首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The kinetic properties of highly purified preparations of sheep liver cytoplasmic aldehyde dehydrogenase (preparations that had been shown to be free from contamination with the corresponding mitochondrial enzyme) were investigated with both propionaldehyde and butyraldehyde as substrates. At low aldehyde concentrations, double-reciprocal plots with aldehyde as the variable substrate are linear, and the mechanism appears to be ordered, with NAD+ as the first substrate to bind. Stopped-flow experiments following absorbance and fluorescence changes show bursts of NADH production in the pre-steady state, but the observed course of reaction depends on the pre-mixing conditions. Pre-mixing enzyme with NAD+ activates the enzyme in the pre-steady state and we suggest that the reaction mechanism may involve isomeric enzyme--NAD+ complexes. High concentrations of aldehyde in steady-state experiments produce significant activation (about 3-fold) at high concentrations of NAD+, but inhibition at low concentrations of NAD+. Such behaviour may be explained by postulating the participation of an abortive complex in product release. Stopped-flow measurements at high aldehyde concentrations indicate that the mechanism of reaction under these conditions is complex.  相似文献   

2.
Stopped-flow experiments in which sheep liver cytoplasmic aldehyde dehydrogenase (EC 1.2.1.3) was rapidly mixed with NAD(+) and aldehyde showed a burst of NADH formation, followed by a slower steady-state turnover. The kinetic data obtained when the relative concentrations and orders of mixing of NAD(+) and propionaldehyde with the enzyme were varied were fitted to the following mechanism: [Formula: see text] where the release of NADH is slow. By monitoring the quenching of protein fluorescence on the binding of NAD(+), estimates of 2x10(5) litre.mol(-1).s(-1) and 2s(-1) were obtained for k(+1) and k(-1) respectively. Although k(+3) could be determined from the dependence of the burst rate constant on the concentration of propionaldehyde to be 11s(-1), k(+2) and k(-2) could not be determined uniquely, but could be related by the equation: (k(-2)+k(+3))/k(+2) =50x10(-6)mol.litre(-1). No significant isotope effect was observed when [1-(2)H]propionaldehyde was used as substrate. The burst rate constant was pH-dependent, with the greatest rate constants occurring at high pH. Similar data were obtained by using acetaldehyde, where for this substrate (k(-2)+k(+3))/k(+2)=2.3x10 (-3)mol.litre(-1) and k(+3) is 23s(-1). When [1,2,2,2-(2)H]acetaldehyde was used, no isotope effect was observed on k(+3), but there was a significant effect on k(+2) and k(-2). A burst of NADH production has also been observed with furfuraldehyde, trans-4-(NN-dimethylamino)cinnamaldehyde, formaldehyde, benzaldehyde, 4-(imidazol-2-ylazo)benzaldehyde, p-methoxybenzaldehyde and p-methylbenzaldehyde as substrates, but not with p-nitrobenzaldehyde.  相似文献   

3.
The pI approximately 5.2 isoenzymes of mitochondrial aldehyde dehydrogenase were separated from the other isoenzymes by pH-gradient chromatography on DEAE-Sephacel. The pI approximately 5.2 material is immunologically identical with cytosolic aldehyde dehydrogenase. It also shows sensitivity to 20 microM-disulfiram and insensitivity to 4M-urea in assays. These and other criteria seem to establish that the material is identical with the cytosolic enzyme. Mitochondrial enzyme that had been purified to remove pI approximately 5.2 isoenzymes shows concentration-dependent lag phases in assays. These effects are possibly due to the slow establishment of equilibrium between tetramer and either dimers or monomers, with the dissociated species being intrinsically more active than the tetramer.  相似文献   

4.
Stoicheiometric amounts of [14C]disulfiram react rapidly with sheep liver cytoplasmic aldehyde dehydrogenase to give loss of catalytic activity and incorporation of the expected amount of radioactivity. In a subsequent slower reaction the label is lost from the enzyme without re-emergence of enzymic activity. The results imply that in vivo disulfiram may act as an oxidation-reduction catalyst for the inactivation of aldehyde dehydrogenase.  相似文献   

5.
The hydrolysis of 4-nitrophenyl acetate catalysed by cytoplasmic aldehyde dehydrogenase (EC 1.2.1.3) from sheep liver was studied by steady-state and transient kinetic techniques. NAD+ and NADH stimulated the steady-state rate of ester hydrolysis at concentrations expected on the basis of their Michaelis constants from the dehydrogenase reaction. At higher concentrations of the coenzymes, both NAD+ and NADH inhibited the reaction competitively with respect to 4-nitrophenyl acetate, with inhibition constants of 104 and 197 micron respectively. Propionaldehyde and chloral hydrate are competitive inhibitors of the esterase reaction. A burst in the production of 4-nitrophenoxide ion was observed, with a rate constant of 12 +/- 2s-1 and a burst amplitude that was 30% of that expected on the basis of the known NADH-binding site concentration. The rate-limiting step for the esterase reaction occurs after the formation of 4-nitrophenoxide ion. Arguments are presented for the existence of distinct ester- and aldehyde-binding sites.  相似文献   

6.
The effect of disulfiram, [1-14C]disulfiram and some other thiol reagents on the activity of cytoplasmic aldehyde dehydrogenase from sheep liver was studied. The results are consistent with a rapid covalent interaction between disulfiram and the enzyme, and inconsistent with the notion that disulfiram is a reversible competitive inhibitor of cytoplasmic aldehyde dehydrogenase. There is a non-linear relationship between loss of about 90% of the enzyme activity and amount of disulfiram added; possible reasons for this are discussed. The remaining approx. 10% of activity is relatively insensitive to disulfiram. It is found that modification of only a small number of groups (one to two) per tetrameric enzyme molecule is responsible for the observed loss of activity. The dehydrogenase activity of the enzyme is affected more severely by disulfiram than is the esterase activity. Negatively charged thiol reagents have little or no effect on cytoplasmic aldehyde dehydrogenase. 2,2'-Dithiodipyridine is an activator of the enzyme.  相似文献   

7.
Stopped-flow spectrophotometric experiments show that modification by disulfiram not only lowers the steady-state rates but also decreases the size of bursts seen in both dehydrogenase and esterase reactions catalysed by sheep liver cytoplasmic aldehyde dehydrogenase. This observation is consistent with the proposal that a catalytically essential group is modified by disulfiram and that this group mediates both dehydrogenase and esterase activities.  相似文献   

8.
The kinetics of the NAD+-dependent oxidation of aldehydes, catalysed by aldehyde dehydrogenase purified from sheep liver mitochondria, were studied in detail. Lag phases were observed in the assays, the length of which were dependent on the enzyme concentration. The measured rates after the lag phase was over were directly proportional to the enzyme concentration. If enzyme was preincubated with NAD+, the lag phase was eliminated. Double-reciprocal plots with aldehyde as the variable substrate were non-linear, showing marked substrate activation. With NAD+ as the variable substrate, double-reciprocal plots were linear, and apparently parallel. Double-reciprocal plots with enzyme modified with disulfiram (tetraethylthiuram disulphide) or iodoacetamide, such that at pH 8.0 the activity was decreased to 50% of the control value, showed no substrate activation, and the plots were linear. At pH 7.0, the kinetic parameters Vmax. and Km NAD+- for the oxidation of acetaldehyde and butyraldehyde by the native enzyme are almost identical. Formaldehyde and propionaldehyde show the same apparent maximum rate. Aldehyde dehydrogenase is able to catalyse the hydrolysis of p-nitrophenyl esters. This esterase activity was stimulated by both NAD+ and NADH, the maximum rate for the NAD+ stimulated esterase reaction being roughly equal to the maximum rate for the oxidation of aldehydes. The mechanistic implications of the above behaviour are discussed.  相似文献   

9.
Aldehyde dehydrogenase from sheep liver mitochondria was purified to homogeneity as judged by electrophoresis on polyacrylamide gels, and by sedimentation-equilibrium experiments in the analytical ultracentrifuge. The enzyme has a molecular weight of 198000 and a subunit size of 48000, indicating that the molecule is a tetramer. Fluorescence and spectrophotometric titrations indicate that each subunit can bind 1 molecule of NADH. Enzymic activity is completely blocked by reaction of 4mol of 5,5'-dithiobis-(2-nitrobenzoate)/mol of enzyme. Excess of disulfiram or iodoacetamide decreases activity to only 50% of the control value, and only two thiol groups per molecule are apparently modified by these reagents.  相似文献   

10.
The sequences of the coenzyme-binding peptide of both cytoplasmic and mitochondrial aspartate aminotransferases from sheep liver were determined. The holoenzymes were treated with NaBH4 and digested with chymotrypsin; peptides containing bound pyridoxal phosphate were then isolated. One phosphopyridoxyl peptide was obtained from sheep liver cytoplasmic aspartate aminotransferase. Its sequence was Ser-Ne-(phosphopyridoxyl)-Lys-Asn-Phe. This sequence is identical with that reported for the homologous peptide from pig heart cytoplasmic aspartate aminotransferase. Two phosphopyridoxyl peptides with different RF values were isolated from the sheep liver mitochondrial isoenzyme. They had the same N-terminal amino acid and similar amino acid composition. The mitochondrial phosphopyridoxyl peptide of highest yield and purity had the sequence Ala-Ne-(phosphopyridoxyl)-Lys-Asx-Met-Gly-Leu-Tyr. The sequence of the first four amino acids is identical with that already reported for the phosphopyridoxyl tetrapeptide from the pig heart mitochondrial isoenzyme. The heptapeptide found for the sheep liver mitochondrial isoenzyme closely resembles the corresponding sequence taken from the primary structure of the pig heart cytoplasmic aspartate aminotransferase.  相似文献   

11.
The dissociation of the aldehyde dehydrogenase X NADH complex was studied by displacement with NAD+. The association reaction of enzyme and NADH was also studied. These processes are biphasic, as shown by McGibbon, Buckley & Blackwell [(1977) Biochem. J. 165, 455-462], but the details of the dissociation reaction are significantly different from those given by those authors. Spectral and kinetic experiments provide evidence for the formation of abortive complexes of the type enzyme X NADH X aldehyde. Kinetic studies at different wavelengths with transcinnamaldehyde as substrate provide evidence for the formation of an enzyme X NADH X cinnamoyl complex. Hydrolysis of the thioester relieves a severe quenching effect on the fluorescence of enzyme-bound NADH.  相似文献   

12.
Kinetic studies were carried out on mitochondrial aldehyde dehydrogenase (EC 1.2.1.3) isolated from sheep liver. Steady-state studies over a wide range of acetaldehyde concentrations gave a non-linear double-reciprocal plot. The dissociation of NADH from the enzyme was a biphasic process with decay constants 0.6s-1 and 0.09s-1. Pre-steady-state kinetic data with propionaldehyde as substrate could be fitted by using the same burst rate constant (12 +/- 3s-1) over a wide range of propionaldehyde concentrations. The quenching of protein fluorescence on the binding of NAD+ to the enzyme was used to estimate apparent rate constants for binding (2 X 10(4) litre.mol-1.s-1) and dissociation (4s-1). The kinetic properties of the mitochondrial enzyme, compared with those reported for the cytoplasmic aldehyde dehydrogenase from sheep liver, show significant differences, which may be important in the oxidation of aldehydes in vivo.  相似文献   

13.
14.
Sheep liver cytoplasmic aldehyde dehydrogenase is strongly inhibited by Mg2+, Ca2+ and Mn2+. The inhibition is only partial, however, with 8-15% of activity remaining at high concentrations of these agents. In 50 mM-Tris/Hcl, pH 7.5, the concentrations giving half-maximal effect were: Mg2+, 6.5 micrometers; Ca2+, 15.2 micrometers; Mn2+, 1.5 micrometer. The esterase activity of the enzyme is not affected by such low metal ion concentrations, but appears to be activated by high concentrations. Fluorescence-titration and stopped-flow experiments provide evidence for interaction of Mg2+ with NADH complexes of the enzyme. As no evidence for the presence of increased concentrations of functioning active centres was obtained in the presence of Mg2+, it is concluded that effects of Mg2+ (and presumably Ca2+ and Mn2+ also) are brought about by trapping increased concentrations of NADH in a Mg2+-containing complex. This complex must liberate products more slowly than any of the complexes involved in the non-inhibited mechanism.  相似文献   

15.
1. Pre-modification of cytoplasmic aldehyde dehydrogenase by disulfiram results in the same extent of inactivation when the enzyme is subsequently assayed as a dehydrogenase or as an esterase. 2. 4-Nitrophenyl acetate protects the enzyme against inactivation by disulfiram, particularly well in the absence of NAD+. Some protection is also provided by chloral hydrate and indol-3-ylacetaldehyde (in the absence of NAD+). 3. When disulfiram is prevented from reacting at its usual site by the presence of 4-nitrophenyl acetate, it reacts elsewhere on the enzyme molecule without causing inactivation. 4. Enzyme in the presence of aldehyde and NAD+ is not at all protected against disulfiram. It is proposed that, under these circumstances, disulfiram reacts with the enzyme-NADH complex formed in the enzyme-catalysed reaction. 5. Modification by disulfiram results in a decrease in the amplitude of the burst of NADH formation during the dehydrogenase reaction, as well as a decrease in the steady-state rate. 6. 2,2'-Dithiodipyridine reacts with the enzyme both in the absence and presence of NAD+. Under the former circumstances the activity of the enzyme is little affected, but when the reaction is conducted in the presence of NAD+ the enzyme is activated by approximately 2-fold and is then relatively insensitive to the inactivatory effect of disulfiram. 7. Enzyme activated by 2,2'-dithiodipyridine loses most of its activity when stored over a period of a few days at 4 degrees C, or within 30 min when treated with sodium diethyldithiocarbamate. 8. Points for and against the proposal that the disulfiram-sensitive groups are catalytically essential are discussed.  相似文献   

16.
The structural divergence between the cytoplasmic isoenzymes of aldehyde dehydrogenase from different species was investigated by analysis of peptides from the horse protein, and correlation of the results with the complete primary structure of the human isoenzyme. The amino acid sequences of these two proteins show a high degree of homology (91% of residues compared are identical). The differences observed are spread over the entire polypeptide chains, with only one cluster, which is close to a reactive cysteine residue and also adjacent to the most conserved region (covering 68 residues) in the primary structures of the whole enzymes. The secondary structure predicted for the human isoenzyme is mainly unaffected by the residue differences in the horse isoenzyme, although limited conformational changes might be compatible with an unexpected overrepresentation of differences involving isoleucine (12 of 43 exchanges represent a loss of Ile in the horse protein). Two cysteine residues that correlate with catalytic activity are identically positioned in the enzyme from the two species.  相似文献   

17.
Sheep liver mitochondrial aldehyde dehydrogenase reacts with 2,2'-dithiodipyridine and 4,4'-dithiodipyridine in a two-step process: an initial rapid labelling reaction is followed by slow displacement of the thiopyridone moiety. With the 4,4'-isomer the first step results in an activated form of the enzyme, which then loses activity simultaneously with loss of the label (as has been shown to occur with the cytoplasmic enzyme). With 2,2'-dithiodipyridine, however, neither of the two steps of the reaction has any effect on the enzymic activity, showing that the mitochondrial enzyme possesses two cysteine residues that must be more accessible or reactive (to this reagent at least) than the postulated catalytically essential residue. The symmetrical reagent 5,5'-dithiobis-(1-methyltetrazole) activates mitochondrial aldehyde dehydrogenase approximately 4-fold, whereas the smaller related compound methyl l-methyltetrazol-5-yl disulphide is a potent inactivator. These results support the involvement of mixed methyl disulphides in causing unpleasant physiological responses to ethanol after the ingestion of certain antibiotics.  相似文献   

18.
A steroid-sensitive aldehyde dehydrogenase (EC 1.2.1.3) was purified from rabbit liver and is homogeneous by the criterion of electrophoresis in polyacrylamide gels with or without sodium dodecyl sulphate. The enzyme is tetrameric, of subunit mo.wt. 48 300, and contains no tightly bound zinc. The fluorescence of the protein is decreased in the presence of progesterone, which is inhibitory to the reactions catalysed by the enzyme. When NADH is bound to the enzyme, the fluorescence of the coenzyme is augmented to an extent independent of the presence of steroids or acetaldehyde. The purified enzyme catalyses the oxidation of acetaldehyde and glucuronolactone, and the hydrolysis of 4-nitrophenyl acetate. Each of these reactions is inhibited by progesterone in such a manner as to suggest the formation of a catalytically active enzyme-hormone complex. Diethylstilboestrol inhibits the hydrolysis of esters by this enzyme, but stimulates the oxidation of aldehydes, except at low aldehyde concentrations; the ligand is then inhibitory. NADH inhibits the hydrolysis of 4-nitrophenyl acetate by the enzyme in a partially competitive fashion.  相似文献   

19.
T M Kitson 《Biochemistry》1986,25(16):4718-4724
The binding of diethylstilbestrol (DES) to aldehyde dehydrogenase (ALDH) has a very similar effect on the dehydrogenase activity of the enzyme as has modification of the enzyme by 2,2'-dithiodipyridine [Kitson, T.M. (1982) Biochem. J. 207, 81-89]. The latter modification may occur at the site of the esterase activity of the enzyme [Kitson, T.M. (1985) Biochem. J. 228, 765-767]. This suggests that DES might be a competitive inhibitor of the esterase reaction. However, in the absence of oxidized nicotinamide adenine dinucleotide (NAD+) or reduced nicotinamide adenine dinucleotide (NADH), and at low concentrations of substrate (4-nitrophenyl acetate, PNPA), DES is a potent partial noncompetitive inhibitor. It is concluded therefore that DES binds at a site different from the esterase active site and that the enzyme-DES complex retains some ability to act as an esterase. High concentrations of PNPA appear to displace DES from its binding site. In the presence of NAD+, DES is a weaker inhibitor, and in the presence of NADH, DES has very little effect. Esterase activity is enhanced by NADH when PNPA concentrations are high but is inhibited when they are low. The rate of reaction of ALDH with 2,2'-dithiodipyridine is only slightly reduced by DES, suggesting that the site at which thiol modifiers react and the DES binding site are different. When ALDH is modified by 2,2'-dithiodipyridine, it has reduced esterase activity, which declines further as the modified enzyme loses its 2-thiopyridyl label. In the presence of NAD+, chloral hydrate is a simple competitive inhibitor of the esterase reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Human liver aldehyde dehydrogenase has been found to be capable of hydrolyzing p-nitrophenyl esters. Esterase and dehydrogenase activities exhibited identical ion exchange and affinity properties, indicating that the same protein catalyzes both reactions. Competitive inhibition of esterase activity by glyceraldehyde and chloral hydrate furnished evidence that p-nitrophenyl acetate was hydrolyzed at the aldehyde binding site for dehydrogenase activity. Pyridine nucleotides modified esterase activity; NAD+ accelerated the rate of p-nitrophenyl acetate hydrolysis more that 5-fold, whereas NADH increased activity by a factor of 2. Activation constants of 117 muM for NAD+ and 3.5 muM for NADH were obtained from double reciprocal plots of initial rates as a function of modifier concentration at pH 7. The kinetics of activation of ester hydrolysis were consistent with random addition of pyridine nucleotide modifier and ester substrate to this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号