首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transport of the vesicular stomatitis virus (VSV)-encoded glycoprotein (G protein) between successive compartments of the Golgi in a cell-free system is measured by the coupled incorporation of N-[3H]acetylglucosamine (GlcNAc). This glycosylation occurs when G protein is transported from a "donor" compartment in Golgi membranes that lack GlcNAc transferase I (from VSV-infected CHO clone 15B cells) to the next "acceptor" compartment in a Golgi population from wild-type CHO cells (containing the GlcNAc transferase but not G protein). Here we present a detailed characterization of the conditions required to achieve transport in vitro. We find that donor and acceptor activities differ markedly in certain of their properties. The donor activity is inhibited by N-ethylmaleimide but the acceptor activity is resistant. Donor activity is unstable in the absence of ATP or the cytosol fraction; acceptor activity is much more stable. This asymmetry may reflect the vectorial nature of the underlying biochemistry of protein transport. Both donor and acceptor are trypsin-sensitive, implying a need for cytoplasmically oriented membrane proteins. Transport occurs only in a restricted range of close to physiological conditions. ATP is absolutely required, although as little as 1 microM is sufficient. Transport is inhibited by ATP-gamma-sulfate and vanadate, suggesting that ATP hydrolysis is needed. By contrast, ionophores that dissipate membrane potentials and proton gradients do not inhibit transport. Monensin was also without effect in the cell-free system.  相似文献   

2.
Terminal steps in the transport of the vesicular stomatitis virus glycoprotein (G protein) in the Golgi stack have been reconstituted in a cell-free system. Incorporation of sialic acid into the oligosaccharide chains of G protein was used to monitor transport into the trans Golgi compartment. Transport-coupled sialylation required cytosol, ATP, an N-ethylmaleimide-sensitive factor extractable from Golgi membranes, and long chain acyl coenzyme A. The G protein receiving sialic acid in the cell-free system begins its in vitro transport bearing galactose residues acquired in vivo. Earlier reports (Balch, W. E., Dunphy, W. G., Braell, W. A., and Rothman, J. E. (1984a) Cell 39, 405-416) documented that transport of G protein into the medial (GlcNAc Transferase-containing) compartment is reconstituted under the same conditions. On the basis of the results reported here, it now appears that a more complete set of transport operations of the Golgi stack may be simultaneously reconstituted.  相似文献   

3.
Transport of a glycoprotein between compartments of the Golgi has been reconstituted in an in vitro system (Balch, W. E., Dunphy, W. G., Braell, W. A., and Rothman, J. E. (1984) Cell 39, 405-416). Cytosolic components and ATP are absolutely required for transport. Here, we have tested the acceptor activity of Golgi fractions and of cytosolic fractions prepared from a variety of organisms. All mammalian Golgi fractions can act as "acceptor" in the in vitro assay. Similarly, the cytosol fractions obtained from plants as well as animals and a lower eukaryote substitute for the homologous CHO cytosol normally used. Moreover, a cytosol subfraction prepared from wheat germ complements a different cytosolic fraction obtained from bovine brain. Apparently, the essential components involved in the post-translational protein transport are remarkably conserved between plants, animals, and lower eukaryotes.  相似文献   

4.
The carbohydrate portion of the G glycoprotein of vesicular stomatitis virus (VSV) grown in CHO cells (CHO/VSV) has been fractionated on BioGelP6, concanavalin A-Sepharose, and pea lectin-agarose. The results suggest that, in addition to sialic acid and fucose heterogeneity, the asparagine-linked complex carbohydrate moieties of CHO/VSV also display branching heterogeneity. Although the majority of the glycopeptides bind to concanavalin A-Sepharose in a manner typical of certain biantennary carbohydrate structures, a significant proportion do not bind to the lectin. The latter behavior is typical of tri- or tetraantennary (branched) carbohydrate structures. The CHO/VSV glycopeptides which do not bind to concanavalin A-Sepharose separate into bound and unbound fractions on pea lectin-agarose suggesting that they include at least two different types of (branched) carbohydrate structures. Glycopeptides from the G glycoprotein of VSV grown in two, independently derived CHO glycosylation mutants which belong to complementation group 4 (Lec4 mutants) were examined in the same manner. In contrast to glycopeptides from CHO/VSV, glycopeptides from Lec4/VSV which passed through concanavalin A-Sepharose did not contain a component which subsequently bound to pea lectin-agarose. A glycopeptide fraction with these lectin-binding properties was also missing from cell surface glycopeptides derived from Lec4 cells. The combined results are consistent with the hypothesis that Lec4 CHO glycosylation mutants lack a glycosyltransferase activity responsible for the addition of a (branch) N-acetylglucosamine residue linked β1,6 to mannose.  相似文献   

5.
We have investigated the effect of colcemid-induced disassembly of microtubules, which is accompanied by retraction of the endoplasmic reticulum and fragmentation of the Golgi apparatus, on glycoprotein biosynthesis and transport in Chinese hamster ovary (CHO) cells. CHO cells were metabolically radiolabeled with [6- 3H]galactose or [2- 3H]mannose in the presence of either 0.1% dimethyl sulfoxide or 10 microM colcemid in dimethyl sulfoxide. The fine structure of glycoprotein asparagine-linked oligosaccharide structures synthesized in the presence or absence of colcemid was analyzed by lectin affinity chromatography, ion exchange chromatography, and methylation analysis using radiolabeled glycopeptides prepared by Pronase digestion. The fractionation patterns of [3H]mannose- and [3H]galactose-labeled glycopeptides on immobilized lectins indicated that processing to complex N-linked chains and poly-N-acetyllactosamine modification were similar in control and colcemid-treated cells. In addition, colcemid treatment did not alter the extent of sialylation or the linkage position of sialic acid residues to galactose. Using a trypsin release protocol, it was also found that the transport of newly synthesized glycoproteins to the cell surface was not affected by colcemid. These results demonstrate that the morphologically altered ER and Golgi apparatus in colcemid-treated CHO cells are completely functional with respect to the rate and fidelity of protein asparagine-linked glycosylation. Furthermore, movement of newly synthesized glycoproteins to and through the ER and Golgi apparatus and their transport to the cell surface in nonpolarized cells appears to be microtubule-independent.  相似文献   

6.
Lec23 Chinese hamster ovary (CHO) cells have been shown to possess a unique lectin resistance phenotype and genotype compared with previously isolated CHO glycosylation mutants (Stanley, P., Sallustio, S., Krag, S. S., and Dunn, B. (1990) Somatic Cell Mol. Genet. 16, 211-223). In this paper, a biochemical basis for the lec23 mutation is identified. The carbohydrates associated with the G glycoprotein of vesicular stomatitis virus (VSV) grown in Lec23 cells (Lec23/VSV) were found to possess predominantly oligomannosyl carbohydrates that bound strongly to concanavalin A-Sepharose, eluted 3 sugar eq beyond a Man9GlcNAc marker oligosaccharide on ion suppression high pressure liquid chromatography, and were susceptible to digestion with jack bean alpha-mannosidase. Monosaccharide analyses revealed that the oligomannosyl carbohydrates contained glucose, indicating a defect in alpha-glucosidase activity. This was confirmed by further structural characterization of the Lec23/VSV oligomannosyl carbohydrates using purified rat mammary gland alpha-glucosidase I, jack bean alpha-mannosidase, and 1H NMR spectroscopy at 500 MHz. [3H]Glucose-labeled Glc3Man9GlcNAc was prepared from CHO/VSV labeled with [3H]galactose in the presence of the processing inhibitors castanospermine and deoxymannojirimycin. Subsequently, [3H]Glc2Man9GlcNAc was prepared by purified alpha-glucosidase I digestion of [3H]Glc3Man9GlcNAc. When these oligosaccharides were used as alpha-glucosidase substrates it was revealed that Lec23 cells are specifically defective in alpha-glucosidase I, a deficiency not previously identified among mammalian cell glycosylation mutants.  相似文献   

7.
Several clones of Chinese hamster ovary cells have been selected for their resistance to the toxic effects of wheat germ agglutinin. The clones do not bind wheat germ agglutinin as well as parent cells and are 5- to 250-fold more resistant to the toxic effects of the lectin. Of three clones studied in detail, all exhibit a decrease in wheat germ agglutinin binding affinity. Two have normal numbers of wheat germ agglutinin binding sites, while one (Clone 13) has a 65% decrease in binding sites. Crude membrane preparations of the clones have a decrease in sialic acid content relative to parent cells, and Clone 13 membranes are also deficient in galactose, while the mannose and hexosamine contents of all three clones are normal. The membrane sugar deficiencies affect both glycoproteins and glycolipids. Sialyl-lactosylceramide is the major glycolipid in parent cells, while Clones 1 and 1021 have lactosylceramide and Clone 13 has glucosylceramide as the predominant glycolipid. Labeling experiments with N-[G-3H]acetylmannosamine suggest that Clone 1021 cells have a block in the transfer of sialic acid from CMP-sialic acid to glycoprotein and glycolipid acceptors. Yet CMP-sialic acid:glycoprotein sialyl-transferase activity in cell lysates of Clone 1021 cells is 80% of normal. While CMP-sialic acid:lactosylceramide sialyl-transferase activity is only 25% of normal, it can be restored to normal or elevated levels by sodium butyrate induction without an associated increase in cellular sialyl-lactosylceramide content. Similarly, the galactose-deficient Clone 13 can synthesize UDP-galactose and has normal levels of UDP-galactose:glycoprotein galactosyltransferase and UDP-galactose:glucosylceramide galactosyltransferase when assayed in vitro. The glycosyltransferases of both these clones can utilize their own glycoproteins as sugar acceptors in in vitro assays. These data suggest that the variant cells fail to carry out specific glycosyltransferase reactions in vivo despite the fact that they possess the appropriate nucleotide sugars, glycoprotein and glycolipid acceptors, and glycosyltransferases.  相似文献   

8.
The well-characterized cell-free assay measuring protein transport between compartments of the Golgi [Balch, W. E., Dunphy, W. G., Braell, W. A., & Rothman, J. E. (1984) Cell 39, 405-416] utilizes glycosylation of a glycoprotein to mark movement of that protein from one Golgi compartment to the next. Glycosylation had been thought to occur immediately after vesicles carrying the glycoprotein fuse with their transport target. Therefore, the kinetics of glycosylation were taken to reflect the kinetics of vesicle fusion. We previously isolated and raised monoclonal antibodies against a protein (the prefusion operating protein, POP) which is required in this assay at a step after vesicles have apparently been formed and interacted with the target membranes, but long before glycosylation takes place. This was therefore presumed to be a reaction involving targeted but unfused vesicles. Here we report that POP is identical to uridine monophosphokinase, as revealed by molecular cloning. We show that POP is not active in transport per se but instead enhances the glycosylation used to mark transport. This indicated that, contrary to previous assumptions, glycosylation might lag significantly behind vesicle fusion. We directly show this to be true. This alters the interpretation of several earlier studies. In particular, the previously reported existence of a late, prefusion intermediate, the "NEM-resistant intermediate", can be seen to be due to effects on glycosylation and not indicative of true fusion events.  相似文献   

9.
The human LARGE gene encodes a protein with two putative glycosyltransferase domains and is required for the generation of functional alpha-dystroglycan (alpha-DG). Monoclonal antibodies IIH6 and VIA4-1 recognize the functional glycan epitopes of alpha-DG that are necessary for binding to laminin and other ligands. Overexpression of full-length mouse Large generated functionally glycosylated alpha-DG in Pro(-5) Chinese hamster ovary (CHO) cells, and the amount was increased by co-expression of protein:O-mannosyl N-acetylglucosaminyltransferase 1. However, functional alpha-DG represented only a small fraction of the alpha-DG synthesized by CHO cells or expressed from an alpha-DG construct. To identify features of the glycan epitopes induced by Large, the production of functionally glycosylated alpha-DG was investigated in several CHO glycosylation mutants. Mutants with defective transfer of sialic acid (Lec2), galactose (Lec8), or fucose (Lec13) to glycoconjugates, and the Lec15 mutant that cannot synthesize O-mannose glycans, all produced functionally glycosylated alpha-DG upon overexpression of Large. Laminin binding and the alpha-DG glycan epitopes were enhanced in Lec2 and Lec8 cells. In Lec15 cells, functional alpha-DG was increased by co-expression of core 2 N-acetylglucosaminyltransferase 1 with Large. Treatment with N-glycanase markedly reduced functionally glycosylated alpha-DG in Lec2 and Lec8 cells. The combined data provide evidence that Large does not transfer to Gal, Fuc, or sialic acid on alpha-DG nor induce the transfer of these sugars to alpha-DG. In addition, the data suggest that human LARGE may restore functional alpha-DG to muscle cells from patients with defective synthesis of O-mannose glycans via the modification of N-glycans and/or mucin O-glycans on alpha-DG.  相似文献   

10.
Analysis of viral glycoprotein expression on surfaces of monensin- treated cells using a fluorescence-activated cell sorter (FACS) demonstrated that the sodium ionophore completely inhibited the appearance of the vesicular stomatitis virus (VSV) G protein on (Madin- Darby canine kidney) MDCK cell surfaces. In contrast, the expression of the influenza virus hemagglutinin (HA) glycoprotein on the surfaces of MDCK cells was observed to occur at high levels, and the time course of its appearance was not altered by the ionophore. Viral protein synthesis was not inhibited by monensin in either VSV- or influenza virus-infected cells. However, the electrophoretic mobilities of viral glycoproteins were altered, and analysis of pronase-derived glycopeptides by gel filtration indicated that the addition of sialic acid residues to the VSV G protein was impaired in monensin-treated cells. Reduced incorporation of fucose and galactose into influenza virus HA was observed in the presence of the ionophore, but the incompletely processed HA protein was cleaved, transported to the cell surface, and incorporated into budding virus particles. In contrast to the differential effects of monensin on VSV and influenza virus replication previously observed in monolayer cultures of MDCK cells, yields of both viruses were found to be significantly reduced by high concentrations of monensin in suspension cultures, indicating that cellular architecture may play a role in determining the sensitivity of virus replication to the drug. Nigericin, an ionophore that facilitates transport of potassium ions across membranes, blocked the replication of both influenza virus and VSV in MDCK cell monolayers, indicating that the ion specificity of ionophores influences their effect on the replication of enveloped viruses.  相似文献   

11.
Two CHO glycosylation mutants that were previously shown to lack N-linked carbohydrates with GlcNAc beta 1,6Man alpha 1,6 branches, and to belong to the same genetic complementation group, are shown here to differ in the activity of N-acetylglucosaminyltransferase V (GlcNAc-TV) (UDP-GlcNA: alpha 1,6mannose beta-N-acetylglucosaminyltransferase V). One mutant, Lec4, has no detectable GlcNAc-TV activity whereas the other, now termed Lec4A, has activity equivalent to that of parental CHO in detergent cell extracts. However, Lec4A GlcNAc-TV can be distinguished from CHO GlcNAc-TV on the basis of its increased sensitivity to heat inactivation and its altered subcellular compartmentalization. Sucrose density gradient fractionation shows that the major portion of GlcNAc-TV from Lec4A cells cofractionates with membranes of the ER instead of Golgi membranes where GlcNAc-TV is localized in parental CHO cells. Other experiments show that Lec4A GlcNAc-TV is not concentrated in lysosomes, or in a post-Golgi compartment, or at the cell surface. The altered localization in Lec4A cells is specific for GlcNAc-TV because two other Lec4A Golgi transferases cofractionate at the density of Golgi membranes. The combined data suggest that both lec4 and lec4A mutations affect the structural gene for GlcNAc-TV, causing either the loss of GlcNAc-TV activity (lec4) or its miscompartmentalization (lec4A). The identification of the Lec4A defect indicates that appropriate screening of different glycosylation-defective mutants should enable the isolation of other mammalian cell trafficking mutants.  相似文献   

12.
Intercellular adhesion molecule-1 (ICAM-1) occurs as both a membrane and a soluble, secreted glycoprotein (sICAM-1). ICAM-1 on endothelial cells mediates leukocyte adhesion by binding to leukocyte function associated antigen-1 (LFA-1) and macrophage antigen-1 (Mac-1). Recombinant mouse sICAM-1 induces the production of macrophage inflammatory protein-2 (MIP-2) in mouse astrocytes by a novel LFA-1- and Mac-1-independent mechanism. Here we showed that N-glycan structures of sICAM-1 influence its ability to induce MIP-2 production. sICAM-1 expressed in Chinese hamster ovary (CHO) cells was a more potent inducer of MIP-2 production than sICAM-1 expressed in HEK 293 cells, suggesting that posttranslational modification of sICAM-1 could influence its signaling activity. To explore the roles of glycosylation in sICAM-1 activity, we expressed sICAM-1 in mutant CHO cell lines differing in glycosylation, including Lec2, Lec8, and Lec1 as well as in CHO cells cultured in the presence of the alpha-mannosidase-I inhibitor kifunensine. Signaling activity of sICAM-1 lacking sialic acid was reduced 3-fold compared with sICAM-1 from CHO cells. The activity of sICAM-1 lacking both sialic acid and galactose was reduced 12-fold, whereas the activity of sICAM-1 carrying only high mannose-type N-glycans was reduced 12-26-fold. sICAM-1 glycoforms carrying truncated glycans retained full ability to bind to LFA-1 on leukocytes. Thus, sialylated and galactosylated complex-type N-glycans strongly enhanced the ability of sICAM-1 to induce MIP-2 production in astrocytes but did not alter its binding to LFA-1 on leukocytes. Glycosylation could therefore serve as a means to regulate specifically the signaling function of sICAM-1 in vivo.  相似文献   

13.
Lipid transfer proteins (LTPs) are emerging as key players in lipid homeostasis by mediating non-vesicular transport steps between two membrane surfaces. Little is known about the driving force that governs the direction of transport in cells. Using the soluble LTP glycolipid transfer protein (GLTP), we examined GM1 (monosialotetrahexosyl-ganglioside) transfer to native membrane surfaces. With artificial GM1 donor liposomes, GLTP can be used to increase glycolipid levels over natural levels in either side of the membrane leaflet, i.e., external or cytosolic. In a system with native donor- and acceptor-membranes, we find that GLTP balances highly variable GM1 concentrations in a population of membranes from one cell type, and in addition, transfers lipids between membranes from different cell types. Glycolipid transport is highly efficient, independent of cofactors, solely driven by the chemical potential of GM1 and not discriminating between the extra- and intracellular membrane leaflet. We conclude that GLTP mediated non-vesicular lipid trafficking between native membranes is driven by simple thermodynamic principles and that for intracellular transport less than 1 µM GLTP would be required in the cytosol. Furthermore, the data demonstrates the suitability of GLTP as a tool for artificially increasing glycolipid levels in cellular membranes.  相似文献   

14.
We have prepared polyclonal antibodies to the cytoplasmic portion of the envelope glycoprotein G of vesicular stomatitis virus (VSV) by using synthetic peptides corresponding to either the 22 or 11 ultimate carboxy-terminal residues of the G as immunogens. When antibodies to the 22 residue peptide are microinjected into monolayer baby hamster kidney cells before or shortly after infection with wild-type VSV, G protein accumulates in large intracellular patches and little G is observed in the Golgi complex or at the cell surface. In contrast, when antibodies to the 11 residue peptide are injected, no such patches are observed and G protein is seen colocalized with the injected antibody at the endoplasmic reticulum, in the Golgi complex, in transport vesicles, and at the plasma membrane. Microinjection of these antibodies does not disturb the pathway or kinetics of G-protein transport. In cells infected with a temperature-sensitive mutant of VSV, 045, the glycoprotein accumulates in the endoplasmic reticulum at 39.8 degrees C, but rapidly moves through the Golgi apparatus and then to the cell surface after a temperature shift-down to 32 degrees C. Using rhodamine-coupled antibodies to the 11 residue peptide, a microscope stage equipped for precise temperature control, and a silicon intensifier target video camera, we can visualize by video light microscopy the synchronized exocytotic transport of the G protein directly in the living cell.  相似文献   

15.
Carbohydrate moieties derived from the G glycoprotein of Vesicular Stomatitis Virus (VSV) grown in parental Chinese hamster ovary (CHO) cells and the glycosylation mutant Lec4 have been analyzed by high-field 1H NMR spectroscopy. The major glycopeptides of CHOVSV and Lec4VSV were purified by their ability to bind to concanavalin A-Sepharose. The carbohydrates in this fraction are of the biantennary, complex type with heterogeneity in the presence of α(2,3)-linked sialic acid and α(1,6)-linked fucose residues. A minor CHOVSV glycopeptide fraction, which does not bind to concanavalin A-Sepharose but which binds to pea lectin-agarose, was also investigated by 1H NMR spectroscopy. These carbohydrates are complex moieties which appear to contain N-acetylglucosamine in β(1,6) linkage. Their spectral properties are most similar to those of a triantennary complex oligosaccharide containing a 2,6-disubstituted mannose α(1,6) residue. Carbohydrates of this type are not found among the glycopeptides of VSV grown in the Lec4 CHO glycosylation mutant.  相似文献   

16.
Biosynthesis of glycolipids GA2, GA1, GM1b, and GD1c was studied in Golgi vesicles isolated from rat liver. Sequential addition of N-acetylgalactosamine, galactose and two sialic acid residues to lactosylceramide led to the endproduct GD1c. Activities of the corresponding glycosyltransferases were shown to be present in isolated Golgi vesicles and their respective kinetic data were determined. The products of each reaction were characterized by their mobility on thin-layer chromatography, by enzymic degradation to their respective precursors, and in case of GM1b by FAB mass spectrometry.  相似文献   

17.
Lec1 CHO cell glycosylation mutants are defective in N-acetylglucosaminyltransferase I (GlcNAc-TI) activity and therefore cannot convert the oligomannosyl intermediate (Man5GlcNAc2Asn) into complex carbohydrates. Lec1A CHO cell mutants have been shown to belong to the same genetic complementation group but exhibit different phenotypic properties. Evidence is presented that lec1A represents a new mutation at the lec1 locus resulting in partial loss of GlcNAc-TI activity. Structural studies of the carbohydrates associated with vesicular stomatitis virus grown in Lec1A cells (Lec1A/VSV) revealed the presence of biantennary and branched complex carbohydrates as well as the processing intermediate Man5GlcNAc2Asn. By contrast, the glycopeptides from virus grown in CHO cells (CHO/VSV) possessed only fully processed complex carbohydrates, whereas those from Lec1/VSV were almost solely of the Man5GlcNAc2Asn intermediate type. Therefore, the Lec1A glycosylation phenotype appears to result from the partial processing of N-linked carbohydrates because of reduced GlcNAc-TI action on membrane glycoproteins. Genetic experiments provided evidence that lec1A is a single mutation affecting GlcNAc-TI activity. Lec1A mutants could be isolated at frequencies of 10(-5) to 10(-6) from unmutagenized CHO cell populations by single-step selection, a rate inconsistent with two mutations. In addition, segregants selected from Lec1A X parental cell hybrid populations expressed only Lec1A or related lectin-resistant phenotypes and did not include any with a Lec1 phenotype. The Lec1A mutant should be of interest for studies on the mechanisms that control carbohydrate processing in animal cells and the effects of reduced GlcNAc-TI activity on the glycosylation, translocation, and compartmentalization of cellular glycoproteins.  相似文献   

18.
Various proteins are involved in the generation and maintenance of the membrane complex known as the Golgi apparatus. We have used mutant Chinese hamster ovary (CHO) cell lines Lec4 and Lec4A lacking N-acetylglucosaminyltransferase V (GlcNAcT-V, MGAT5) activity and protein in the Golgi apparatus to study the effects of the absence of a single glycosyltransferase on the Golgi apparatus dimension. Quantification of immunofluorescence in serial confocal sections for Golgi α-mannosidase II and electron microscopic morphometry revealed a reduction in Golgi volume density up to 49 % in CHO Lec4 and CHO Lec4A cells compared to parental CHO cells. This reduction in Golgi volume density could be reversed by stable transfection of Lec4 cells with a cDNA encoding Mgat5. Inhibition of the synthesis of β1,6-branched N-glycans by swainsonine had no effect on Golgi volume density. In addition, no effect on Golgi volume density was observed in CHO Lec1 cells that contain enzymatically active GlcNAcT-V, but cannot synthesize β1,6-branched glycans due to an inactive GlcNAcT-I in their Golgi apparatus. These results indicate that it may be the absence of the GlcNAcT-V protein that is the determining factor in reducing Golgi volume density. No dimensional differences existed in cross-sectioned cisternal stacks between Lec4 and control CHO cells, but significantly reduced Golgi stack hits were observed in cross-sectioned Lec4 cells. Therefore, the Golgi apparatus dimensional change in Lec4 and Lec4A cells may be due to a compaction of the organelle.  相似文献   

19.
FITC-labeled cholera toxin subunit B (CTB) stained the surfaces of cells of mucous acini in the submandibular gland. CTB, also called choleragenoid, binds to the GM1 glycolipid in the cell membrane. The binding in most acini was inhibited by periodic acid oxidation of the sections, while some acini remained unaffected even after increased oxidation. Staining with the subunit was also reduced significantly by adding galactose to the incubation medium. Binding of CTB to cell surfaces apparently requires intact sialic groups on most, but not all, cell surfaces. Oxidation of the sialic acid residues may influence the structure of the sialylated GM1 molecules on the cell surface in different ways. It is possible that both the sialic acid residue and the terminal galactose are oxidized. Alternatively, the sialic acid may be resistant to acid hydrolysis in gangliosides in which the sialic acid is attached to the internal galactose residue linked to GalNAc, as in the GM1 glycolipid. Inhibition of the GM1 receptor binding to cholera toxin has potential for protection of humans against cholera. Galactose and agents that modify sialic acid inhibit the accessibility of the toxin to the GM1 carbohydrate receptor. Human milk contains high levels of sialic acid glycoconjugates that may provide defense mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号