共查询到20条相似文献,搜索用时 8 毫秒
1.
Xylan-degrading enzymes were induced when Phanerochaete chrysosporium was grown at 30°C in shake flask media containing xylan, Avicel PH 102, or ground corn stalks. The highest xylanase activity was produced in the corn stalk medium, while the xylan-based fermentation resulted in the lowest induction. Analytical and preparative isoelectric focusing were used to characterize xylanase multienzyme components. Preparative focusing was performed only with the cultures grown on Avicel and corn stalk. Of over 30 protein bands separated by analytical focusing from the Avicel and corn stalk media, three main groups (I, II, and III) of about five isoenzymes each showed xylanase activity when a zymogram technique with a xylan overlay was used. Enzyme assays revealed the presence of 1,4-β-endoxylanase and arabinofuranosidase activities in all three isoenzyme groups separated by preparative isoelectric focusing. β-Xylosidase activity appeared in the first peak and also as an independent peak between peaks II and III. Denatured molecular masses for the three isoenzyme groups were found to be between 18 and 90 kDa, and pI values were in the range of 4.2 to 6.0. β-Xylosidase has an apparent molecular mass of 20, 30, and 90 kDa (peak I) and 18 and 45 kDa (independent peak), indicating a trimer and dimer structure, respectively, with pI values of 4.2 and 5.78, respectively. Three more minor xylanase groups were produced on corn stalk medium: a double peak in the acidic range (pI 6.25 to 6.65 and 6.65 to 7.12) and two minor peaks in the alkaline range (pI 8.09 to 8.29 and 9.28 to 9.48, respectively). The profile of xylanases separated by isoelectric focusing (zymogram) of culture filtrate from cells grown on corn stalk media was more complex than that of culture supernatants from cells grown on cellulose. The pH optima of the three major xylanase groups are in the range of pH 4 to 5.5. 相似文献
2.
The US Department of Energy has assembled a high quality draft genome of Phanerochaete chrysosporium, a white rot Basidiomycete capable of completely degrading all major components of plant cell walls including cellulose, hemicellulose and lignin. Hundreds of sequences are predicted to encode extracellular enzymes including an impressive number of oxidative enzymes potentially involved in lignocellulose degradation. Herein, we summarize the number, organization, and expression of genes encoding peroxidases, copper radical oxidases, FAD-dependent oxidases, and multicopper oxidases. Possibly relevant to extracellular oxidative systems are genes involved in posttranslational processes and a large number of hypothetical proteins. 相似文献
3.
Effect of Environmental Conditions on Extracellular Protease Activity in Lignolytic Cultures of Phanerochaete chrysosporium 总被引:2,自引:5,他引:2 下载免费PDF全文
Two different types of extracellular protease activity were identified in the culture fluid of Phanerochaete chrysosporium wild-type BKM-F grown in submerged batch culture on N-limited media. The first activity, which appears to be inherent to the active growth phase, displayed a maximum on day 2 and decreased to a very low level on day 4. The second activity, which appeared at day 8 following the peak of ligninase activity, seems to be characteristic of late secondary metabolism and is stimulated by carbon starvation. Cultures started with half the amount of glucose of other cultures showed a remarkably earlier development of secondary activity. In contrast, the fed-batch addition of glucose started when ligninase activity was at a maximum (day 6) completely repressed secondary protease activity and enhanced ligninase production. The addition of exogenous veratryl alcohol increased the level of secondary protease activity, whereas the oxygen supply pattern significantly affected both the time course and the level of overall proteolytic activity. The addition of phenylmethylsulfonyl fluoride to growing cultures (0, 1, or 6 days) diminished overall protease activity, while it significantly enhanced ligninase activity. In all cases, the time courses of protease and ligninase activities were negatively correlated, indicating that protease activity promotes the decline of ligninase activity in batch culture. 相似文献
4.
Abstract 3 New spectrophotometric enzyme assays were developed for the study of microbial lignin-degrading enzymes. The conversion of 2-methoxy-3-phenylbenzoic acid to 2-hydroxy-3-phenylbenzoic acid led to the discovery of an extracellular, aromatic methyl ether demethylase produced by the white-rot fungus Phanerochaete chrysosporium . The conversion of methyl 2-hydroxy-3-phenylbenzoate to 2-hydroxy-3-phenylbenzoic acid allowed the identification of an extracellular, aromatic methyl ester esterase produced by this fungus. The Phanerochaete sp. also excreted an enzyme complex that oxidized 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one, probably to aliphatic products. All 3 novel enzyme activities were produced together with, and probably comprise a part of, the Phanerochaete ligninolytic enzyme complex. Unlike previously known ligninases, these enzymes did not oxidize 3,4-dimethoxybenzyl alcohol. All 3 were H2 O2 -dependent and were activated by Mn2+ ions. 相似文献
5.
Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10−6±0.21 M·min−1 and 0.32±0.02 s−1, respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a potential biocatalyst for Mn(II) removal. 相似文献
6.
Rothschild N Levkowitz A Hadar Y Dosoretz C 《Archives of biochemistry and biophysics》1999,372(1):107-111
The lignin peroxidase (LIP) isozyme profile of the white-rot fungus Phanerochaete chrysosporium changes markedly with culture age. This change occurs extracellularly and results from enzymatic dephosphorylation of LIP isozymes. In this study, a novel mannose 6-phosphatase (M6Pase) from extracellular culture fluid filtrate of P. chrysosporium, shown to be responsible for the extracellular postranslational modification of LIP, was purified and characterized. In vitro incubation of the purified M6Pase with purified LIP isozyme H2 resulted in its conversion to isozyme H1, with an equimolar release of orthophosphate. Using different sugar phosphates as substrate, the enzyme exhibited narrow specificity, showing activity mostly for mannose 6-phosphate (K(m) = 0.483 mM). The enzyme displayed a molecular mass of 82 kDa, as determined by gel filtration, and 40.4 and 39.1 kDa, on SDS-PAGE, suggesting that the native form is a dimer. The N-terminal sequence of the enzyme has no homology with that of other reported phosphatases. M6Pase is a metalloprotein with manganese and cobalt as the preferred metal ions. It is N-glycosylated proteins with an isoelectric point of 4. 7-4.8 and a pH optimum of 5. Based on its characteristics, M6Pase from P. chrysosporium seems to be a unique phosphatase responsible for posttranslation modification of LIP isozymes. 相似文献
7.
The production of manganese-dependent peroxidase (MnP) and lignin peroxidase (LiP) by the fungus Phanerochaete chrysosporium (ATCC 24725) in a new bioreactor, the Immersion Bioreactor, which grows cells under solid-state conditions, was studied. Maximum MnP and LiP activities were 987 U l–1 and 356 U l–1, respectively. The polymeric dye, Poly R-478, was degraded at 2.4 mg l–1 min–1 using the extracellular culture filtrate. 相似文献
8.
9.
Role of Veratryl Alcohol in Regulating Ligninase Activity in Phanerochaete chrysosporium 总被引:5,自引:11,他引:5 下载免费PDF全文
Ligninase activity in Phanerochaete chrysosporium is stimulated by incubating cultures with various substrates for the enzyme, including veratryl (3,4-dimethoxybenzyl) alcohol, which is a secondary metabolite of this fungus. This study was designed to provide insight into the mechanism involved in this stimulation. Ligninase activity increased 2 to 4 h after the addition of exogenous veratryl alcohol to ligninolytic cultures. This increase was prevented by inhibitors of protein synthesis. Analysis of the extracellular proteins by high-performance anion-exchange liquid chromatography revealed increases in the amounts of some, but not all, ligninase species. The normal rapid decrease in ligninase activity in aging cultures was not prevented or retarded by veratryl alcohol, indicating that veratryl alcohol does not increase ligninase activity by protecting extant enzyme. We conclude that veratryl alcohol probably functions via an induction type of mechanism, affecting only certain ligninase species. Results with an isolated lignin indicate that lignin (or its biodegradation products) functions in the same way that veratryl alcohol does. 相似文献
10.
《Free radical research》2013,47(4-5):227-235
It was observed that during the storage of human extracellular fluids at – 20°C the azide-inhibitable ferroxidase activity of caeruloplasmin declined, whilst a new azide-resistant ferroxidase activity (ARFA) developed. The literature suggested that storage-induced ARFA might be due to either a poorly defined enzymatic activity of a low density lipoprotein (LDL) or to lipid peroxides formed within the different lipoprotein fractions. To study this further, the major lipoprotein classes were separated from human serum by density gradient centrifugation. After storage of the lipoprotein fractions, it was found that the LDL fraction had the highest specific activity of ARFA and the highest content of lipid peroxidation products, as assessed by diene conjugates. The ARFA of LDL correlated with its content of diene conjugates and TBA reactive material, which initially suggested that the Fe(II) oxidising activity of peroxidised LDL arose from the reduction of peroxides by Fe(II) in the classical reaction between the metal ion and free radical reduction of lipid peroxides. However. steady state kinetic analysis indicated an enzymic role of LDL in Fe(II) oxidation, with lipid peroxides acting as a substrate for the enzyme. These results indicate that LDL may contain a peroxidase activity. catalysing the oxidation of Fe(II) by lipid peroxides, as well as a ferrous oxidase activity where O2 is the oxidising substrate. 相似文献
11.
黄孢原毛平革菌基因启动子的分离与鉴定 总被引:6,自引:0,他引:6
利用启动子探针型载体pSUPV8直接在大肠杆菌(Escherichia coli)中分离黄孢原毛平革菌(Phanerochaete chrysosporium)基因启动子片段,获得6个潮霉素抗性(Hyg-r)重组子。对重组子CH2、CH6进行序列分析,结果发现它们都存在真核生物基因启动子的保守序列;用原生质体转化法将其转化黄孢原毛平革菌,仅pCH6获得了潮霉素抗性转化子;PCR和斑点杂交分析表明,pCH6已成功导入黄孢原毛平革菌,并启动潮霉素抗性基因的表达。 相似文献
12.
Abstract Four major hemoproteins were purified by isoelectric focusing from an extracellular crude enzyme preparation, produced by the white rot fungus Phanerochaete chrysosporium under carbon-limited conditions. Both the crude enzyme and the purified proteins oxidised milled wood lignin, HCl-dioxane-extracted straw lignin and alkali straw lignin in the presence of hydrogen peroxide. The oxidation resulted mainly in further polymerisation of the lignins and was enhanced by addition of veratryl alcohol to the reaction mixture. Alkali straw lignin was also polymerised by horseradish peroxidase, although veratryl alcohol had no influence on this reaction. 相似文献
13.
Homology among multiple extracellular peroxidases from Phanerochaete chrysosporium 总被引:21,自引:0,他引:21
M S Leisola B Kozulic F Meussdoerffer A Fiechter 《The Journal of biological chemistry》1987,262(1):419-424
The extracellular peroxidases of Phanerochaete chrysosporium were separated into 21 proteins by analytical isoelectric focusing. Fifteen of these enzymes oxidized veratryl alcohol (lignin peroxidases) in the presence of H2O2. Six enzymes were Mn(II)-dependent peroxidases. The Mn(II)-dependent enzymes appeared and reached their maximal activity earlier than the lignin peroxidases in the cultures. Peptide mapping, amino acid analysis, and reaction against specific antibodies showed that all the Mn(II)-dependent peroxidases were probably products of one gene. A great degree of homology was also present among the various lignin peroxidases. 相似文献
14.
A selective medium was developed that is capable of isolating Phanerochaete chrysosporium from soil. This medium contains 15 ppm of benomyl (15 μg g−1) and 550 ppm of streptomycin sulfate in 2% malt agar and is held at 39°C after inoculation. P. chrysosporium was isolated from three nonsterile forest soils to which the fungus had been added. These soils contained large microbial populations. 相似文献
15.
Methanol production resulting from the demethoxylation of lignin-related substances by Phanerochaete chrysosporium K-3 was studied in the presence or absence of glutamic acid in order to determine if methanol formation involved the ligninolytic system of the fungus. The general pattern was that methanol formation, calculated as percentage of theoretical yield, decreased in the order guaiacyl > syringyl > veratryl (3,4-dimethoxy) compounds. Methoxyhydroquinone and vanillic acid were most easily demethoxylated, while methanol production decreased with increasing molecular weight for the same type of structure (i.e. guaiacyl). Glutamic acid inhibited the demethoxylation of many of the compounds tested. The demethoxylation of the 4-methoxy group of veratric acid was particularly inhibited by glutamic acid suggesting a participation of the ligninolytic system, while the 3-methoxy group was influenced to a lesser extent.
The demethoxylating enzyme acting on lignin-related phenols is probably a peroxidase, while the identity of the enzyme demethoxylating dimethoxy compounds is not known with certainty, although a peroxidase type of enzyme reaction is anticipated also here. 相似文献
The demethoxylating enzyme acting on lignin-related phenols is probably a peroxidase, while the identity of the enzyme demethoxylating dimethoxy compounds is not known with certainty, although a peroxidase type of enzyme reaction is anticipated also here. 相似文献
16.
Armin Köhler Alexander Jäger Harald Willershausen Helmut Graf 《Applied microbiology and biotechnology》1988,29(6):618-620
Summary The white rot fungus Phanerochaete chrysosporium Burdsall degraded DDT [1,1-bis(4-chlorophenyl)-2, 2,2-trichloroethane] in submerged agitated cultures. The ability of the fungus to metabolize this persistent environmental pollutant is not dependent on the formation of its extracellular lignin-degrading enzyme system.Dedicated to Professor E.-E. Bruchmann on the occasion of his 65th birthday 相似文献
17.
Extracellular proteases produced by the wood-degrading fungus Phanerochaete chrysosporium under ligninolytic and non-ligninolytic conditions 总被引:2,自引:0,他引:2
S. Balachandra Dass Carlos G. Dosoretz C. Adinarayana Reddy Hans E. Grethlein 《Archives of microbiology》1995,163(4):254-258
When subjected to nitrogen limitation, the wood-degrading fungus Phanerochaete chrysosporium produces two groups of secondary metabolic, extracellular isoenzymes that depolymerize lignin in wood: lignin peroxidases and manganese peroxidases. We have shown earlier the turnover in activity of the lignin peroxidases to be due in part to extracellular proteolytic activity. This paper reports the electrophoretic characterization of two sets of acidic extracellular proteases produced by submerged cultures of P. chrysosporium. The protease activity seen on day 2 of incubation, during primary growth when nitrogen levels are not known to be limiting, consisted of at least six proteolytic bands ranging in size from 82 to 22 kDa. The activity of this primary protease was strongly reduced in the presence of SDS. Following the day 2, when nitrogen levels are known to become limiting and cultures become ligninolytic, the main protease activity (secondary protease) consisted of a major proteolytic band of 76 kDa and a minor band of 25 kDa. The major and minor secondary protease activities were inhibited by phenylmethylsulfonyl fluoride and pepstatin A, respectively. When cultures were grown in the presence of excess nitrogen (non-ligninolytic condition), the primary protease remained the principal protease throughout the culture period. These results identify and characterize a specific proteolytic activity associated with conditions that promote lignin degradation. 相似文献
18.
Observations by transmission electron microscopy of wood samples of Populus tremula inoculated with the white rot fungus Phanerochaete chrysosporium showed that, at certain stages of their growth cycle, hyphae were encapsulated by a sheath which seems to play an active role in the wood cell wall degradation. Chemical and immunochemical techniques and C nuclear magnetic resonance spectroscopy were applied to demonstrate the beta-1,3-1,6-d-glucan nature of the sheath. Double-staining methods revealed the interaction between the extracellular peroxidases involved in lignin degradation and the glucan mucilage. The glucan was also shown to establish a material junction between the fungus and the wood cell wall. It was concluded that, by means of these interactions, the sheath provides a transient junction between the hyphae and the wood, thus establishing a point of attachment to the site of the degradation. The association of peroxidases to the glucan matrix is in favor of the role of the sheath as a supporting structure. Furthermore, that the sheath was hydrolyzed during the attack demonstrated its active role both in providing the H(2)O(2) necessary to the action of peroxidases and in providing a mode of transport of the fungal enzymes to their substrates at the surface of the wood cell wall. 相似文献
19.
Tetrachloro-1,4-hydroquinone (TClHQ) is an intermediate in the degradation of pentachlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Two enzymes required for the reductive dehalogenation of TClHQ to trichlorohydroquinone (TrClHQ) were identified in cell-free extracts of P. chrysosporium. In the presence of GSH, a membrane-bound enzyme converted TClHQ to the glutathionyl conjugate of TrClHQ (GS-TrClHQ). This membrane-bound glutathione transferase was specific for GSH as a cosubstrate. In the second step of the reductive dehalogenation reaction, a soluble enzyme fraction converted GS-TrClHQ to TrClHQ in the presence of GSH, cysteine, or dithiothreitol. Thus, this second enzyme appears to be a GS-conjugate reductase. These two enzyme fractions, working in tandem, also reductively dehalogenated TrClHQ and 2,6-dichlorohydroquinone, which are intermediates in the degradation of chlorophenols by this organism. 相似文献
20.
Effect of Agitation on Ligninase Activity and Ligninase Production by Phanerochaete chrysosporium 总被引:2,自引:4,他引:2 下载免费PDF全文
The white rot fungus Phanerochaete chrysosporium produces extracellular ligninases as part of its idiophasic ligninolytic system. Agitation has been widely reported to suppress both ligninase production and lignin degradation. Results show that mechanical inactivation of ligninase is possibly the reason why ligninase accumulation is low or absent in agitated shake-flask cultures. Agitation seems to affect the catalytic activity of ligninase and has no apparent effect on either the rate of ligninase production or the physiology of P. chrysosporium. The detergents Tween 20, Tween 40, Tween 60, Tween 80, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) are able to protect both purified ligninase and extant ligninase in culture fluids (free of biomass) against mechanical inactivation due to agitation. Addition of Tween 80 at the end of primary growth to agitated shake flasks containing either pelleted or immobilized mycelial cultures results in production and maintenance of high levels of ligninase activity over several days under conditions of high agitation. Possible mechanisms by which the detergents could protect ligninase are discussed. 相似文献