首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Radiocarbon (14C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average ages of 4–11 years (ranging from <1 to >40 years). Measurements of 14C in the structural tissues of roots known to have grown during 2002 demonstrate that new roots are constructed from recent (<2‐year‐old) photosynthetic products. High Δ14C values in live roots most likely indicate the mean lifetime of the root rather than the isotopic signature of inherited C or C taken up from the soil. Estimates of the mean residence time of C in forest fine roots (inventory divided by loss rate) are substantially shorter (1–3 years) than the age of standing fine root C stocks obtained from radiocarbon (4–11 years). By assuming positively skewed distributions for root ages, we can effectively decouple the mean age of C in live fine roots (measured using 14C) from the rate of C flow through the live root pool, and resolve these apparently disparate estimates of root C dynamics. Explaining the 14C values in soil pore space CO2, in addition, requires that a portion of the decomposing roots be cycled through soil organic matter pools with decadal turnover time.  相似文献   

2.
Characterization of turnover times of fine roots is essential to understanding patterns of carbon allocation in plants and describing forest C cycling. We used the rate of decline in the ratio of 14C to 12C in a mature hardwood forest, enriched by an inadvertent 14C pulse, to investigate fine-root turnover and its relationship with fine-root diameter and soil depth. Biomass and Delta14C values were determined for fine roots collected during three consecutive winters from four sites, by depth, diameter size classes (< 0.5 or 0.5-2 mm), and live-or-dead status. Live-root pools retained significant 14C enrichment over 3 yr, demonstrating a mean turnover time on the order of years. However, elevated Delta14C values in dead-root pools within 18 months of the pulse indicated an additional component of live roots with short turnover times (months). Our results challenge assumptions of a single live fine-root pool with a unimodal and normal age distribution. Live fine roots < 0.5 mm and those near the surface, especially those in the O horizon, had more rapid turnover than 0.5-2 mm roots and deeper roots, respectively.  相似文献   

3.
Abstract. Temporal variations in the spatial distribution of fine-root mass and nutrient concentrations were studied in recently harvested and mature bamboo savanna sites in the dry tropical Vindhyan region in India. The soil block method and root-free-soil cages were used to investigate fine-root dynamics. The mean annual fine-root biomass was 596 and 690 g/m2 in harvested and mature sites, respectively. The fine-root net production calculated by different methods ranged from 486 to 749 g m-2 yr-1 in the harvested site and 485 to 875 g m-2 yr1 in the mature site. All fine-root mass fractions decreased with increase in distance from the base of bamboo clumps, and the herb root mass showed the reverse trend. Bamboo fine roots were better developed in the 10 - 20 cm soil depth and those of herbs in the upper 10 cm. The ingrowth of fine roots in root-free-soil cages showed maximum biomass accumulation during the rainy season (64.2 - 69.9 g m-2 mo-1) and minimum in the summer (4.5 - 7.5 g m-2 mo-1). The fine-root nutrient concentrations were strongly related to their diameter. The fine-root nutrient concentrations varied considerably in different seasons. The highest nutrient concentrations in all categories were recorded in summer followed by winter and rainy seasons. Nutrient concentrations in live roots were always greater than those found in dead roots in different diameter classes. We suggest the occurrence of nutrient retranslocation from senescent roots to surviving roots in bamboo savanna. Fine roots in the bamboo savanna increased as a function of N-mineralization and nitrification rates. This tendency further increased after the harvest of bamboo, suggesting the crucial role of fine roots in the bamboo savanna after the harvesting of bamboo culms.  相似文献   

4.
To test the reliability of the radiocarbon method for determining root age, we analyzed fine roots (originating from the years 1985?C1993) from ingrowth cores with known maximum root age (1?C6?years old). For this purpose, three Scots pine (Pinus sylvestris L.) stands were selected from boreal forests in Finland. We analyzed root 14C age by the radiocarbon method and compared it with the above-mentioned known maximum fine root age. In general, ages determined by the two methods (root 14C age and ingrowth core root maximum age) were in agreement with each other for roots of small diameter (<0.5?mm). By contrast, in most of the samples of fine roots of larger diameter (1.5?C2?mm), the 14C age of root samples of 1987?C1989 exceeded the ingrowth core root maximum age by 1?C10?years. This shows that these roots had received a large amount of older stored carbon from unknown sources in addition to atmospheric CO2 directly from photosynthesis. We conclude that the 14C signature of fine roots, especially those of larger diameter, may not always be indicative of root age, and that further studies are needed concerning the extent of possible root uptake of older carbon and its residence time in roots.  相似文献   

5.
Investigations were carried out in six forest types in areas surrounding two Swedish nuclear power plants (Forsmark and Laxemar). The aim of the investigation was to determine the spatial distribution of fine-root biomass (live), necromass (dead) and standing crop (live + dead) and to test the use of the live/dead ratio as a vitality criterion. Soil cores were taken to depths with insignificant amounts of roots. The total amount of fine-root biomass (<1 mm in diameter) of tree species in the soil profile was 267, 317 and 235 g m?2 for the Forsmark and 137, 371 and 50 g m?2 for the Laxemar sites. The related necromass was 119, 226 and 184 g m?2 and 87, 245 and 271 g m?2. The biomass in the humus layer was 47, 7 and 48% for the Forsmark and 34, 26 and 7% for the Laxemar sites, as a percentage of the total live + dead fine roots in the soil profile. The related necromass in the humus layer was 13, 2 and 30% for the Forsmark and 13, 2 and 28% for the Laxemar sites. The live/dead ratio decreased with depth for both tree— and field-layer species and seems to be a most powerful vitality criterion of fine roots.  相似文献   

6.
细根是植物吸收水分和养分的主要器官, 细根生物量对盐土地人工绿化植被生态修复具有重要意义。以3种人工林为研究对象, 分别对其细根生物量、垂直分布及各形态指标的变化特征进行分析。结果表明, 响叶杨(Populus adenopoda)林、普陀樟(Cinnamomum japonicum)林和落羽杉(Taxodium distichum)林0-40 cm土层的平均细根生物量分别为1 699.75、498.50和520.06 g·m-2。3种林分在0-10 cm土层中的细根生物量占整个细根生物量的50%以上, 随着土层的增加细根生物量呈现指数减少(P<0.05)。在生长季节内细根生物量呈双峰变化, 不同月份间存在显著差异。活细根生物量和比根长均表现为普陀樟林<落羽杉林<响叶杨林。将细根各项指标与3种环境因子进行相关分析, 发现土壤含水量与活细根生物量及根长密度呈显著正相关(P<0.01)。CCA分析表明, 土壤含盐量是影响活细根各项指标垂直变化的主要限制因子, 而高盐可能对细根生物量及分布有不利影响。  相似文献   

7.
The annual dynamics of live and dead fine roots for trees and the field layer species and live/dead ratios were investigated at a coniferous fern forest (Picea abies L. Karts) in Sweden. Our methods of estimating the average amount of fine roots involved the periodic sampling of fine roots in sequential cores on four sampling occasions. The highest live/dead ratio was found in the upper part of the humus layer for both tree and field-layer species and decreased with depth. Most tree fine roots on the four sampling occasions were found in the mineral soil horizon, where 86, 81, 85 and 89% of <1 mm and 89, 88, 89 and 92% of <2 mm diameter of the total amounts of live fine roots in the soil profile were found. The mean amounts of live fine roots of tree species for the total soil profile on the four sampling occasions was 317, 150, 139 and 248 g m?2 for <1 mm and 410, 225, 224 and 351 g m?2 for <2 mm diameter fine roots. The related amount of dead fine roots was 226, 321, 176 and 299 g m?2 and 294, 424, 282 and 381 g m?2, respectively. Average amounts of live and dead fine-roots and live/dead ratios from other Picea abies forest ecosystems were within the range of our estimates. The production of fine roots, <1 and <2 mm in diameter, estimated from the annual increments in live fine roots, was 207 and 303 g m?2. The related accumulation of dead fine roots was 257 and 345 g m?2, The turnover rate of tree fine roots <1 mm in diameter in the total soil profile amounted to 0.7 yr?1 for live and 0.8 yr?1 for dead fine roots. The related turnover rates for tree fine roots <2 mm were 0.4 yr?1 and 0.7 yr?1. Our data, although based on minimum estimates of the annual fluxes of live and dead fine roots, suggests a carbon flow to the forest soil from dead fine-roots even more substantial than from the needle litter fall. Fine-root data from several Picea abies forest ecosystems, suggest high turnover rates of both live and dead tree fine-roots.  相似文献   

8.
细根具有良好的可塑性, 不同根序等级的细根会表现不同的策略来适应土壤资源有效性的改变, 了解各级细根对土壤资源有效性的可塑性反应对认识细根的养分和水分吸收规律、预测碳(C)在地下的分配特点具有重要意义。该文以四川省丹陵县台湾桤木(Alnus formosana)-扁穗牛鞭草(Hemarthria compressa)复合模式为研究对象, 采用施肥处理, 应用土柱法采样, 探讨了施肥对台湾桤木-扁穗牛鞭草模式土壤表层(0-10 cm)和亚表层(10-20 cm)台湾桤木1-5级细根的生物量、形态特征(直径、比根长)、全C和全氮(N)含量的影响。结果表明: (1)台湾桤木1-5级细根直径随根序的增大而增加, 施肥降低土壤表层台湾桤木各级细根直径而增加了土壤亚表层台湾桤木各级细根直径; 台湾桤木1-5级细根比根长则随根序的增加而减小, 施肥增加了台湾桤木各级细根的比根长, 且施肥极显著增加了表层和亚表层台湾桤木前三级细根的比根长(p < 0.01)。(2)台湾桤木1-5级细根生物量均随土层深度的增加而减小, 施肥减少了台湾桤木各个土层各级细根生物量, 且显著降低了台湾桤木前三级细根生物量占总生物量的比例(p < 0.05), 而增加了4、5级细根生物量。(3)台湾桤木3级细根全C最大, 1级根最小, 且土壤表层台湾桤木各级细根全C含量大于亚表层; 施肥降低了台湾桤木各级细根全C含量, 但影响并不显著(p > 0.05)。台湾桤木细根全N含量随根序的增加而降低, 且土壤表层1-5级细根全N含量均高于亚表层; 施肥极显著(p < 0.01)增加了土壤表层1级细根及亚表层1、2级细根的全N含量, 而对于3-5级细根全N含量则影响不显著(p > 0.05)。以上结果显示, 当土壤资源有效性变化时, 各级根序细根会作出不同的可塑性反应, 且施肥对各级细根的影响主要表现在低级根上。  相似文献   

9.
We investigated the effects of seasonal changes in soil moisture on the morphological and growth traits of fine roots (<2?mm in diameter) in a mature Turkey-oak stand (Quercus cerris L.) in the Southern Apennines of Italy. Root samples (diameter:?<0.5, 0.5?C1.0, 1.0?C1.5, and 1.5?C2.0?mm) were collected with the Auger method. Mean annual fine-root mass and length on site was 443?g?m?2 (oak fine roots 321?g?m?2; other species 122?g?m?2) and 3.18?km?m?2 (oak fine roots 1.14?km?m?2; other species 2.04?km?m?2), respectively. Mean specific root length was 8.3?m?g?1. All fine-root traits displayed a complex pattern that was significantly related to season. In the four diameter classes, both fine-root biomass and length peaked in summer when soil water content was the lowest and air temperature the highest of the season. Moreover, both fine-root biomass and length were inversely related with soil moisture (p?<?0.001). The finest roots (<0.5?mm in diameter) constituted an important fraction of total fine-root length (79?%), but only 21?% of biomass. Only in this root class, consequent to change in mean diameter, specific root length peaked when soil water content was lowest showing an inverse relationship (p?<?0.001). Furthermore, fine-root production and turnover decreased with increasing root diameter. These results suggest that changes in root length per unit mass, and pulses in root growth to exploit transient periods of low soil water content may enable trees to increase nutrient and water uptake under seasonal drought conditions.  相似文献   

10.
Characterizing the use of carbon (C) reserves in trees is important for understanding regional and global C cycles, stress responses, asynchrony between photosynthetic activity and growth demand, and isotopic exchanges in studies of tree physiology and ecosystem C cycling. Using an inadvertent, whole-ecosystem radiocarbon (14C) release in a temperate deciduous oak forest and numerical modeling, we estimated that the mean age of stored C used to grow both leaf buds and new roots is 0.7 years and about 55% of new-root growth annually comes from stored C. Therefore, the calculated mean age of C used to grow new-root tissue is ∼0.4 years. In short, new roots contain a lot of stored C but it is young in age. Additionally, the type of structure used to model stored C input is important. Model structures that did not include storage, or that assumed stored and new C mixed well (within root or shoot tissues) before being used for root growth, did not fit the data nearly as well as when a distinct storage pool was used. Consistent with these whole-ecosystem labeling results, the mean age of C in new-root tissues determined using 'bomb-14C' in three additional forest sites in North America and Europe (one deciduous, two coniferous) was less than 1–2 years. The effect of stored reserves on estimated ages of fine roots is unlikely to be large in most natural abundance isotope studies. However, models of root C dynamics should take stored reserves into account, particularly for pulse-labeling studies and fast-cycling roots (<1 years).  相似文献   

11.
Scots pines (Pinus sylvestris L.) in the inner-Alpine dry valleys of Switzerland have suffered from increased mortality during the past decades, which has been caused by longer and more frequent dry periods. In addition, a proceeding replacement of Scots pines by pubescent oaks (Quercus pubescens Willd.) has been observed. In 2003, an irrigation experiment was performed to track changes by reducing drought pressure on the natural pine forest. After nine years of irrigation, we observed major adaptations in the vegetation and shifts in Scots pine fine root abundance and structure. Irrigation permitted new plant species to assemble and promote canopy closure with a subsequent loss of herb and moss coverage. Fine root dry weight increased under irrigation and fine roots had a tendency to elongate. Structural composition of fine roots remained unaffected by irrigation, expressing preserved proportions of cellulose, lignin and phenolic substances. A shift to a more negative δ13C signal in the fine root C indicates an increased photosynthetic activity in irrigated pine trees. Using radiocarbon (14C) measurement, a reduced mean age of the fine roots in irrigated plots was revealed. The reason for this is either an increase in newly produced fine roots, supported by the increase in fine root biomass, or a reduced lifespan of fine roots which corresponds to an enhanced turnover rate. Overall, the responses belowground to irrigation are less conspicuous than the more rapid adaptations aboveground. Lagged and conservative adaptations of tree roots with decadal lifespans are challenging to detect, hence demanding for long-term surveys. Investigations concerning fine root turnover rate and degradation processes under a changing climate are crucial for a complete understanding of C cycling.  相似文献   

12.
根系具有高度的形态和生理功能异质性, 在森林生态系统碳和养分循环中起重要作用。根系分枝的顺序构成根序,是根系最基本的构型特征, 根序代表根系不同的发育阶段。然而, 目前直接测定不同根序细根生理功能的研究很少。以落叶松(Larix gmelinii)和水曲柳(Fraxinus mandshurica)的细根为研究对象, 使用气相氧电极测定不同根序细根的呼吸速率, 探讨根系呼吸速率与其形态、结构和组织氮浓度的关系。结果表明: 落叶松和水曲柳细根的直径、根长和维管束直径均随着根序的增加(1–5级)而增加, 而比根长、组织氮浓度和呼吸速率随着根序的增加而降低, 各根序之间差异显著(P < 0.05); 1级根比根长最大、皮层组织发达、组织氮浓度最高且呼吸速率也最高, 其呼吸速率分别为17.57 nmolO2·g–1·s–1(落叶松)和18.80 nmolO2·g–1·s–1(水曲柳), 比5级根分别高148%(落叶松)和124%(水曲柳); 并且, 落叶松根的呼吸速率几乎有96%与根系组织氮浓度相关, 而水曲柳根的呼吸速率则有89%与根系组织氮浓度相关。上述结果说明, 细根的形态和生理功能异质性是紧密相连的, 低级根的形态、结构决定其功能是吸收养分和水, 而高级根的形态、结构决定其功能是运输和贮存养分。  相似文献   

13.
Very limited information regarding fine-root growth and production of tropical dry forests is available. Fine roots and small roots are defined as rootlets with diameters < 1 mm and 1.1 to 5 mm, respectively. Live and dead fine-and small-root mass fluctuations were studied over one year by means of soil core analyses in the deciduous dry forest of Chamela, Mexico, at 19° 30, 2 km inland from the Pacific Ocean. By means of systematically varying the distance of soil core extraction points from tree stems, it was shown that random core collection is justified. A difference between fine-root biomass on south and north facing slopes was documented, although this difference was significant only during the rainy season. The live/dead ratio of fine roots was highest during the rainy period. The annual fine-root production for 1989 was estimated at 4.23 Mg ha-1 by summing significant fine-root biomass changes between sampling dates. This value is higher than most of the comparable data from other ecosystems.  相似文献   

14.
Atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO2 and O3 effects on roots, particularly fine-root life span, a critical demographic parameter and determinant of soil C and N pools and cycling rates. We conducted a study in which ponderosa pine (Pinus ponderosa) seedlings were exposed to two levels of CO2 and O3 in sun-lit controlled-environment mesocosms for 3 years. Minirhizotrons were used to monitor individual fine roots in three soil horizons every 28 days. Proportional hazards regression was used to analyze effects of CO2, O3, diameter, depth, and season of root initiation on fine-root survivorship. More fine roots were produced in the elevated CO2 treatment than in ambient CO2. Elevated CO2, increasing root diameter, and increasing root depth all significantly increased fine-root survivorship and median life span. Life span was slightly, but not significantly, lower in elevated O3, and increased O3 did not reduce the effect of elevated CO2. Median life spans varied from 140 to 448 days depending on the season of root initiation. These results indicate the potential for elevated CO2 to increase the number of fine roots and their residence time in the soil, which is also affected by root diameter, root depth, and phenology.  相似文献   

15.
细根对植物群落功能的发挥和土壤碳库及全球碳循环具有重要意义。利用连续土钻取样法和分解袋法,于2010年5—10月整个生长季节内,对三工河流域两处长势不同的琵琶柴群落的细根(φ2mm)生物量、分解与周转规律及其与土壤环境的关系进行研究。结果表明,群落1和群落2土壤容重、土壤含水量、pH和电导率等土壤因子差异显著。两群落的细根生物量表现出相同的季节和垂直变化趋势,即在5—8月逐渐增加,8月达到最大值,9—10月份逐渐下降。平均月细根生物量分别为51.55g/m2和133.93 g/m2。群落1的活细根和死细根分别占总细根生物量的69.68%和30.32%,群落2活细根和死细根分别占总细根生物量的72.61%和27.39%。在垂直变化上,随土壤深度增加细根生物量先增加后逐渐降低,其中10—20cm土壤层次细根生物量比例最大,群落1和群落2分别占46.48%和29.15%。群落1和群落2的细根年分解率分别为34.82%、42.91%。达到半分解和95%分解时,群落1需要630 d和2933 d,群落2需要467 d和2238 d。群落1和群落2的细根净生产力分别为50.67 g/m2和178.15 g/m2,细根年周转率分别为1.41次、1.69次。逐步回归分析结果显示细根动态受土壤水分、pH值、电导度等土壤因子的显著影响,琵琶柴细根具有相对较低的分解速率和较高的周转速率。  相似文献   

16.
陈建文  史建伟  王孟本 《生态学报》2016,36(13):4021-4033
采用微根管技术(Minirhizotron technique)对晋西北黄土丘陵区幼林(5a)与成林(30a)柠条(Caragana korshinskii)细根动态进行了为期5a的原位观测。基于2008—2011年的观测数据,对两林龄柠条不同土层细根现存量动态进行了比较研究,并探讨了两林龄柠条细根现存量与不同年际间水热条件的差异。结果表明:在0—100 cm土壤剖面,柠条幼林与成林细根现存量的峰值均位于50 cm土层以下,成林细根现存量峰值位于50—60 cm土层,幼林细根现存量峰值则从观测期初的90—100 cm土层到观测期末的80—90 cm土层。各观测年内,两林地各土层每年生长季初(3—4月)会出现细根现存量的积累;30—100 cm土层中,幼林细根最大现存量出现时间均较成林早,而生长季末(9—10月),所有土层幼林细根现存量下降均较成林快。柠条细根现存量的垂直分布主要受土壤水分影响,季节变化受温度的影响更大,年际间细根现存量的差异主要是由于年降雨量变化;幼林细根现存量受降水、土壤水分、土壤温度等的影响比成林大。  相似文献   

17.
The vitality of fine roots in a Norway spruce stand subjected to application of ammonium sulphate (NS), wood ash (A) and nitrogen-free fertilizer (V) respectively, was investigated using i) vitality classification of fine roots based on morphological characteristics and ii) the triphenyl tetrazolium chloride (TTC) method of estimating dehydrogenase activity.Although the NS-treated areas showed a 30% increase in above-ground production in response to the NS-application, the vitality of the fine-root system in the humus layer appeared to be in a state of deterioration, as indicated by a decrease in fine-root biomass, an increased amount of dead fine (0–1 mm) and small (1–2 mm) roots, a decreased specific root length (SRL = fine root length/fine root dry weight) and an increased dehydrogenase activity. The impact of the the A and V treatments was reflected in a decrease in fine-root biomass and an increase in SRL. The results make it clear that in order to study the vitality of forest trees, both fine-root studies and studies of above-ground tree parts are necessary.  相似文献   

18.
 该文研究了华北落叶松(Larix principis-rupprechtii)人工林细根生物量水平分布和季节变化特征。采用钻土芯法(土钻内径7.0 cm), 在距树干20、50和100 cm处设取样点, 每个样点处分3层(0~10、11~20和21~30 cm)钻取土芯, 取样时间为5、7、9和10月。华北落叶松人工林细根(≤2 mm)生物量全年平均值为224.89 g&#8226;m–2, 在水平分布上表现为100 cm处细根生物量最大(244.20 g&#8226;m–2), 其次为20 cm处(221.03 g&#8226;m–2), 50 cm处最少(209.45 g&#8226;m–2)。在0~30 cm土层, 总细根(包括活跟和死根)生物量季节变化范围在169.67~263.09 g&#8226;m–2之间, 9月细根生物量最大, 5月细根生物量最少。0~10 cm土层细根生物量季节变化差异显著(p<0.05), 11~20和21~30 cm差异不显著(p>0.05)。距树干100和20 cm处(0~10 cm土层), 细根生物量的季节变化差异明显(p<0.05), 9月总细根生物量最大(172.82和185.68 g&#8226;m–2), 5月总细根生物量最少(69.28和73.47 g&#8226;m–2); 50 cm处季节变化差异不明显(p>0.05)。细根生物量分布和季节变化不仅受土壤垂直格局影响同时也与距树干不同水平距离有很大的关系。  相似文献   

19.
We investigated how temperature and nutrient availability regulate fine-root productivity in nine tropical rainforest ecosystems on two altitudinal gradients with contrasting soil phosphorus (P) availabilities on Mount Kinabalu, Borneo. We measured the productivity and the nutrient contents of fine roots, and analyzed the relationships between fine-root parameters and environmental factors. The fine-root net primary productivity (NPP), total NPP, and ratio of fine-root NPP to total NPP differed greatly among the sites, ranging from 72 to 228 (g m?2 year?1), 281–2240 (g m?2 year?1), and 0.06–0.30, respectively. A multiple-regression analysis suggested a positive effect of P availability on total NPP, whereas fine-root NPP was positively correlated with mean annual temperature and with P and negatively correlated with N. The biomass and longevity of fine roots increased in response to the impoverishment of soil P. The carbon (C) to P ratio (C/P) of fine roots was significantly and positively correlated with the P-use efficiency of above-ground litter production, indicating that tropical rainforest trees dilute P in fine roots to maintain the C allocation ratio to these roots. We highlighted the mechanisms regulating the fine-root productivity of tropical rainforest ecosystems in relation to the magnitude of nutrient deficiency. The trees showed C-conservation mechanisms rather than C investment as responses to decreasing soil P availability, which demonstrates that the below-ground systems at these sites are strongly limited by P, similar to the above-ground systems.  相似文献   

20.
Elevated CO2 can increase fine root biomass but responses of fine roots to exposure to increased CO2 over many years are infrequently reported. We investigated the effect of elevated CO2 on root biomass and N and P pools of a scrub-oak ecosystem on Merritt Island in Florida, USA, after 7 years of CO2 treatment. Roots were removed from 1-m deep soil cores in 10-cm increments, sorted into different categories (<0.25 mm, 0.25–1 mm, 1–2 mm, 2 mm to 1 cm, >1 cm, dead roots, and organic matter), weighed, and analyzed for N, P and C concentrations. With the exception of surface roots <0.25 mm diameter, there was no effect of elevated CO2 on root biomass. There was little effect on C, N, or P concentration or content with the exception of dead roots, and <0.25 mm and 1–2 mm diameter live roots at the surface. Thus, fine root mass and element content appear to be relatively insensitive to elevated CO2. In the top 10 cm of soil, biomass of roots with a diameter of <0.25 mm was depressed by elevated CO2. Elevated CO2 tended to decrease the mass and N content of dead roots compared to ambient CO2. A decreased N concentration of roots <0.25 mm and 1–2 mm in diameter under elevated CO2 may indicate reduced N supply in the elevated CO2 treatment. Our study indicated that elevated CO2 does not increase fine root biomass or the pool of C in fine roots. In fact, elevated CO2 tends to reduce biomass and C content of the most responsive root fraction (<0.25 mm roots), a finding that may have more general implications for understanding C input into the soil at higher atmospheric CO2 concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号