首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In pathological situations, different modes of cell death are observed, and information on the role and uptake of nonapoptotic corpses is scarce. Here, we modeled two distinct forms of death in human Jurkat T cells treated with staurosporine: classical apoptosis under normal culture conditions and programmed death with necrotic morphology under ATP-depleting conditions (necPCD). When offered to phagocytes, both types of cell corpses (but not heat-killed unscheduled necrotic cells) reduced the release of the proinflammatory cytokine TNF from the macrophages. The necPCD cells were efficiently engulfed by macrophages and microglia, and from mixtures of necPCD and apoptotic cells macrophages preferentially engulfed the necrotic cells. Using a newly developed assay, we demonstrated that phosphatidylserine is translocated to the surface of such necrotic cells. We demonstrate that this can occur independently of calcium signals, and that surface phosphatidylserine is essential for the uptake of necrotic cells by both human macrophages and murine microglia.  相似文献   

3.
The present study characterized two different internalization mechanisms used by macrophages to engulf apoptotic and necrotic cells. Our in vitro phagocytosis assay used a mouse macrophage cell line, and murine L929sAhFas cells that are induced to die in a necrotic way by TNFR1 and heat shock or in an apoptotic way by Fas stimulation. Scanning electron microscopy (SEM) revealed that apoptotic bodies were taken up by macrophages with formation of tight fitting phagosomes, similar to the 'zipper'-like mechanism of phagocytosis, whereas necrotic cells were internalized by a macropinocytotic mechanism involving formation of multiple ruffles directed towards necrotic debris. Two macropinocytosis markers (Lucifer Yellow (LY) and horseradish peroxidase (HRP)) were excluded from the phagosomes containing apoptotic bodies, but they were present inside the macropinosomes containing necrotic material. Wortmannin (phosphatidylinositol 3'-kinase (PI3K) inhibitor) reduced the uptake of apoptotic cells, but the engulfment of necrotic cells remained unaffected. Our data demonstrate that apoptotic and necrotic cells are internalized differently by macrophages.  相似文献   

4.
A major function of macrophages is to engulf apoptotic cells to prevent them from releasing noxious materials as they die. Milk fat globule-EGF-factor 8 (MFG-E8) is a glycoprotein secreted by activated macrophages that works as a bridge between apoptotic cells and phagocytes by specifically recognizing phosphatidylserine exposed on apoptotic cells. In this study, we found that developmental endothelial locus-1 (Del-1), originally identified as an embryonic endothelial cell protein that binds alphavbeta3 integrin, is structurally and functionally homologous to MFG-E8. That is, both consist of a signal sequence, two epidermal growth factor domains and two factor VIII-homologous domains (C1 and C2). Del-1 bound to the apoptotic cells by recognizing phosphatidylserine via the factor VIII-homologous domains with an affinity similar to that of MFG-E8. The phagocytic activity of NIH 3T3 cells against apoptotic cells was enhanced by Del-1 through an interaction between the epidermal growth factor domain in Del-1 and alphavbeta3 integrin expressed in the NIH 3T3 cells. Screening of primary macrophages and macrophage cell lines for the expression of MFG-E8 and Del-1 indicated that MFG-E8 and Del-1 are expressed in different sets of macrophages. These results suggest the existence of macrophage subsets that use MFG-E8 or Del-1 differently to engulf apoptotic cells.  相似文献   

5.
Cell death and removal of cell corpses in a timely manner is a key event in both physiological and pathological situations including tissue homeostasis and the resolution of inflammation. Phagocytic clearance of cells dying by apoptosis is a complex sequential process comprising attraction, recognition, tethering, signalling and ultimately phagocytosis and degradation of cell corpses. A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within this process. The role of myeloid cell CD14 in mediating apoptotic cell interactions with macrophages has long been known though key molecules and residues involved have not been defined. Here we sought to further dissect the function of CD14 in apoptotic cell clearance. A novel panel of THP-1 cell-derived phagocytes was employed to demonstrate that CD14 mediates effective apoptotic cell interactions with macrophages in the absence of detectable TLR4 whilst binding and responsiveness to LPS requires TLR4. Using a targeted series of CD14 point mutants expressed in non-myeloid cells we reveal CD14 residue 11 as key in the binding of apoptotic cells whilst other residues are reported as key for LPS binding. Importantly we note that expression of CD14 in non-myeloid cells confers the ability to bind rapidly to apoptotic cells. Analysis of a panel of epithelial cells reveals that a number naturally express CD14 and that this is competent to mediate apoptotic cell clearance. Taken together these data suggest that CD14 relies on residue 11 for apoptotic cell tethering and it may be an important tethering molecule on so called ‘non-professional’ phagocytes thus contributing to apoptotic cell clearance in a non-myeloid setting. Furthermore these data establish CD14 as a rapid-acting tethering molecule, expressed in monocytes, which may thus confer responsiveness of circulating monocytes to apoptotic cell derived material.  相似文献   

6.
Programmed cell clearance is a physiological process of elimination of apoptotic cell corpses. Recent studies have disclosed several ligand-receptor interactions that dictate the recognition or non-recognition of cells by macrophages and other phagocytes. The externalization of the anionic phospholipid, phosphatidylserine is effectively recognized by specific receptors on professional phagocytes and facilitates the clearance of apoptotic cells. Macrophage disposal of cells at sites of inflammation is believed to play an important role in the resolution of the inflammatory process, and recent studies have suggested a role for the NADPH oxidase in the process of macrophage elimination of activated neutrophils. The present review will focus on the molecular regulation of programmed cell clearance, and discuss the role of cell elimination in the resolution of inflammation.  相似文献   

7.
During apoptosis, cells acquire new activities that enable them to modulate the fate and function of interacting phagocytes, particularly macrophages (mϕ). Although the best known of these activities is anti-inflammatory, apoptotic targets also influence mϕ survival and proliferation by modulating proximal signaling events, such as MAPK modules and Akt. We asked whether modulation of these same signaling events extends to epithelial cells, a minimally phagocytic cell type. We used BU.MPT cells, a mouse kidney epithelial cell line, as our primary model, but we also evaluated several epithelial cell lines of distinct tissue origins. Like mϕ, mouse kidney epithelial cells recognized apoptotic and necrotic targets through distinct non-competing receptors, albeit with lower binding capacity and markedly reduced phagocytosis. Also, modulation of inflammatory activity and MAPK-dependent signaling by apoptotic and necrotic targets was indistinguishable in kidney epithelial cells and mϕ. In contrast, modulation of Akt-dependent signaling differed dramatically between kidney epithelial cells and mϕ. In kidney epithelial cells, modulation of Akt was linked to target cell recognition, independently of phagocytosis, whereas in mϕ, modulation was linked to phagocytosis. Moreover, recognition of apoptotic and necrotic targets by kidney epithelial cells elicited opposite responses; apoptotic targets inhibited whereas necrotic targets stimulated Akt activity. These data confirm that nonprofessional phagocytes recognize and respond to dying cells, albeit in a manner partially distinct from mϕ. By acting as sentinels of environmental change, apoptotic and necrotic targets may permit neighboring viable cells, especially non-migratory epithelial cells, to monitor and adapt to local stresses.  相似文献   

8.
Macrophages from animals prone to autoimmune (type 1) diabetes differ from those of diabetes-resistant animals in processing and clearing apoptotic cells. Using in vitro time-course assays of the number of engulfed apoptotic cells observed within macrophages, we quantified these differences in non-obese diabetic (NOD) versus Balb/c mice. Simple models lead to several elementary parameter estimation techniques. We used these to compute approximate rates of macrophage engulfment and digestion of apoptotic cells from basic features of the data (such as initial rise-times, phagocytic index and percent phagocytosis). Combining these estimates with full fitting of a sequence of model variants to the data, we find that macrophages from normal (Balb/c) mice engulf apoptotic cells up to four times faster than macrophages from the diabetes-prone (NOD) mice. Further, Balb/c macrophages appear to undergo an activation step before achieving their high engulfment rate. In NOD macrophages, we did not see evidence for this activation step. Rates of digestion of engulfed apoptotic cells by macrophages are similar in both types. Since macrophage clearance is an important mechanism of disposal of self-antigen, these macrophage defects could potentially be a factor in predisposition to type 1 diabetes.  相似文献   

9.
Guzik K  Potempa J 《Biochimie》2008,90(2):405-415
Physiologically the only acceptable fate for almost all damaged or unwanted cells is their apoptotic death, followed by engulfment of the corpses by healthy neighbors or professional phagocytes. Efficient clearance of cells that have succumbed to apoptosis is crucial for normal tissue homeostasis, and for the modulation of immune responses. The disposal of apoptotic cells is finely regulated by a highly redundant system of receptors, bridging molecules and 'eat me' signals. The complexity of the system is reflected by the term: 'engulfment synapse', used to describe the interaction between a phagocytic cell and its target. In healthy humans, dying neutrophils are the most abundant and important targets for such recognition and engulfment. In inflammation the scope and importance of this complicated task is further increased. Paradoxically, despite growing evidence highlighting the priority of neutrophils clearance, the recognition of these cells by phagocytes is not as well understood as the recognition of other apoptotic cell types. New findings indicate that the interaction of phosphatidylserine (PS) on apoptotic neutrophils with its receptor on macrophages is not as critical for the specific clearance of neutrophil corpses it was previously believed. In this review we focus on recent findings regarding alternative, PS-independent "eat me" signals expressed on neutrophils during cell death and activation. Based on our own research, we emphasize the clearance of dying neutrophils, especially at the focus of bacterial infection; and the associated inflammatory reaction, which occurs in a highly proteolytic milieu containing both host and bacteria-derived proteinases. In these environments, eat-me signals expressed by neutrophils are drastically modified; arguing against the phospholipid-based detection of apoptotic cells, but supporting the importance of proteinaceous ligand(s) for the recognition of neutrophils by macrophages. In this context we discuss the effect of the gingipain R (Rgp) proteinases from Porphyromonas gingivalis on neutrophils interactions with macrophages. Since the recognition of apoptotic neutrophils is an important fundamental process, serving multiple functions in the regulation of immunity and homeostasis, we hypothesize that many pathogenic bacteria may have developed similar strategies to confuse macrophage-neutrophil interaction as a common pathogenic strategy.  相似文献   

10.
Cell corpses generated during CNS development are eliminated through phagocytosis performed by a variety of cells, including mesenchyme-derived macrophages and microglia, or glial cells originating in the neurogenic ectoderm. Mounting evidence indicates that in different species, phagocytes not only clear cell corpses but also engulf still-living neural cells or axons, and thereby promote cell death or axon pruning. Knowledge of the mechanisms of corpse recognition by engulfing cells provides molecular signals to this new role for phagocytes. These observations support a conserved and instructive role for phagocytosis in the execution of regressive events during neurogenesis.  相似文献   

11.
Galvin BD  Kim S  Horvitz HR 《Genetics》2008,179(1):403-417
Two types of cell death have been studied extensively in Caenorhabditis elegans, programmed cell death and necrosis. We describe a novel type of cell death that occurs in animals containing mutations in either of two genes, lin-24 and lin-33. Gain-of-function mutations in lin-24 and lin-33 cause the inappropriate deaths of many of the Pn.p hypodermal blast cells and prevent the surviving Pn.p cells from expressing their normal developmental fates. The abnormal Pn.p cells in lin-24 and lin-33 mutant animals are morphologically distinct from the dying cells characteristic of C. elegans programmed cell deaths and necrotic cell deaths. lin-24 encodes a protein with homology to bacterial toxins. lin-33 encodes a novel protein. The cytotoxicity caused by mutation of either gene requires the function of the other. An evolutionarily conserved set of genes required for the efficient engulfment and removal of both apoptotic and necrotic cell corpses is required for the full cell-killing effect of mutant lin-24 and lin-33 genes, suggesting that engulfment promotes these cytotoxic cell deaths.  相似文献   

12.
Engulfment of apoptotic cells by phagocytes is important throughout development and adult life. When phagocytes engulf apoptotic cells, they increase their cellular contents including cholesterol and phospholipids, but how the phagocytes respond to this increased load is poorly understood. Here, we identify one type of a phagocyte response, wherein the recognition of apoptotic cells triggers enhanced cholesterol efflux (to apolipoprotein A-I) from macrophages. Phosphatidylserine (PS) exposed on apoptotic cells was necessary and sufficient to stimulate the efflux response. A major mechanism for this enhanced efflux by macrophages was the upregulation of the mRNA and protein for ABCA1, a membrane transporter independently linked to cholesterol efflux as well as engulfment of apoptotic cells. This increase in phagocyte ABCA1 levels required the function of nuclear receptor LXRalpha/beta, a known regulator of cholesterol homeostasis in humans and mice. Taken together, these data reveal a "homeostatic program" initiated in phagocytes that include a proximal membrane signaling event initiated by PS recognition, a downstream signaling event acting through nuclear receptors, and an effector arm involving upregulation of ABCA1, in turn promoting reverse cholesterol transport from the phagocytes. These data also have implications for macrophage handling of contents derived from apoptotic versus necrotic cells in atherosclerotic lesions.  相似文献   

13.
Apoptotic cells are cleared by phagocytosis during development, homeostasis, and pathology. However, it is still unclear how necrotic cells are removed. We compared the phagocytic uptake by macrophages of variants of L929sA murine fibrosarcoma cells induced to die by tumor necrosis factor-induced necrosis or by Fas-mediated apoptosis. We show that apoptotic and necrotic cells are recognized and phagocytosed by macrophages, whereas living cells are not. In both cases, phagocytosis occurred through a phosphatidylserine-dependent mechanism, suggesting that externalization of phosphatidylserine is a general trigger for clearance by macrophages. However, uptake of apoptotic cells was more efficient both quantitatively and kinetically than phagocytosis of necrotic cells. Electron microscopy showed clear morphological differences in the mechanisms used by macrophages to engulf necrotic and apoptotic cells. Apoptotic cells were taken up as condensed membrane-bound particles of various sizes rather than as whole cells, whereas necrotic cells were internalized only as small cellular particles after loss of membrane integrity. Uptake of neither apoptotic nor necrotic L929 cells by macrophages modulated the expression of proinflammatory cytokines by the phagocytes.  相似文献   

14.
Apoptotic cells are swiftly engulfed by macrophages to prevent the release of noxious materials from dying cells. Apoptotic cells expose phosphatidylserine (PtdSer) on their surface, and macrophages engulf them by recognizing PtdSer using specific receptors and opsonins. Here, we found that mouse resident peritoneal macrophages expressing Tim4 and MerTK are highly efficient at engulfing apoptotic cells. Neutralizing antibodies against either Tim4 or MerTK inhibited the macrophage engulfment of apoptotic cells. Tim4-null macrophages exhibited reduced binding and engulfment of apoptotic cells, whereas MerTK-null macrophages retained the ability to bind apoptotic cells but failed to engulf them. The incubation of wild-type peritoneal macrophages with apoptotic cells induced the rapid tyrosine phosphorylation of MerTK, which was not observed with Tim4-null macrophages. When mouse Ba/F3 cells were transformed with Tim4, apoptotic cells bound to the transformants but were not engulfed. Transformation of Ba/F3 cells with MerTK had no effect on the binding or engulfment of apoptotic cells; however, Tim4/MerTK transformants exhibited strong engulfment activity. Taken together, these results indicate that the engulfment of apoptotic cells by resident peritoneal macrophages proceeds in two steps: binding to Tim4, a PtdSer receptor, followed by MerTK-mediated cell engulfment.  相似文献   

15.
Recently, we found that resident peritoneal macrophages produce MIP-2, one of the major chemokines for neutrophils, upon coculturing with late apoptotic cells, and that intraperitoneal injection of late apoptotic cells into the peritoneal cavity causes neutrophil infiltration via MIP-2. It is not known, however, whether or not macrophages are heterogeneous in such MIP-2 production. In this study, we examined changes in the surface phenotype during the differentiation of bone marrow cells into macrophages due to M-CSF and GM-CSF, and then examined the production of cytokines, namely IL-12 p40, MIP-2, IL-10, and TGF-β, following phagocytosis of late apoptotic cells with these macrophages or LPS stimulation of these macrophages. GM-CSF and M-CSF induced macrophage populations with distinct but overlapping cell surface phenotype. Although these macrophages phagocytosed late apoptotic cells to a similar extent, they produced either IL-12 p40 or IL-10, whereas they produced MIP-2 to a similar extent after the coculture, raising the possibility that late apoptotic cells may induce neutrophil infiltration in any organs, such as the liver and lungs, where the macrophages are differentiated by either M-CSF or GM-CSF, respectively.  相似文献   

16.
An important consequence of macrophage engulfment of apoptotic cells is suppression of inflammatory responses, which was first defined by assay of TNF-alpha release stimulated by LPS. These effects are apparently mediated in part by paracrine effects of TGF-beta released by the subset of stimulated macrophages that ingest apoptotic cells, which suppresses neighboring cells. However, the apoptotic cell-derived signal that stimulates TGF-beta release, and the nature of any additional signals required for the anti-inflammatory response remain poorly defined. In this study, we investigate the requirements for apoptotic cell engagement of macrophage surface receptors in these responses. We show that the apoptotic cell receptors CD36 and alphavbeta3 contribute to apoptotic cell phagocytosis by mouse macrophages, but are not essential for anti-inflammatory responses, suggesting that the mechanisms of response and phagocytosis are separate. In further defining requirements for response, we confirm the importance of TGF-beta in suppression by apoptotic cells, and identify an additional level of control of these effects. We show that LPS-stimulated mouse macrophage TNF-alpha release is only suppressed if macrophages have first contacted apoptotic cells, and hence, bystander macrophages are refractory to TGF-beta released by phagocytosing macrophages. We conclude that the profound suppression of LPS-driven TNF-alpha release by macrophage populations requires hitherto obscure contact-dependent licensing of macrophage responsiveness to TGF-beta by apoptotic cells.  相似文献   

17.
Ontogeny and behaviour of early macrophages in the zebrafish embryo.   总被引:25,自引:0,他引:25  
In the zebrafish embryo, the only known site of hemopoieisis is an intra-embryonic blood island at the junction between trunk and tail that gives rise to erythroid cells. Using video-enhanced differential interference contrast microscopy, as well as in-situ hybridization for the expression of two new hemopoietic marker genes, draculin and leucocyte-specific plastin, we show that macrophages appear in the embryo at least as early as erythroid cells, but originate from ventro-lateral mesoderm situated at the other end of the embryo, just anterior to the cardiac field. These macrophage precursors migrate to the yolksac, and differentiate. From the yolksac, many invade the mesenchyme of the head, while others join the blood circulation. Apart from phagocytosing apoptotic corpses, these macrophages were observed to engulf and destroy large amounts of bacteria injected intravenously; the macrophages also sensed the presence of bacteria injected into body cavities that are isolated from the blood, migrated into these cavities and eradicated the microorganisms. Moreover, we observed that although only a fraction of the macrophage population goes to the site of infection, the entire population acquires an activated behaviour, similar to that of activated macrophages in mammals. Our results support the notion that in vertebrate embryos, macrophages endowed with proliferative capacity arise early from the hemopoietic lineage through a non-classical, rapid differentiation pathway, which bypasses the monocytic series that is well-documented in adult hemopoietic organs.  相似文献   

18.
The efficient engulfment of apoptotic cells by professional or nonprofessional phagocytes is critical to maintain mammalian homeostasis. To identify molecules involved in the engulfment of apoptotic cells, we established a retrovirus-based expression cloning system coupled with the engulfment assay. By screening a cDNA library of a mouse macrophage cell line, we identified two small GTPase family members (RhoG and Rab5) that enhanced the engulfment of apoptotic cells. By examining other small GTPase family members, we found that Rac1 enhanced the engulfment of apoptotic cells, whereas RhoA inhibited the process. Accordingly, the expression of a dominant-negative form of RhoG or Rac1 in primary macrophage cultures severely reduced the ability of the macrophages to engulf apoptotic cells, and a dominant-negative form of RhoA enhanced the process. These results indicated that the efficient engulfment of apoptotic cells requires the concerted action of small GTPase family members. We demonstrated previously that NIH3T3 cells expressing the alphav beta3 integrin efficiently engulf apoptotic cells in the presence of milk fat globule epidermal growth factor 8 via a phosphatidylserine-dependent mechanism. The dominant-negative form of RhoG or Rac1 inhibited this process, which suggested RhoG and Rac1 are also involved in the integrin-mediated engulfment.  相似文献   

19.
Interaction of macrophages with apoptotic cells involves multiple steps including recognition, tethering, phagocytosis, and anti-inflammatory macrophage responses. Defective apoptotic cell clearance is associated with pathogenesis of autoimmune disease. CD14 is a surface receptor that functions in vitro in the removal of apoptotic cells by human and murine macrophages, but its mechanism of action has not been defined. Here, we demonstrate that CD14 functions as a macrophage tethering receptor for apoptotic cells. Significantly, CD14(-/-) macrophages in vivo are defective in clearing apoptotic cells in multiple tissues, suggesting a broad role for CD14 in the clearance process. However, the resultant persistence of apoptotic cells does not lead to inflammation or increased autoantibody production, most likely because, as we show, CD14(-/-) macrophages retain the ability to generate anti-inflammatory signals in response to apoptotic cells. We conclude that CD14 plays a broad tethering role in apoptotic cell clearance in vivo and that apoptotic cells can persist in the absence of proinflammatory consequences.  相似文献   

20.
Similar to mammalian excitotoxic cell death, necrotic-like cell death (NCD) in Caenorhabditis elegans can be initiated by hyperactive ion channels. Here we investigate the requirements for genes that execute and regulate programmed cell death (PCD) in necrotic-like neuronal death caused by a toxic MEC-4 channel. Neither the kinetics of necrosis onset nor the total number of necrotic corpses generated is altered by any C. elegans mutation known to block PCD, which provides genetic evidence that the activating mechanisms for NCD and apoptotic cell death are distinct. In contrast, all previously reported ced genes required for phagocytotic removal of apoptotic corpses, as well as ced-12, a new engulfment gene we have identified, are required for efficient elimination of corpses generated by distinct necrosis-inducing stimuli. Our results show that a common set of genes acts to eliminate cell corpses irrespective of the mode of cell death, and provide the first identification of the C. elegans genes that are required for orderly removal of necrotic cells. As phagocytotic mechanisms seem to be conserved from nematodes to humans, our findings indicate that injured necrotic cells in higher organisms might also be eliminated before lysis through a controlled process of corpse removal, a hypothesis that has significant therapeutic implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号