plane. These doublet-specific features and the non-sliding nature of these connected doublets suggest a structural basis for the asymmetric distribution of dynein activity and inter-doublet sliding, resulting in quasi-planar waveforms typical of 9+2 cilia and flagella.  相似文献   

19.
ABSTRACT. Tetrahymena thermophila mutants homozygous for the oad mutation become nonmotile when grown at the restrictive temperature of 39° C. Axonemes isolated from nonmotile oad mutants ( oad 39° C axonemes) lack approximately 90% of their outer dynein arms and are deficient in 22S dynein. Here we report that oad 39° C axonemes contain 40% of the 22S dynein heavy chains that wild-type axonemes contain and that oad axonemes do not undergo ATP-induced microtubule sliding in vitro. Wild-type 22S dynein will bind to the outer arm position in oad axonemes and restore ATP-induced microtubule sliding in those axonemes. Unlike wild-type 22S dynein, oad 22S dynein does not bind to the outer arm position in oad axonemes. These data indicate that the oad mutation affects some component of the outer arm dynein itself rather than the outer arm dynein binding site. These data also indicate that oad axonemes can be used to assay outer dynein arm function.  相似文献   

20.
T. Hori  Ø. Moestrup 《Protoplasma》1987,138(2-3):137-148
Summary While green algae usually lack one of the outer dynein arms in the axoneme, flagella of the octoflagellated prasinophytePyramimonas octopus possess dynein arms on all peripheral doublets. The outer dynein arm on doublet no. 1 is modified, and additional structures are associated with doublets no. 2 and 6. The flagellar scales are asymmetrically arranged. Thus the two rows of thick flagellar hairscales are displaced towards doublet no. 6,i.e., in the direction of the effective stroke of each flagellum. The underlayer of small scales includes two nearly opposite double rows scales, arranged in the longitudinal direction of the flagellum. The hairscales emerge from these rows. The double rows are separated on one side by 9, on the other by 11 rows of helically arranged scales. The central pair of microtubules twists, but the axoneme itself (represented by the 9 peripheral doublets), does not seem to rotate. The flagella are arranged in two groups, showing modified 180° rotational symmetry. The effective strokes of the two central flagella are exactly opposite, while the other flagella beat in six intermediate directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号