首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Complex nature of foraging behaviour of zooplankton makes it difficult to describe adequately zooplankton grazing in models with vertical space. In mean-field models (based on systems of PDEs or coupled ODEs), zooplankton feeding at a given depth is normally computed as the product of the local functional response and the zooplankton density at this depth. Such simplification is often at odds with field observations which show the absence of clear relationship between intake rates of organisms and the ambient food density. The observed discrepancy is generic and is often caused by fast non-synchronous vertical migration of organisms with different nutrition status. In this paper, we suggest a simple way of incorporating unsynchronized short-term vertical migration of zooplankton into the mean-field modelling framework. We compute grazing of zooplankton in each layer depending on feeding activity of organisms in the layer. We take into account grazing impact of animals which are in the active phase of foraging cycle at the given moment of time but neglect the impact of animals which are in the non-active phase of the cycle (e.g. digesting food). Unsynchronized vertical migration determines the vertical distribution of actively feeding animals in layers depending on vertical distribution of food. In this paper, we compare two generic plankton models: (i) a model based on ‘classical’ grazing approach and (ii) a model incorporating food-mediated unsynchronized vertical migration of zooplankton. We show that including unsynchronized food-mediated migration would make the behaviour of a plankton model more realistic. This would imply a significant enhancement of ecosystem's stability and some additional mechanisms of regulation of algal blooms. In the system with food-mediated unsynchronized vertical migration, the control of phytoplankton by herbivorous becomes possible even for very large concentrations of nutrients in the water (formally, when the system's carrying capacity tends to infinity).  相似文献   

2.
The behaviour of phytoplankton having different abilities to assimilate N in darkness was considered in simulations of vertical migrations. Such behaviour is especially important for the competitive advantage of flagellates, including harmful algal species. Three phases of biomass development were apparent. (1) Cells remained at a subsurface location with migration down to avoid photoinhibitory light at midday; as the attenuation of light increased with biomass growth, the mean depth became shallower. (2) On exhaustion of nutrients in surface waters, cells migrated down through the nutricline in the latter half of the daylight period, with a subsurface maximum in the photic zone as long as light penetration matched requirements. When that condition was no longer met (3), cells migrated between the very surface (forming dense aggregations) and the nutricline. While the ability to perform dark N-assimilation is not critical when N-sources are available at low concentrations, it is important when (as encountered following migration down to a nutricline), nutrients are available at higher concentration in darkness. The most advantageous configuration tested, where nitrate assimilation (as well as that of ammonium) continued at a high rate in darkness as long as C-reserves remained, is not actually used in migratory species but in non-migratory diatoms. The use of the outwardly inferior configurations typical of migratory species, in which dark nitrate-assimilation is notably poorer than assimilation in the light, reflects a deficient metabolism or indicates that N-sources other than nitrate are more important. It is unfortunate then that most attention has been paid to nitrate nutrition in experiments on migrating species. While an ability to continue N-assimilation in darkness as well as during daylight is advantageous, there is no evidence for phytoplankton to be able to grow at high growth rates when decoupling photosynthesis at the surface and N-assimilation at depth.  相似文献   

3.
The vertical distribution of phytoplankton in stratified water columns   总被引:2,自引:0,他引:2  
What determines the vertical distribution of phytoplankton in different aquatic environments remains an open question. To address this question, we develop a model to explore how phytoplankton respond through growth and movement to opposing resource gradients and different mixing conditions. We assume stratification creates a well-mixed surface layer on top of a poorly mixed deep layer and nutrients are supplied from multiple depth-dependent sources. Intraspecific competition leads to a unique strategic equilibrium for phytoplankton, which allows us to classify the distinct vertical distributions that can exist. Biomass can occur as a benthic layer (BL), a deep chlorophyll maximum (DCM), or in the mixed layer (ML), or as a combination of BL+ML or DCM+ML. The ML biomass can be limited by nutrients, light, or both. We predict how the vertical distribution, relative resource limitation, and biomass of phytoplankton will change across environmental gradients. We parameterized our model to represent potentially light and phosphorus limited freshwater lakes, but the model is applicable to a broad range of vertically stratified systems. Increasing nutrient input from the sediments or to the mixed layer increases light limitation, shifts phytoplankton towards the surface, and increases total biomass. Increasing background light attenuation increases light limitation, shifts the phytoplankton towards the surface, and generally decreases total biomass. Increasing mixed layer depth increases, decreases, or has no effect on light limitation and total biomass. Our model is able to replicate the diverse vertical distributions observed in nature and explain what underlying mechanisms drive these distributions.  相似文献   

4.
Primary and new production in the deep Canada Basin during summer 2002   总被引:5,自引:2,他引:3  
The NOAA Ocean Exploration program provided the opportunity to measure the carbon and nitrogen productivity across the Canada Basin. This research examined the major environmental factors limiting the levels of primary production and possible future climate change on the ecosystems. The vertical distributions of the carbon and nitrogen uptakes of phytoplankton had similar patterns as their respective biomass concentrations which were low at the surface and highest in the chlorophyll-maximum layer. The annual carbon and new production rates of phytoplankton in the Canada Basin were about 5 and 1 g C m–2, respectively. Nutrients were determined to be a main limiting factor at the surface, whereas light may be a major factor limiting phytoplankton productivity in the chlorophyll-maximum layer for open waters. The bottom surface of the ice has a low specific uptake and productivity of phytoplankton, indicating that photosynthetic activity might be controlled by both light and nutrients.  相似文献   

5.
The relation between the large-scale horizontal patterns ofbiological properties (primary production and the standing stocksof phytoplankton and macrozooplankton) and physical structurein the North Pacific central gyre is described based upon samplingon a north-south section in August 1980 (expedition FIONA).Primary production in the central North Pacific is nutrientlimited and the large-scale patterns in the measured biologicalproperties appear to be determined by physical processes whichaffect the vertical flux of new nutrients from deeper waterto the euphotic zone. The observed biological patterns can thusbe used to infer horizontal variations in physical processeswhich affect the rate of nutrient supply to the euphotic zone.A mesoscale eddy in the southern part of the section decreasedthe local level of primary production by pushing density andnutrient surfaces to deeper depths. In addition, there was alarge-scale, south-to-north decrease within the central gyrein chlorophyll, primary production and macrozooplankton biomass.This biological gradient was not related in any simple way tothe horizontal distribution of light penetration or the depthsof the nutricline or chlorophyll maximum layer. The hypothesisthat horizontal patterns of nutrient input and production weredetermined by vertical Fickian diffusion and, thus, should bepositively correlated with the vertical nutrient gradient andnegatively correlated with the vertical density gradient, wastested. This simple model however was not supported, suggestingthat either some other process drives the large-scale patternsof vertical nutrient input to the euphotic zone, or that k2(the vertical eddy diffusivity) is uncorrelated with the meanvertical density gradient. There was some support for a previoushypothesis that enhanced mixing is associated with the densityvariance maximum, and that the relation of the depth of thevariance maximum to the depth of the top of the nutricline mayaffect the large-scale biological patterns.  相似文献   

6.
Problems of detection and interpretation of vertical migration   总被引:10,自引:0,他引:10  
Simple counts of organisms as functions of time and depth, orsonic scattering records, can yield only minimal estimates ofrange or velocity of vertical migrants. It is incorrect thoughcommon to equate mean population movements so determined torates of motion of the individual animals. If migratory movementsare not synchronized, conventional studies will generally showthe population to have a bimodal depth distribution, but maynot indicate any migration. A simple model based on hunger as a mediator and light as asynchronizer can explain many instances of apparently anomalousdid migrations, and relate did to longer term migratory behavior. There are a number of alternative or supplementary investigativetechniques which can and should be used to increase understandingof vertical migration. The uses and limitations of some of theseaie discussed.  相似文献   

7.
The dinoflagellate Alexandrium fundyense is the major causative organism of paralytic shellfish poisoning in the Gulf of Maine. While laboratory studies have shown that A. fundyense population dynamics can be affected dramatically by co-occurring bacteria, little is known about these interactions in nature. Because A. fundyense is typically a minor Gulf of Maine phytoplankton community member, analyses of the bulk community cannot be used to address bacterium-A. fundyense associations. Therefore, an immunomagnetic bead method was used to selectively capture A. fundyense cells, and the bacteria attached to them, from complex natural samples. Bulk particle-associated and free-living bacterial communities were collected simultaneously. DNA was extracted from all sample types and subjected to 16S rRNA gene fragment amplification, denaturing gradient gel electrophoresis (DGGE) and sequence analysis. Ordination analysis of DGGE profiles confirmed that A. fundyense-associated bacteria community profiles were distinct from bulk bacterial community profiles, indicating selection of specific phylotypes in the A. fundyense phycosphere. Phylogenetic analyses confirmed that Alexandrium-associates were distinct from bulk particle-associated bacteria and that they included a greater prevalence and broader diversity of Gammaproteobacteria than previously thought to be associated with toxic algae. Phylogenetic groups known to be associated with dinoflagellates were also found, including members of the families Alteromonadaceae, Pseudoalteromonadaceae, Rhodobacteraceae and Flavobacteraceae.  相似文献   

8.
9.
The ontogenetic vertical migration and life cycle of Neocalanusplumchrus were investigated by anal-yzing monthly populationstructure at Site H in the Oyashio region from September 1996through October 1997. Additional sampling was also done at severalstations covering the entire subarctic Pacific, Okhotsk Seaand Japan Sea as a basis for regional comparison of life cyclesand body sizes. At Site H, N. plumchrus spawned October to Aprilbelow 250 m depth. Young copepodite stages (C1–C5) occurredduring June late in the phytoplankton bloom. The C5 migratedto the deeper layers in July–August where they moltedto adults. Development time of C5 to C6 was highly variable.The ontogenetic vertical migration of N. plumchrus ranged fromthe surface to 1000–2000 m depth, and the life cycle wasannual. Temporal data on population structure and vertical distributionsuggestedthe annual life cycle was generally synchronized throughoutthe subarctic Pacific and its marginal seas. Geographical comparisonof C5 prosome length indicated the occurrence of significantlylarge specimens in the Oyashio region and Okhotsk Sea but smallspecimens in the Japan Sea. Possible causes for regional variabilityin body sizes are discussed.  相似文献   

10.
Tande  Kurt S. 《Hydrobiologia》1988,(1):115-126
The vertical distributions of populations of Calanus finmarchicus are described in three different fjord areas near Tromse, northern Norway during May 1986. These localities (Malangen, Grøtsund and Balsfjorden) had characteristic differences in temperature, phytoplankton and population density of copepods. They probably are representative annual situations during the spring and summer period for coastal and fjord areas in northern Norway. Copepodite stage I and II C. finmarchicus are found in the surface waters (0–30 m) during a 24 h cycle, while the other stages appear to have a different diel depth distribution in Malangen. Pronounced differences in the depth distribution of the various copepodite stages and adult females were found in Grøtsund and Balsfjorden during the same period of the day on 20 and 21 May. The tendency for vertical overlap among CI–CV was clearly less pronounced in an environment with low phytoplankton standing stock and high population density of copepods. The patterns of vertical distribution are analysed by multidimentional scaling (MDS) and it is evident that the distribution pattern of C. finmarchicus is different at each locality. These preliminary results, are discussed in relation to ontogenetic vertical migration and aspects of resource partitioning and the possible importance of vertical separation for reducing competitive interactions between the different life stages of C. finmarchicus.  相似文献   

11.
The present study determined whether puffer Takifugu rubripes and T. xanthopterus larvae use selective tidal stream transport (STST) for migration into the nursery area. The influence of the tidal cycle on the vertical distribution of Thkifugu larvae was investigated during a 24 h sampling period at one location off Shimabara Peninsula in Ariake Bay. Samples were collected in three depth layers, from near the sea floor to near the surface (5, 20 and 30 m depth). The change in vertical distribution in relation to tidal phase was not observed. This data did not support STST hypothesis. Diel vertical migration was observed irrespective of tidal phase, where larvae migrated to the middle layer during the night, and sank to the bottom layer during the day, however, larvae hardly emerged into the surface layer during the study period. In Ariake Bay, the residual current leads to a layered vertically stratified structure, in which surface water flows towards the mouth and the middle-bottom water flows toward inner part of the Bay. It is suggested that Takifugu larvae use not STST but residual currents for transport into the nursery ground, namely, undergoing nocturnal diel vertical migration in the water column between the middle layer and the bottom layer where the net flow is northward.  相似文献   

12.
1. Wind is considered the dominant factor controlling phytoplankton distribution in lentic environments. In canyon‐shaped reservoirs, wind tends to blow along the main axis generating internal seiches and advective water movements that jointly with biological features of algae can produce a heterogeneous phytoplankton distribution. Turbulence generated by wind stress and convection will also affect the vertical distribution of algae, depending on their sinking properties. 2. We investigated the vertical and horizontal distribution of phytoplankton during the stratification period in Sau Reservoir (NE Spain). Sites along the main reservoir axis were sampled every 4 h for 3 days, and profiles of chlorophyll‐a and temperature were made using a fluorescent FluoroProbe, which can discriminate among the main algal groups. Convective and wind shear velocity scales, and energy dissipation were calculated from meteorological data, and simulation experiments were performed to describe non‐measured processes, like vertical advection and sinking velocity of phytoplankton. 3. Wind direction changed from day to night, producing a diel thermocline oscillation and an internal seiche. Energy dissipation was moderate during the night, and mainly attributed to convective cooling. During the day the energy dissipation was entirely attributed to wind shear, but values indicated low turbulence intensity. 4. The epilimnetic algal community was mainly composed of diatoms and chlorophytes. Chlorophytes showed a homogeneous distribution on the horizontal and vertical planes. Diatom horizontal pattern was also homogeneous, because the horizontal advective velocities generated by wind forcing were not high enough to develop phytoplankton gradients along the reservoir. 5. Diatom vertical distribution was heterogeneous in space and time. Different processes dominated in different regions of the reservoir, due to the interaction between seiching and the daily cycle of convective‐mediated turbulence. As the meteorological forcing followed a clear daily pattern, we found very different diatom sedimentation dynamics between day and night. Remarkably, these dynamics were asynchronous in the extremes of the seiche, implying that under the same meteorological forcing a diatom population can show contrasting sedimentation dynamics at small spatial scales (approximately 103 m). This finding should be taken into account when interpreting paleolimnological records from different locations in a lake. 6. Vertical distribution of non‐motile algae is a complex process including turbulence, vertical and horizontal advection, variations in the depth of the mixing layer and the intrinsic sinking properties of the organisms. Thus, simplistic interpretations considering only one of these factors should be regarded with caution. The results of this work also suggest that diatoms can persist in stratified water because of a synergistic effect between seiching and convective turbulence.  相似文献   

13.
Migrations of Daphnia longispina were studied in a small humic lake with an exceptionally shallow oxic epilimnion. Horizontal distributions showed clear avoidance of the shoreline, which might be explained by the lower density of predators (Chaoborus sp. and Notonecta sp.) in the central parts of the lake. In early summer all size classes of D. longispina exhibited upward nocturnal vertical migration, descending to the upper hypolimnion in daytime. Later in summer, when the nocturnally migrating Chaoborus sp. had grown large enough to graze on small Daphnia, the latter seemed to shift towards twilight migration. However, large Daphnia individuals showed no synchronized migration; rather their bimodal vertical distributions suggested asynchronous vertical migration. Large individuals showed a particular tendency to concentrate near to the oxycline, close to the dense phytoplankton and bacteria populations in the upper part of the anoxic hypolimnion. According to vertical trap experiments, large D. longispina visited the anoxic hypolimnion and might harvest its abundant food resources. The high haemoglobin content of large individuals seems a specific adaptation to allow access to low oxygen water and hence to maximize grazing potential, in both epi- and hypolimnion, and minimize predation pressure. By staying predominantly in cooler water near the oxycline, Daphnia might also minimize its energy consumption to adjust to low food availability while sustaining a sufficiently high population density to exploit those unpredictable short periods with abundant food which are common in small headwater lakes. It is suggested that migrations of zooplankton are a complex behavioural adaptation which may not be explained by any single factor. In humic lakes with shallow stratification, vertical migrations seem to offer particularly high potential advantages, because of the short distances between dramatically different environments in the water column. In further studies more emphasis should be placed on migrations of individuals rather than populations, and migrations should be considered as a dynamic part of the structure and function of the whole planktonic ecosystem.  相似文献   

14.
Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (<15 km d(-1)) and transit at high speeds (20-45 km d(-1)). Only a single mode was evident in the Pacific, which occurred at speeds of 21 km d(-1) indicative of transit. The mean dive depth was more variable in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic.  相似文献   

15.
A feature of meromictic lakes is that several physicochemical and biological gradients affect the vertical distribution of different organisms. The vertical stratification of physical, chemical and biological components in saline, fishless meromictic lakes Shira and Shunet (Siberia, Russia) is quite different mainly because both mean depth and maximum depth of lakes differ as well as their salinity levels differ. The chemocline of the Lake Shira, as in many meromictic lakes, is inhabited by bacterial community consisting of purple sulphur and heterotrophic bacteria. As the depth of the chemocline is variable, the bacterial community does not attain high densities. The mixolimnion in Lake Shira, which is thermally stratified in summer, also creates different habitat for various species. The distribution of phytoplankton is non-uniform with its biomass peak in the metalimnion. The distribution of zooplankton is also heterogeneous with rotifers and juvenile copepods inhabiting the warmer epilimnion and older copepods found in the cold but oxic hypolimnion. The amphipod Gammarus lacustris which can be assigned to the higher trophic link in the fishless lake’s ecosystem, such as Lake Shira, is also distributed non-uniformly, with its peak density generally observed in the thermocline region. The chemocline in Lake Shunet is located at the depth of 5 m, and unlike in Lake Shira, due to a sharp salinity gradient between the mixolimnion and monimolimnion, this depth is very stable. The mixolimnion in Lake Shunet is relatively shallow and the chemocline is inhabited by (1) an extremely dense bacterial community; (2) a population of Cryptomonas sp.; and (3) ciliate community comprising several species. As the mixolimnion of Lake Shunet is not thermally stratified for long period, the phytoplankton and zooplankton populations are not vertically stratified. The gammarids, however, tend to concentrate in a narrow layer located 1–2 m above the chemocline. We believe that in addition to vertical inhomogeneities of both physicochemical parameters, biological and physical factors also play a role in maintaining these inhomogeneities. We conclude that the stratified distributions of the major food web components will have several implications for ecosystem structure and dynamics. Trophic interactions as well as mass and energy flows can be significantly impacted by such heterogeneous distributions. Species spatially separated even by relatively short distances, say a few centimetres will not directly compete. Importantly, we demonstrate that not only bacteria, phytoflagellates and ciliate tend to concentrate in thin layers but also larger-sized species such Gammarus (amphipods) can also under certain environmental conditions have stratified distribution with maxima in relatively thin layer. As the vertical structure of the lake ecosystem is rather complex in such stratified lakes as ours, the strategy of research, including sampling techniques, should consider potentially variable and non-homogeneous distributions.  相似文献   

16.
Nutricline variations during the last 1560 ka in the southern South China Sea are reconstructed using the relative abundance of the coccolithophore Florisphaera profunda in ODP Site 1143. Nutricline depth shows both long-term large magnitude variation and high frequency glacial–interglacial variation. On the long-term scale, the nutricline experienced four significant changes, which occurred at 900, 480, 250, and 50 ka respectively. According to these changes, five stages could be recognized during the last 1560 ka. From 1560 to 900 ka, the nutricline depth increased gradually. Around 900 ka, the nutricline abruptly shallowed and then remained stable until 480 ka. The nutricline was shallow during the time interval between 480 and 250 ka. At 250 ka, it deepened again and increased gradually until 50 ka. After 50 ka, the nutricline depth decreased gradually to modern values. On the glacial–interglacial scale, the variations in nutricline depth show different patterns before and after 900 ka. Before 900 ka, the nutricline was deep during glacial periods and shallow during interglacials. However, after 900 ka, the nutricline was deep during interglacials and shallow during glacials. Spectral analysis of the relative abundance of F. profunda shows a similar trend. In addition to the eccentricity (113, 76 ka), obliquity (55, 39 ka), and precession (24, 19 ka), we also find a 431 ka cycle. The former three periods reflect glacial–interglacial variations in nutricline, and the period of 431 ka reflects long-term variations in nutricline. We suggested that the variations in nutricline in the southern South China Sea were caused by global and regional climate changes. Glacial–interglacial variations in nutricline are mainly controlled by the East Asian monsoon, and the long-term variations might be related to the global climatic events, such as the mid-Pleistocene Revolution and the mid-Brunhes event.  相似文献   

17.
Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons) and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape). We tested the hypothesis focusing on resource availability (nutrients and light) and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism’s behavior which exploring patch resources in transitional and marine phytoplankton communities.  相似文献   

18.
A mechanistic model of dinoflagellate physiology, previously developed and parameterised to simulate paralytic shellfish poison (PSP) content and cell growth for Alexandrium fundyense in response to N and P nutrition, was operated within a vertical water structure in which the organism migrated. Simulations showed the expected development of vertical migration behaviour in response to light and mineral nutrient interactions. Growth in a N-limited water column resulted in a continual, though low level, PSP production with a large population biomass. A sequence of P-stress and nutrient re-feeding during vertical migration stimulated an enhancement of PSP content even with only moderately elevated supply of N:P ratios. This was exacerbated by low absolute P concentrations below the nutricline as well as by the N:P ratio. Although the final biomass was lower in these P-limited simulations, the total toxin production was much higher. The simulations suggest that vertical migration in stratified waters in even moderately high N:P waters could result in the formation of highly toxic populations of Alexandrium. One may expect a similar enhancement of toxicity in other harmful algal species that are engaged in vertical migration, where nutrient supply ratios affect toxin production.  相似文献   

19.
The vertical distribution and migration of phytoplankton composed of seven organisms in a small eutrophic pool is described. Vertical migration during a 24 h period is shown to be exhibited by Pandorina morum, Mallomonas tonsurata, Chroomonas pusilla (Rhodomonas) and Ochromonas sp. in the epilimnion and Cryptomonas rufescens in the surface of the hypolimnion. The degree of horizontal variation in distribution of the organisms is discussed and found to be greatest for the microflagellates. Changes in vertical distribution are shown to be significant and result from active movement of the cells rather than from either water movement or the combined variation associated with patchiness in distribution and counting errors.

Differences between the behaviour patterns of the different algae are evident and may be used to explain Hutchinson's “paradox of the plankton”.  相似文献   

20.
The spatial distribution of phytoplankton cell abundance, carbon(C) biomass and chlorophyll a (Chl a) concentration was analysedduring three summers (1996, 1997 and 1999) in a seasonal sea-icearea, west of the Antarctic Peninsula. The objective of thestudy was to assess interannual variability in phytoplanktonspatial distribution and the mechanisms that regulate phytoplanktonaccumulation in the water column. Phytoplankton C biomass andChl a distributions were consistent from year to year, exhibitinga negative on/offshore gradient. The variations in C concentrationhad a close and non-linear relationship with the upper mixedlayer depth, suggesting that the vertical mixing of the watercolumn is the main factor regulating phytoplankton stock. Themagnitude of C gradients was 5-fold higher during 1996 thanduring 1997 and 1999. This was ascribed to interannual variationsin the concentration of diatom blooms in the region influencedby sea-ice melting. Vertical distribution of the phytoplankton,as estimated from Chl a profiles, also varied along an on/offshoregradient: Chl a was distributed homogeneously in the upper mixedlayer in coastal and mid-shelf stations and concentrated inthe deep layer (40–100 m) occupied by the winter waters(WW, remnants of the Antarctic surface waters during summer)in more offshore stations. The region with a deep Chl a maximumlayer (DCM layer) was dominated by a phytoplankton assemblagecharacterized by a relatively high concentration of diatoms.The extent of this region varied from year to year: it was restrictedto pelagic waters during 1996, extended to the shelf slope during1997 and occupied a major portion of the area during 1999. Itis hypothesized that iron depletion in near surface waters dueto phytoplankton consumption, and a higher concentration inWW, regulated this vertical phytoplankton distribution pattern.Furthermore, we postulate that year-to-year variations in thespatial distribution of the DCM layer were related to interannualvariations in the timing of the sea-ice retreat. The similaritybetween our results and those reported in literature for otherareas of the Southern Ocean allows us to suggest that the mechanismsproposed here as regulating phytoplankton stock in our areamay be applicable elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号