首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang Y  Courtois P  Sener A  Malaisse WJ 《Biochimie》2004,86(12):913-918
The anomeric specificity of D-[U-14C]glucose incorporation into glycogen in rat hemidiaphragms was investigated. For this purpose, the hemidiaphragms were preincubated for 30 min at 37 degrees C and then incubated for 5 min at the same temperature in the presence of alpha- or beta-D-[U-14C]glucose. The concentrations of D-glucose (5.6 or 8.8 mM) and insulin (0 or 10 mU/ml) were identical during the preincubation and incubation periods. The incubation medium was prepared in D2O/H2O (3:1, v/v) in order to delay the interconversion of the D-glucose anomers. In addition to glycogen labelling, the output of radioactive acidic metabolites was also measured. Insulin caused a preferential stimulation of glycogen labelling relative to glycolysis. Such was not the case in response to a rise in D-glucose concentration. At 5.6 mM D-glucose and whether in the presence or absence of insulin, both glycogen labelling and glycolysis were lower with alpha-D-glucose than with beta-D-glucose suggesting a higher rate of beta-D-glucose than alpha-D-glucose transport across the plasma membrane. A mirror image was found at 8.8 mM D-glucose, especially in the absence of insulin. At this close-to-physiological hexose concentration, insulin lowered the alpha/beta ratio for glycogen labelling. On the contrary, the rise in D-glucose concentration increased such a ratio. Since such a rise is probably little affected by any possible anomeric difference in D-glucose transport across the plasma membrane, the present results strongly suggest that the intracellular factors regulating net glycogen synthesis, as well as glycolytic flux, display obvious preference for alpha-D-glucose.  相似文献   

2.
Conditions are described for the preparation of permeabilized cells of Candida albicans. This method has been used for the in situ assay of enzymes in both yeast cells and germ-tube forming cells. A mixture of toluene/ethanol/Triton X-100 (1:4:0.2, by vol.) at 15% (v/v) and 8% (v/v) was optimal for the in situ assay of glucose-6-phosphate dehydrogenase in yeast and germ-tube forming cells, respectively. The concentration of toluene/ethanol/Triton X-100 required for optimal in situ activity of other enzymes was influenced by the cellular location of the enzyme, growth phase and morphology. The membrane-bound enzymes (chitin synthase, glucan synthase, ATPase), cytosolic enzymes (glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, pyruvate kinase, phosphofructokinase, alkaline phosphatase, glucosamine-6-phosphate deaminase and N-acetylglucosamine kinase) and wall enzymes (beta-glucosidase and acid phosphatase) were measured and compared to the activity obtained in cell extracts. The pattern of enzyme induction and the properties of the allosteric enzymes phosphofructokinase and pyruvate kinase were measured in situ. Pyruvate kinase in situ was homotropic for phosphoenolpyruvate with a Hill coefficient of 1.9 and a S0.5 of 0.6 mM, whereas in cell extracts, it had a Hill coefficient of 1.9 and a S0.5 of 1.0 mM. The Km for ATP was 1.6 mM in cell extracts and 1.8 mM in permeabilized cells. In situ phosphofructokinase was homotropic for fructose 6-phosphate (S0.5 of 2.3 mM, Hill coefficient of 4.0). The kinetic properties of pyruvate kinase and phosphofructokinase measured in situ or in vitro were similar for both yeast cells and germ-tube forming cells.  相似文献   

3.
Cyanobacteria assimilate carbon dioxide through the Calvin cycle and therefore must regulate the activity of ribulose 1,5-bisophosphate carboxylase. Using an in situ assay, as well as measuring the activity in crude, partially purified, and homogeneous preparations, we can show that a number of phosphorylated intermediates exert a regulatory role. Three diverse organisms, Agmenellum quadruplicatum, Aphanocapsa 6714, and Anabaena sp. CA, were studied, and it was found that the in situ and cell-free carboxylase activities were particularly affected by low levels of phosphogluconate and reduced nicotinamide adenine dinucleotide phosphate. There was a marked activation by these ligands when the inactive enzyme was assayed in the presence of low levels of bicarbonate, a result significantly different from a previous report. Moreover, the fully activated enzyme was inhibited by phosphogluconate. In situ Anabaena CA carboxylase activity exhibited a particular capacity for activation by phosphogluconate and reduced nicotinamide adenine dinucleotide phosphate. However, activation of the crude, partially purified, or homogeneous Anabaena CA carboxylase by phosphogluconate and reduced nicotinamide adenine dinucleotide phosphate was significantly decreased when compared with enzyme activity in permeabilized cells. It appears that the microenvironment or the conformation of the enzyme within the cell may be significantly different from that of the isolated enzyme.  相似文献   

4.
The glycogen synthetic pathway operates ultrasensitively as a function of the ADPglucose pyrophosphorylase (ADPGlcPPase) allosteric effectors, 3-phosphoglycerate and Pi, in permeabilized cells of the cyanobacterium Anabaena PCC 7120. In vitro data previously showed that the ultrasensitive behavior of ADPGlcPPase depends upon cross-talk between the two allosteric effectors, the enzyme's response being additionally modulated by molecular crowding [D.F. Gómez Casatiet al. (2000) Biochem J 350:139-147]. In the present work we show, experimentally and with a mathematical model, that alpha-1,4-glucan synthesis is also ultrasensitive in cells due to the propagation of the switch-like behavior of ADPGlcPPase to the synthetic pathway. Amplifications of up to 20-fold in storage-polysaccharide synthesis can be achieved with a modest 6.7-fold increase in 3-phosphoglycerate in the presence of 5 mM Pi in contrast to the 30-fold necessary in its absence. This is the first time that this phenomenon has been reported to occur in the glycogen synthetic pathway of a photosynthetic prokaryote. The implications of the results for plant cell physiology during light-dark transitions are discussed.  相似文献   

5.
Nitrogenase (=acetylene-reducing activity) was followed during photoautotrophic growth of Anabaena variabilis (ATCC 29413). When cell density increased during growth, (1) inhibition of light-dependent activity by DCMU, an inhibitor of photosynthesis, increased, and (2) nitrogenase activity in the dark decreased. Addition of fructose stabilized dark activity and alleviated the DCMU effect in cultures of high cell density.The resistance of nitrogenase towards oxygen inactivation decreased after transfer of autotrophically grown cells into the dark at subsequent stages of increasing culture density. The inactivation was prevented by addition of fructose. Recovery of acetylene-reducing activity in the light, and in the dark with fructose present, was suppressed by ammonia or chloramphenicol. In the light, also DCMU abolished recovery.To prove whether the observed effects were related to a lack of photosynthetic storage products, glycogen of filaments was extracted and assayed enzymatically. The glycogen content of cells was highest 10 h after inoculation, while light-dependent nitrogenase activity was at its maximum about 24 h after inoculation. Glycogen decreased markedly as growth proceeded and dropped sharply when the cells were transferred to darkness. Thus, when C-supply (by photosynthesis or added fructose) was not effective, the glycogen content of filaments determined the activity of nitrogenase and its stability against oxygen. In cells lacking glycogen, nitrogenase activity recovered only when carbohydrates were supplied by exogenously added fructose or by photosynthesis.Abbreviations Chl chlorophyll a - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

6.
We have shown that there is an inositol (Ins) lipid pool in cloned rat pituitary tumor (GH3) cells that is hydrolyzed in response to thyrotropin-releasing hormone (TRH) and an unresponsive pool. Because others have suggested that incorporation of [3H]Ins by base exchange may not occur uniformly into Ins lipids in other cell types, we established conditions using permeabilized cells under which labeling occurs by Ins-phosphatidylinositol (PI) exchange in the absence of de novo PI synthesis to further characterize these pools in GH3 cells. In permeabilized cells incubated in buffer containing 10 mM Mg2+ and 0.1 mM CMP, [3H]Ins incorporation into lipids occurred by base exchange only. This was so because: 1) [3H]Ins incorporation into lipids displayed properties similar to that for release of 3H-labeled Ins by unlabeled Ins from PI in cells prelabeled in situ prior to permeabilization; and 2) there was no change in PI mass under these conditions. In permeabilized cells incubated in buffer with 0.1 mM [3H]Ins for 60 min, incorporation was 0.61 +/- 0.05 nmol of [3H]Ins/10(6) permeabilized cells, which amounted to 35% of PI, while the level of PI, measured as nonradioactive phosphorus, was 94 +/- 8.0% of control. Permeabilized GH3 cells were responsive to TRH. In cells prelabeled in situ and then permeabilized, TRH stimulated an increase in 3H-labeled Ins phosphates (IPs) in 20 min which was 10% of 3H radioactivity initially present in lipids. This increase in 3H-labeled IPs was 6.3 times the 3H radioactivity present in phosphatidylinositol 4,5-bisphosphate prior to stimulation. When prelabeled cells were exchanged with unlabeled Ins after permeabilization there was only a 10-16% decrease in 3H-labeled IP accumulation stimulated by TRH even though 3H-labeled lipids decreased to 52% of control. TRH did not affect labeling by [3H]Ins-PI exchange. In cells labeled by base exchange after permeabilization TRH stimulated a very small increase in 3H-labeled IPs of only 0.21 +/- 0.02% of 3H-labeled lipids in 20 min or only 7% of the 3H radioactivity in phosphatidylinositol 4,5-bisphosphate. These data show that in permeabilized GH3 cells base exchange can occur in the absence of de novo PI synthesis and that lipids that are preferentially labeled by base exchange comprise a pool that is less responsive to TRH than total Ins lipids.  相似文献   

7.
实验性肝癌糖原和癌基因N-ras表达的研究   总被引:1,自引:0,他引:1  
通过应用原位杂交和组织化学技术,对二乙基亚硝胺诱发的大鼠肝细胞肝癌中糖原和癌基因N-ras表达的研究,发现从诱癌早期到晚期,肝细胞内的糖原由储积而逐渐丧失。N-ras在诱癌的第1~2周即出现阳性表达,随诱癌过程的延长,阳性表达的细胞数和范围逐渐增加,至诱癌晚期甚至在癌结节内均转为阴性。对肝组织连续切片中糖原和N-ras表达的对比观察发现,糖原PAS反应与N-ras反应同步,糖原PAS反应具有与N-ras一致的异质性,其阳性与阴性病变分布与N-ras表达重叠。提示N-ras基因表达可能在肝癌的启动过程中发挥重要作用,并且可能涉及对糖原基因的调控。  相似文献   

8.
9.
Summary The mobilization of glycogen and phosphoarginine during work and their resynthesis during periods of recovery were investigated in abdominal muscles of the shrimpCrangon crangon. All parameters, metabolite levels as well as glycogen phosphorylase (EC 2.4.1.1) and synthase (EC 2.4.1.11) activities were determined in each individual shrimp investigated. At the onset of work both glycogen and phosphoarginine were degraded with the rate of phosphoarginine utilization being more than 80-fold faster than glycogen. After exhaustive work phosphoarginine stores were replenished within 30 min and seemed to exceed the resting level thereafter. In contrast, glycogen was not resynthesized immediately after work, but was further degraded during recovery leading to the accumulation of lactate. Only when the phosphagen level had reached the resting level did glycogenolysis shift to its resynthesis. The shift is characterized by: (1) a change in the mass action ratio of phosphoglucomutase from values below the equilibrium constant to values above the constant, (2) a dramatic decrease in the ratio fructose 1,6-bisphosphate/fructose 6-phosphate indicating phosphofructokinase inhibition, (3) an increase in the glucose concentration, and (4) an increase in the proportion of glycogen synthase I. The inactivation of glycogen phosphorylase by dephosphorylation during recovery was 2.4-fold. 36±8% (n=5) of total activity remained in the phosphorylated form. It is proposed that this part of the enzyme was inactivated by the drop in inorganic phosphate level due to the restoration of phosphoarginine.  相似文献   

10.
Glucose is the main fuel for energy metabolism in retina. The regulatory mechanisms that maintain glucose homeostasis in retina could include hormonal action. Retinopathy is one of the chemical manifestations of long-standing diabetes mellitus. In order to better understand the effect of hyperglycemia in retina, we studied glycogen content as well as glycogen synthase and phosphorylase activities in both normal and streptozotocin-induced diabetic rat retina and compared them with other tissues. Glycogen levels in normal rat retina are low (46 +/- 4.0 nmol glucosyl residues/mg protein). However, high specific activity of glycogen synthase was found in retina, indicating a substantial capacity for glycogen synthesis. In diabetic rats, glycogen synthase activity increased between 50% and 100% in retina, brain cortex and liver of diabetic rats, but only retina exhibited an increase in glycogen content. Although, total and phosphorylated glycogen synthase levels were similar in normal and diabetic retina, activation of glycogen synthase by glucose-6-P was remarkable increased. Glycogen phosphorylase activity decreased 50% in the liver of diabetic animals; it was not modified in the other tissues examined. We conclude that the increase in glycogen levels in diabetic retina was due to alterations in glycogen synthase regulation.  相似文献   

11.
Kinetic constants of glycogen synthase (M0.5 for glucose-6-P and S0.5 for UDP-glucose) were determined after hepatocytes isolated from starved rats were incubated with either glucagon or epinephrine. Incubation with these hormones resulted in an increase in both S0.5 and M0.5. However, the action of glucagon resulted in great modifications on S0.5 whereas epinephrine affected mainly M0.5. Therefore, glucagon and epinephrine alter the kinetic properties of glycogen synthase provoke the phosphorylation of glycogen synthase at different site(s) acting through different mechanisms.  相似文献   

12.
We investigated the subcellular localization of glycogen synthase (GS) in the adductor muscle of anesthetized rabbits injected intravenously with propranolol. Under these experimental conditions, glycogen content was about 10 mmol/kg of fresh tissue. Immunofluorescent and fractionation studies showed that GS associated with sarcoplasmic reticulum (SR) membranes. Glycogen and GS always co-sedimented, suggesting a predominant role of glycogen in targeting of GS to SR. SR-associated GS was phosphorylated in vitro by SR-bound Ca2+-calmodulin dependent protein kinase (CaMKII) and dephosphorylated by endogenous protein phosphatase 1 (PP1c). Based on measurements of GS activity ratio, in vitro phosphorylation of GS by CaMKII did not significantly affect GS activity per se. However, GS activity ratio was slightly reduced, when SR membranes were further incubated with ATP after prior phosphorylation by CaMKII, suggesting that CaMKII might act sinergistically with other protein kinases. We propose that SR-bound CaMKII plays a role in regulation of glycogen metabolism in skeletal muscle, when intracellular Ca2+ is raised.  相似文献   

13.
Higher plants and cyanobacteria metabolize sucrose (Suc) by a similar set of enzymes. Suc synthase (SuS, UDP-glucose: D: -fructose 2-alpha-D: -glucosyl transferase, EC 2.4.1.13) catalyses the synthesis and cleavage of Suc, and in higher plants, it plays an important role in polysaccharides biosynthesis and carbon allocation. In this work, we have studied the functional relationship between SuS and the metabolism of polysaccharides in filamentous nitrogen-fixing cyanobacteria. We show that the nitrogen and carbon sources and light regulate the expression of the SuS encoding gene (susA), in a similar way that they regulate the accumulation of polysaccharides. Furthermore, glycogen content in an Anabaena sp. mutant strain with an insertion inactivation of susA was lower than in the wild type strain under diazotrophic conditions, while both glycogen and polysaccharides levels were higher in a mutant strain constitutively overexpressing susA. We also show that there are soluble and membrane-bound forms of SuS in Anabaena. Taken together, these results strongly suggest that SuS is involved in the Suc to polysaccharides conversion according to nutritional and environmental signals in filamentous nitrogen-fixing cyanobacteria.  相似文献   

14.
Summary The parathyroid glands of young male rats given 150 ppm fluoride in their drinking water for 10 weeks were examined by transmission electron microscopy. As a result of fluoride ingestion, the parathyroid chief cells of the experimental animals accumulated glycogen in excess of that seen in control animals given distilled drinking water for the same time period. In the majority of active chief cells, glycogen granules were diffusely spread throughout the cytoplasm as single granules or in small deposits. Large aggregations of glycogen granules were also seen within intercellular spaces. Accompanying the increase in glycogen was a rise in the number and development of the organelles associated with protein synthesis and secretion. The accumulation of glycogen is similar to that in hyperparathyroidism caused by chronic stimulation and prolonged secretory activity of the parathyroid gland. The results of this study suggest that increased amounts of glycogen occur in hyperactive chief cells of the parathyroid in response to the ingestion of large doses of fluoride.  相似文献   

15.
Filaments of the blue-green alga Anabaena variabilis permeabilized by dimethylsulfoxide (DMSO) produce increased amounts of 5-aminolevulinate in the presence of levulinic acid. The metabolic activity of the filaments remains unperturbed in the presence of up to 7.5% (v/v) DMSO. Studies utilizing DMSO-permeabilized filaments confirm that 5-aminolevulinate is synthesized preferably from glutamate and, to a lesser extent, from α-ketoglutarate in this organism.  相似文献   

16.
Glycogen, the principal storage compound of assimilatory products in Anacystis nidulans, is synthesized in the light and degraded in the dark. 14C-labelled glycogen and its radioactive limit dextrin obtained by phosphorylase action were used as substrates to identify enzymes involved in glycogen mobilization. A crude homogenate of cells kept in the dark contained the following enzymes: glycogen phosphorylase (EC 2.4.1.1.) that is firmly bound to glycogen, a debranching enzyme that hydrolyzes 1,6--glucosidic bonds, and an -glucosidase (EC 3.2.1.20). Other amylolytic enzymes were not detectable Using ion exchange chromatography on DEAE-cellulose, -glucosidase and the debranching enzyme could be partly separated from each other and completely from the phosphorylase-glycogen complex. On the basis of their known substrate specificities, the cooperation of these 3 enzymes is sufficient to account for the complete conversion of glycogen into glucose and glucose 1-phosphate.  相似文献   

17.
糖原是由葡萄糖分子通过糖苷键聚合而成的高分子物质,作为重要的能源物质储存于肝脏、肌肉和脑等重要器官。糖原的储存或代谢异常可引起多种疾病。一方面,作为一种动态能量底物,准确检测糖原的质与量有一定难度,另一方面,目前随着对糖原研究的深入,出现了越来越多的糖原检测方法和手段。因此,选择恰当的糖原检测方法以促进对糖原的研究显得尤为重要。本文对几种常用的糖原定性与定量检测方法的实验原理,操作步骤及影响因素和改进进行总结,比较其优缺点,为研究者选择最适合的方法对糖原代谢及相关疾病进行研究提供参考。  相似文献   

18.
Glycogen synthase plays a key role in regulating glycogen metabolism. In a search for regulators of glycogen synthase, a yeast two-hybrid study was performed. Two glycogen synthase-interacting proteins were identified in human skeletal muscle, glycogenin-1, and nebulin. The interaction with glycogenin was found to be mediated by the region of glycogenin which contains the 33 COOH-terminal amino acid residues. The regions in glycogen synthase containing both NH2- and COOH-terminal phosphorylation sites are not involved in the interaction. The core segment of glycogen synthase from Glu21 to Gly503 does not bind COOH-terminal fragment of glycogenin. However, this region of glycogen synthase binds full-length glycogenin indicating that glycogenin contains at least one additional interacting site for glycogen synthase besides the COOH-terminus. We demonstrate that the COOH-terminal fragment of glycogenin can be used as an effective high affinity reagent for the purification of glycogen synthase from skeletal muscle and liver.  相似文献   

19.
Recent studies have proposed that post-translational degradation of apolipoprotein B100 (apoB) involves the cytosolic ubiquitin-proteasome pathway. In this study, immunocytochemistry indicated that endoplasmic reticulum (ER)-associated proteasome molecules were concentrated in perinuclear regions of digitonin-permeabilized HepG2 cells. Signals produced by antibodies that recognize both alpha- and beta-subunits of the proteasome co-localized in the ER with specific domains of apoB. The mechanism of apoB degradation in the ER by the ubiquitin-proteasome pathway was studied using pulse-chase labeling and digitonin-permeabilized cells. ApoB in permeabilized cells incubated at 37 degrees C in buffer alone was relatively stable. When permeabilized cells were incubated with both exogenous ATP and rabbit reticulocyte lysate (RRL) as a source of ubiquitin-proteasome factors, >50% of [3H]apoB was degraded in 30 min. The degradation of apoB in the intact ER of permeabilized cells was much more rapid than that of extracted [3H]apoB incubated with RRL and ATP in vitro. The degradation of apoB was reduced by clasto-lactacystin beta-lactone, a potent proteasome inhibitor, and by ubiquitin K48R mutant protein, an inhibitor of polyubiquitination. ApoB in HepG2 cells was ubiquitinated, and polyubiquitination of apoB was stimulated by incubation of permeabilized cells with RRL. These results suggest that newly synthesized apoB in the ER is accessible to the cytoplasmic ubiquitin-proteasome pathway and that factors in RRL stimulate polyubiquitination of apoB, leading to rapid degradation of apoB in permeabilized cells.  相似文献   

20.
Glycogen synthase is a rate-limiting enzyme in the biosynthesis of glycogen and has an essential role in glucose homeostasis. The three-dimensional structures of yeast glycogen synthase (Gsy2p) complexed with maltooctaose identified four conserved maltodextrin-binding sites distributed across the surface of the enzyme. Site-1 is positioned on the N-terminal domain, site-2 and site-3 are present on the C-terminal domain, and site-4 is located in an interdomain cleft adjacent to the active site. Mutation of these surface sites decreased glycogen binding and catalytic efficiency toward glycogen. Mutations within site-1 and site-2 reduced the V(max)/S(0.5) for glycogen by 40- and 70-fold, respectively. Combined mutation of site-1 and site-2 decreased the V(max)/S(0.5) for glycogen by >3000-fold. Consistent with the in vitro data, glycogen accumulation in glycogen synthase-deficient yeast cells (Δgsy1-gsy2) transformed with the site-1, site-2, combined site-1/site-2, or site-4 mutant form of Gsy2p was decreased by up to 40-fold. In contrast to the glycogen results, the ability to utilize maltooctaose as an in vitro substrate was unaffected in the site-2 mutant, moderately affected in the site-1 mutant, and almost completely abolished in the site-4 mutant. These data show that the ability to utilize maltooctaose as a substrate can be independent of the ability to utilize glycogen. Our data support the hypothesis that site-1 and site-2 provide a "toehold mechanism," keeping glycogen synthase tightly associated with the glycogen particle, whereas site-4 is more closely associated with positioning of the nonreducing end during catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号