首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
5-Hydroxytryptamine (5-HT) is a vasoactive substance that is taken up by endothelial cells to activate endothelial nitrite oxide synthase (eNOS). The activation of eNOS results in the production of nitric oxide (NO), which is responsible for vasodilation of blood vessels. NO also interacts with superoxide anion (O2*-) to form peroxynitrite (ONOO-), a potent oxidant that has been shown to induce vascular endothelial dysfunction. We examined the ability of 3-morpholinosyndnonimine (SIN-1), an ONOO- generator, to inhibit 5-HT-induced phosphorylation of eNOS in cultured bovine aortic endothelial cells (BAECs). We observed that 5-HT phosphorylates Ser1179 eNOS in a time- and concentration-dependent manner. Maximum phosphorylation occurred at 30 sec using a concentration of 1.0 microM 5-HT. BAECs treated with SIN-1 (1-1000 microM) for 30 min showed no significant increase in eNOS phosphorylation. However, 5-HT-induced eNOS phosphorylation was inhibited in cells treated with various concentrations of SIN-1 for 30 min and stimulated with 5-HT. These data suggest that an increase in ONOO- as a result of an increase in the production of O2*-, may feedback to inhibit 5-HT-induced eNOS phosphorylation at Ser1179 and therefore, contribute to endothelial dysfunction associated with cardiovascular diseases.  相似文献   

2.
Nitric oxide (NO) produced by the action of endothelial nitric oxide synthase (eNOS) plays an important role in the regulation of vascular tone, cell survival, and angiogenesis. Interaction of endothelial cells (ECs) with a fibronectin (FN) rich matrix is important in the regulation of EC function and survival during angiogenesis. The present study was carried out to examine if FN can regulate eNOS and thereby NO levels in ECs. The activity and the levels of mRNA and protein of eNOS were significantly low in HUVECs maintained in culture on FN. Inhibition of p38 MAPK and blocking the interaction of FN with α5β1 integrin using antibody caused the reversal of the FN effect. Immunoblot analysis of Ser/Thr phosphorylation of purified eNOS suggested that FN downregulates post-translational phosphorylation of eNOS at Ser residues. These results suggest that FN negatively modulates eNOS in an α5β1 integrin-p38 MAPK-dependent pathway.  相似文献   

3.
The Akt kinase signals directly to endothelial nitric oxide synthase.   总被引:19,自引:0,他引:19  
Endothelial nitric oxide synthase (eNOS) is an important modulator of angiogenesis and vascular tone [1]. It is stimulated by treatment of endothelial cells in a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent fashion by insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF) [2] [3] and is activated by phosphorylation at Ser1177 in the sequence RIRTQS(1177)F (in the single-letter amino acid code) [4]. The protein kinase Akt is an important downstream target of PI 3-kinase [5] [6], regulating VEGF-stimulated endothelial cell survival [7]. Akt phosphorylates substrates within a defined motif [8], which is present in the sequence surrounding Ser1177 in eNOS. Both Akt [5] [6] and eNOS [9] are localized to, and activated at, the plasma membrane. We found that purified Akt phosphorylated cardiac eNOS at Ser1177, resulting in activation of eNOS. Phosphorylation at this site was stimulated by treatment of bovine aortic endothelial cells (BAECs) with VEGF or IGF-1, and Akt was activated in parallel. Preincubation with wortmannin, an inhibitor of Akt signalling, reduced VEGF- or IGF-1-induced Akt activity and eNOS phosphorylation. Akt was detected in immunoprecipitates of eNOS from BAECs, and eNOS in immunoprecipitates of Akt, indicating that the two enzymes associate in vivo. It is thus apparent that Akt directly activates eNOS in endothelial cells. These results strongly suggest that Akt has an important role in the regulation of normal angiogenesis and raise the possibility that the enhanced activity of this kinase that occurs in carcinomas may contribute to tumor vascularization and survival.  相似文献   

4.
The study was designed to investigate the effect of retinol binding protein (RBP)-4 on the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways, which mediate the effects of insulin in vascular endothelial cells. The effects of RBP4 on nitric oxide (NO) and insulin-stimulated endothelin-1 (ET-1) secretion and on phosphorylation (p) of Akt, endothelial NO synthetase (eNOS), and extracellular signal-regulated kinase (ERK)1/2 were investigated in bovine vascular aortic endothelial cells (BAECs). RBP4 showed an acute vasodilatatory effect on aortic rings of rats within a few minutes. In BAECs, RBP4-treatment for 5 min significantly increased NO production, but inhibited insulin-stimulated ET-1 secretion. RBP4-induced NO production was not inhibited by tetraacetoxymethylester (BAPTA-AM), an intracellular calcium chelator, but was completely abolished by wortmannin, a PI3K inhibitor. RBP4 significantly increased p-Akt and p-eNOS production, and significantly inhibited p-ERK1/2 production. Triciribine, an Akt inhibitor, and wortmannin significantly inhibited RBP4-induced p-Akt and p-eNOS production. Inhibition of Akt1 by small interfering RNA decreased p-eNOS production enhanced by RBP4 in human umbilical vein endothelial cells. In conclusion, RBP4 has a robust acute effect of enhancement of NO production via stimulation of part of the PI3K/Akt/eNOS pathway and inhibition of ERK1/2 phosphorylation and insulin-induced ET-1 secretion, probably in the MAPK pathway, which results in vasodilatation.  相似文献   

5.
The long-term benefits of nitroglycerin therapy are limited by tolerance development. Understanding the precise nature of mechanisms underlying nitroglycerin-induced endothelial cell dysfunction may provide new strategies to prevent tolerance development. In this line, we tested interventions to prevent endothelial dysfunction in the setting of nitrate tolerance. When bovine aortic endothelial cells (BAECs) were continuously treated with nitric oxide (NO) donors, including nitroglycerin, over 2-3 days, basal production of nitrite and nitrate (NO(x)) was diminished. The diminished basal NO(x) levels were mitigated by intermittent treatment allowing an 8-h daily nitrate-free interval during the 2- to 3-day treatment period. Addition of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin restored the basal levels of NO(x) that were decreased by continuous nitroglycerin treatment of BAECs. Apocynin caused significant improvement of increased mRNA and protein levels of endothelial nitric oxide synthase (eNOS) in BAECs given nitroglycerin continuously over the treatment period. Apocynin also reduced endothelial production of reactive oxygen species (ROS) after continuous nitroglycerin treatment. These results showed an essential similarity to the effects of a nitrate-free interval. Application of the NOS inhibitor N(omega)-nitro- l-arginine methyl ester caused a recovery effect on basal NO(x) and eNOS expression but was without effect on ROS levels in continuously NO donor-treated BAECs. In conclusion, the present study characterized abnormal features and functions of endothelial cells following continuous NO donor application. We suggest that inhibition of NADPH oxidase, by preventing NO donor-induced endothelial dysfunction, may represent a potential therapeutic strategy that confers protection from nitrate tolerance development.  相似文献   

6.
Hydrogen sulfide (H2S) and nitric oxide (NO) are major gasotransmitters produced in endothelial cells (ECs), contributing to the regulation of vascular contractility and structural integrity. Their interaction at different levels would have a profound impact on angiogenesis. Here, we showed that H2S and NO stimulated the formation of new microvessels. Incubation of human umbilical vein endothelial cells (HUVECs‐926) with NaHS (a H2S donor) stimulated the phosphorylation of endothelial NO synthase (eNOS) and enhanced NO production. H2S had little effect on eNOS protein expression in ECs. L‐cysteine, a precursor of H2S, stimulated NO production whereas blockage of the activity of H2S‐generating enzyme, cystathionine gamma‐lyase (CSE), inhibited this action. CSE knockdown inhibited, but CSE overexpression increased, NO production as well as EC proliferation. LY294002 (Akt/PI3‐K inhibitor) or SB203580 (p38 MAPK inhibitor) abolished the effects of H2S on eNOS phosphorylation, NO production, cell proliferation and tube formation. Blockade of NO production by eNOS‐specific siRNA or nitro‐L‐arginine methyl ester (L‐NAME) reversed, but eNOS overexpression potentiated, the proliferative effect of H2S on ECs. Our results suggest that H2S stimulates the phosphorylation of eNOS through a p38 MAPK and Akt‐dependent pathway, thus increasing NO production in ECs and vascular tissues and contributing to H2S‐induced angiogenesis.  相似文献   

7.
Endothelial nitric oxide synthase (eNOS) is a multifunctional enzyme with roles in diverse cellular processes including angiogenesis, tissue remodeling, and the maintenance of vascular tone. Monomeric and dimeric forms of eNOS exist in various tissues. The dimeric form of eNOS is considered the active form and the monomeric form is considered inactive. The activity of eNOS is also regulated by many other mechanisms, including amino acid phosphorylation and interactions with other proteins. However, the precise mechanisms regulating eNOS dimerization, phosphorylation, and activity remain incompletely characterized. We utilized purified eNOS and bovine aorta endothelial cells (BAECs) to investigate the mechanisms regulating eNOS degradation. Both eNOS monomer and dimer existed in purified bovine eNOS. Incubation of purified bovine eNOS with protein phosphatase 2A (PP2A) resulted in dephosphorylation at Serine 1179 (Ser1179) in both dimer and monomer and decrease in eNOS activity. However, the eNOS dimer∶monomer ratio was unchanged. Similarly, protein phosphatase 1 (PP1) induced dephosphorylation of eNOS at Threonine 497 (Thr497), without altering the eNOS dimer∶monomer ratio. Different from purified eNOS, in cultured BAECs eNOS existed predominantly as dimers. However, eNOS monomers accumulated following treatment with the proteasome inhibitor lactacystin. Additionally, treatment of BAECs with vascular endothelial growth factor (VEGF) resulted in phosphorylation of Ser1179 in eNOS dimers without altering the phosphorylation status of Thr497 in either form. Inhibition of heat shock protein 90 (Hsp90) or Hsp90 silencing destabilized eNOS dimers and was accompanied by dephosphorylation both of Ser1179 and Thr497. In conclusion, our study demonstrates that eNOS monomers, but not eNOS dimers, are degraded by ubiquitination. Additionally, the dimeric eNOS structure is the predominant condition for eNOS amino acid modification and activity regulation. Finally, destabilization of eNOS dimers not only results in eNOS degradation, but also causes changes in eNOS amino acid modifications that further affect eNOS activity.  相似文献   

8.
Cadmium (Cd) perturbs vascular health and interferes with endothelial function. However, the effects of exposing endothelial cells to low doses of Cd on the production of nitric oxide (NO) are largely unknown. The objective of the present study was to evaluate these effects by using low levels of CdCl2 concentrations, ranging from 10 to 1000 nmol/L. Cd perturbations in endothelial function were studied by employing wound-healing and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. The results suggest that a CdCl2 concentration of 100 nmol/L maximally attenuated NO production, cellular migration, and energy metabolism in endothelial cells. An egg yolk angiogenesis model was employed to study the effect of Cd exposure on angiogenesis. The results demonstrate that NO supplementation restored Cd-attenuated angiogenesis. Immunofluorescence, Western blot, and immuno-detection studies showed that low levels of Cd inhibit NO production in endothelial cells by blocking eNOS phosphorylation, which is possibly linked to processes involving endothelial function and dysfunction, including angiogenesis.  相似文献   

9.
Vascular endothelial growth factor (VEGF)-dependent signals are central to many endothelial cell (EC) functions, including survival and regulation of vascular tone. Akt and endothelial nitric oxide synthase (eNOS) activity are implicated to mediate these effects. Dysregulated signaling is characteristic of endothelial dysfunction that sensitizes the glomerular microvasculature to injury. Signaling intermediates that couple VEGF stimulation to eNOS activity remain unclear; hence, we examined the PI3 kinase isoforms implicated to regulate these enzymes. Using a combination of small molecule inhibitors and RNAi to study responses to VEGF in glomerular EC, we observed that the PI3 kinase p110α catalytic isoform is coupled to VEGFR2 and regulates the bulk of Akt activity. Coimmunoprecipitation experiments support a physical association of p110α with VEGFR2. Downstream, Akt-mediated FOXO1 phosphorylation in EC is regulated by p110α. The p110δ isoform contributes a minor amount of VEGF-stimulated Akt activation. However, we observe no effect of p110α or p110δ to regulate VEGF-stimulated eNOS activation via Akt-mediated phosphorylation on eNOS Ser1177, or NO-mediated vasodilation of the afferent arteriole ex vivo. VEGFR2-stimulated eNOS activation and NO production are inhibited by Compound C, an inhibitor of AMP-stimulated kinase, independent of PI3 kinase signaling. PI3 kinase-α/δ-mediated signaling downstream of VEGFR2 activation regulates Akt-dependent survival signals, but our data suggest it is not required to activate eNOS or to elicit NO production in glomerular EC.  相似文献   

10.
Ginsenosides have been shown to stimulate nitric oxide (NO) production in aortic endothelial cells. However, the signaling pathways involved have not been well studied in human aortic endothelial cells. The present study was designed to examine whether purified ginsenoside Rb1, a major active component of ginseng could actually induce NO production and to clarify the signaling pathway in human aortic endothelial cells. NO production was rapidly increased by Rb1. The rapid increase in NO production was abrogated by treatment with nitric oxide synthetase inhibitor, L-NAME. Rb1 stimulated rapid phosphorylation of Akt (Ser473), ERK1/2 (Thr202/Thr204) and eNOS (Ser1177). Rapid phosphorylation of eNOS (Ser1177) was prevented by SH-5, an Akt inhibitor or wortmannin, PI3-kinase inhibitor and partially attenuated by PD98059, an upstream inhibitor for ERK1/2. Interestingly, NO production and eNOS phosphorylation at Ser1177 by Rb1 were abolished by androgen receptor antagonist, nilutamide. The results suggest that PI3kinase/Akt and MEK/ERK pathways and androgen receptor are involved in the regulation of acute eNOS activation by Rb1 in human aortic endothelial cells.  相似文献   

11.
This study examines the notion that heat shock protein (HSP) 90 binding to nitric oxide (NO), endothelial NO synthase (eNOS), and PI3K-Akt regulate angiopoietin (Ang)-1-induced angiogenesis in porcine coronary artery endothelial cells (PCAEC). Exposure to Ang-1 (250 ng/ml) for periods up to 2 h resulted in a time-dependent increase in eNOS phosphorylation at Ser 1177 that occurred by 5 min and peaked at 60 min. This was accompanied by a gradual increase in NO release. Ang-1 also led to stimulation of HSP90 binding to eNOS and a significant increase in Akt phosphorylation. Thirty minutes of pretreatment of cells with either 1 microg/ml geldanamycin (a specific inhibitor of HSP90) or 500 nM wortmannin [a specific phosphatidylinositol 3 (PI3)-kinase (PI3K) inhibitor] significantly attenuated Ang-1-stimulated eNOS phosphorylation and NO production. Exposure to Ang-1 caused an increase in endothelial cell migration, tube formation, and sprouting from PCAEC spheroids, and pharmacological blockage of HSP90 function or inhibition of PI3K-Akt pathway completely abolished these effects. Inhibition of nitric oxide synthase by NG-nitro-l-arginine methyl ester (2.5 mM) also resulted in a significant decrease in Ang-1-induced angiogenesis. We conclude that stimulated HSP90 binding to eNOS and activation of the PI3-Akt pathway contribute to Ang-1-induced eNOS phosphorylation, NO production, and angiogenesis in PCAEC.  相似文献   

12.
Vascular endothelial growth factor (VEGF) is a potent endothelial cell-specific mitogen that promotes angiogenesis, vascular hyperpermeability, and vasodilation by autocrine mechanisms involving nitric oxide (NO) and prostacyclin (PGI(2)) production. These experiments used immunoprecipitation and immunoassay procedures to characterize the signaling pathways by which VEGF induces NO and PGI(2) formation in cultured endothelial cells. The data showed that VEGF stimulates complex formation of the flk-1/kinase-insert domain-containing receptor (KDR) VEGF receptor with c-Src and that Src activation is required for VEGF induction of phospholipase C gamma1 activation and inositol 1,4,5-trisphosphate formation. Reporter cell assays showed that VEGF promotes a approximately 50-fold increase in NO formation, which peaks at 5-20 min. This effect is mediated by a signaling cascade initiated by flk-1/KDR activation of c-Src, leading to phospholipase C gamma1 activation, inositol 1,4,5-trisphosphate formation, release of [Ca(2+)](i) and nitric oxide synthase activation. Immunoassays of VEGF-induced 6-keto prostaglandin F(1alpha) formation as an indicator of PGI(2) production revealed a 3-4-fold increase that peaked at 45-60 min. The PGI(2) signaling pathway follows the NO pathway through release of [Ca(2+)](i), but diverges prior to NOS activation and also requires activation of mitogen-activated protein kinase. These results suggest that NO and PGI(2) function in parallel in mediating the effects of VEGF.  相似文献   

13.
Erythropoietin (EPO), the key hormone for erythropoiesis, also increases nitric oxide (NO) bioavailability in endothelial cells (ECs), yet the definitive mechanisms are not fully understood. Increasing evidence has demonstrated that β common receptor (βCR) plays a crucial role in EPO-mediated non-hematopoietic effects. We investigated the role of βCR in EPO-induced endothelial NO synthase (eNOS) activation in bovine aortic ECs (BAECs) and the molecular mechanisms involved. Results of confocal microscopy and immunoprecipitation analyses revealed that βCR was colocalized and interacted with EPO receptor (EPOR) in ECs. Inhibition of βCR or EPOR by neutralizing antibodies or small interfering RNA abolished the EPO-induced NO production. Additionally, blockage of βCR abrogated the EPO-induced increase in the phosphorylation of eNOS, Akt, Src, or Janus kinase 2 (JAK2). Immunoprecipitation analysis revealed that treatment with EPO increased the interaction between βCR and eNOS, which was suppressed by inhibition of Src, JAK2, or Akt signaling with specific pharmacological inhibitors. Furthermore, EPO-induced EC proliferation, migration, and tube formation were blocked by pretreatment with βCR antibody and Src, JAK2, or PI3K/Akt inhibitors. Moreover, in vivo experiments showed that EPO increased the level of phosphorylated eNOS, Src, JAK2, and Akt, as well as βCR-eNOS association in aortas and promoted the angiogenesis in Matrigel plug, which was diminished by βCR or EPOR neutralizing antibodies. Our findings suggest that βCR may play an integrative role in the EPO signaling-mediated activation of eNOS in ECs.  相似文献   

14.
A variety of evidence suggests that endothelial cell functions are impaired in altered gravity conditions. Nevertheless, the effects of hypergravity on endothelial cell physiology remain unclear. In this study we cultured primary human endothelial cells under mild hypergravity conditions for 24-48 h, then we evaluated the changes in cell cycle progression, caveolin1 gene expression and in the caveolae status by confocal microscopy. Moreover, we analyzed the activity of enzymes known to be resident in caveolae such as endothelial nitric oxide synthase (eNOS), cycloxygenase 2 (COX-2), and prostacyclin synthase (PGIS). Finally, we performed a three-dimensional in vitro collagen gel test to evaluate the modification of the angiogenic responses. Results indicate that hypergravity shifts endothelial cells to G(0)/G(1) phase of cell cycle, reducing S phase, increasing caveolin1 gene expression and causing an increased distribution of caveolae in the cell interior. Hypergravity also increases COX-2 expression, nitric oxide (NO) and prostacyclin (PGI2) production, and inhibits angiogenesis as evaluated by 3-D collagen gel test, through a pathway not involving apoptosis. Thus, endothelial cell caveolae may be responsible for adaptation of endothelium to hypergravity and the mechanism of adaptation involves an increased caveolin1 gene expression coupled to upregulation of vasodilators as NO and PGI2.  相似文献   

15.
Extracellular histones are mediators of inflammation, tissue injury and organ dysfunction. Interactions between circulating histones and vascular endothelial cells are key events in histone‐mediated pathologies. Our aim was to investigate the implication of extracellular histones in the production of the major vasoactive compounds released by human endothelial cells (HUVECs), prostanoids and nitric oxide (NO). HUVEC exposed to increasing concentrations of histones (0.001 to 100 μg/ml) for 4 hrs induced prostacyclin (PGI2) production in a dose‐dependent manner and decreased thromboxane A2 (TXA2) release at 100 μg/ml. Extracellular histones raised cyclooxygenase‐2 (COX‐2) and prostacyclin synthase (PGIS) mRNA and protein expression, decreased COX‐1 mRNA levels and did not change thromboxane A2 synthase (TXAS) expression. Moreover, extracellular histones decreased both, eNOS expression and NO production in HUVEC. The impaired NO production was related to COX‐2 activity and superoxide production since was reversed after celecoxib (10 μmol/l) and tempol (100 μmol/l) treatments, respectively. In conclusion, our findings suggest that extracellular histones stimulate the release of endothelial‐dependent mediators through an up‐regulation in COX‐2‐PGIS‐PGI2 pathway which involves a COX‐2‐dependent superoxide production that decreases the activity of eNOS and the NO production. These effects may contribute to the endothelial cell dysfunction observed in histone‐mediated pathologies.  相似文献   

16.
3-Hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors, statins, provide beneficial effects independent of their lipid-lowering effects. One beneficial effect appears to involve acute activation of endothelial nitric oxide (NO) synthase (eNOS) and increased NO release. However, the mechanism of acute statin-stimulated eNOS activation is unknown. Therefore, we hypothesized that eNOS activation may be coupled to altered eNOS phosphorylation. Bovine aortic endothelial cells (BAECs), passages 2-6, were treated with either lovastatin or pravastatin from 0 to 30 min. eNOS phosphorylation was examined by Western blot by use of phosphospecific antibodies for Ser-1179, Ser-635, Ser-617, Thr-497, and Ser-116. Statin stimulation of BAECs increased eNOS phosphorylation at Ser-1179 and Ser-617, which was blocked by the phosphatidylinositol 3-kinase (PI3-kinase)/Akt inhibitor wortmannin, and at Ser-635, which was blocked by the protein kinase A (PKA) inhibitor KT-5720. Statin treatment of BAECs transiently increased NO release by fourfold, measured by cGMP accumulation, and was attenuated by N-nitro-l-arginine methyl ester, wortmannin, and KT-5720 but not by mevalonate. In conclusion, these data demonstrate that eNOS is acutely activated by statins independent of HMG-CoA reductase inhibition and that in addition to Ser-1179, eNOS phosphorylation at Ser-635 and Ser-617 through PKA and Akt, respectively, may explain, in part, a mechanism by which eNOS is activated in response to acute statin treatment.  相似文献   

17.
Hyperglycemia is a major cause of diabetic vascular disease. High glucose can induce reactive oxygen species (ROS) and nitric oxide (NO) generation, which can subsequently induce endothelial dysfunction. High glucose is also capable of triggering endothelial cell apoptosis. Little is known about the molecular mechanisms and the role of ROS and NO in high glucose-induced endothelial cell apoptosis. This study was designed to determine the involvement of ROS and NO in high glucose-induced endothelial cell apoptosis. Expression of endothelial nitric oxide synthase (eNOS) protein and apoptosis were studied in cultured human umbilical vein endothelial cells (HUVECs) exposed to control-level (5.5 mM) and high-level (33 mM) glucose at various periods (e.g., 2, 12, 24, 48 h). We also examined the effect of high glucose on H(2)O(2) production using flow cytometry. The results showed that eNOS protein expression was up-regulated by high glucose exposure for 2-6 h and gradually reduced after longer exposure in HUVECs. H(2)O(2) production and apoptosis, which can be reversed by vitamin C and NO donor (sodium nitroprusside), but enhanced by NOS inhibitor (N(G)-nitro-L-arginine methyl ether), were collated to a different time course (24-48 h) to HUVECs. These results provide the molecular basis for understanding that NO plays a protective role from apoptosis of HUVECs during the early stage (<24 h) of high glucose exposure, but in the late stage (>24 h), high glucose exposure leads to the imbalance of NO and ROS, resulting to the observed apoptosis. This may explain, at least in part, the impaired endothelial function and vascular complication of diabetic mellitus that would occur at late stages.  相似文献   

18.
19.
该文探讨了白细胞介素-6(interleukin-6,IL-6)对牛主动脉内皮细胞(bovine aortic endo-thelial cells,BAECs)的内皮型一氧化氮合成酶(endothelial nitric oxide synthase,eNOS)的影响及其可能的发生机制.在原代BAECs细胞培养基础上...  相似文献   

20.
We investigated the signaling mechanism of stretch-induced NO (Nitric oxide) production in bovine arterial endothelial cells (BAECs). BAECs cultured on an elastic silicone chamber coated with fibronectin were subjected to uni-axial cyclic stretch (1 Hz, 20% in length) and the amount of produced NO was measured by a cGMP assay. NO production increased in a bi-phasic manner and peaked at 5 min and 20 min after stretch onset. Correspondingly, the activities of endothelial nitric oxide synthase (eNOS) and Akt/PKB (measured by phosphorylation at serine 1,177 and serine 473, respectively), showed two peaks over time. Application of Gd(3+), a potent SA channel blocker, and depletion of external Ca(2+) exclusively inhibited the first peaks of eNOS and Akt activity, but exerted little effect on the second peak. On the other hand, the PI3K inhibitors, Wortmannin, LY294002, almost completely inhibited the second peak but not the first. These results suggest that up-regulation of eNOS in response to cyclic stretch was mediated by two distinct pathways, [Ca(2+)](i) increases via the SA channel in an early phase (partially Akt/PKB), and PI3K-Akt/PKB pathways in a late phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号