共查询到20条相似文献,搜索用时 15 毫秒
1.
Reconstitution of transport of vesicular stomatitis virus G protein from the endoplasmic reticulum to the Golgi complex using a cell-free system 总被引:10,自引:10,他引:10 下载免费PDF全文
Transport of the vesicular stomatitis virus-encoded glycoprotein (G protein) between the endoplasmic reticulum (ER) and the cis Golgi compartment has been reconstituted in a cell-free system. Transfer is measured by the processing of the high mannose (man GlcNAc2) ER form of G protein to the man5GlcNAc5 form by the cis Golgi enzyme alpha-mannosidase I. G protein is rapidly and efficiently transported to the Golgi complex by a process resembling that observed in vivo. G protein is trimmed from the high mannose form to the man5GlcNAc2 form without the appearance of the intermediate man GlcNAc2 oligosaccharide species, as is observed in vivo. G protein is found in a sealed membrane-bound compartment before and after incubation. Processing in vitro is sensitive to detergent, and the Golgi alpha-mannosidase I inhibitor 1-deoxymannorjirimycin. Transport between the ER and Golgi complex in vitro requires the addition of a high speed supernatant (cytosol) of cell homogenates, and requires energy in the form of ATP. Efficient reconstitution of export of protein from the ER requires the preparation of homogenates from mitotic cell populations in which the nuclear envelope, ER, and Golgi compartments have been physiologically disassembled before cell homogenization. These results suggest that the high efficiency of transport observed here may require reassembly of functional organelles in vitro. 相似文献
2.
Glycolipids constitute a complex family of amphipathic molecules structurally characterized by a hydrophilic mono- or oligo-saccharide moiety linked to a hydrophobic ceramide moiety. Due to their asymmetric distribution in cell membranes, exposing the saccharide moiety to the extracytoplasmic side of the cell, glycolipids participate in a variety of cell-cell and cell-ligand interactions. Here we summarize aspects of the cell biology of the stepwise synthesis of the saccharide moiety in the Golgi complex of cells from vertebrates. In particular we refer to the participant glycosyltransferases, with emphasis on their trafficking along the secretory pathway, their retention and organization in the Golgi complex membranes and their dependence on the Golgi complex ultra structural organization for proper function. 相似文献
3.
Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. 总被引:15,自引:7,他引:15 下载免费PDF全文
D Preuss J Mulholland A Franzusoff N Segev D Botstein 《Molecular biology of the cell》1992,3(7):789-803
The membrane compartments responsible for Golgi functions in wild-type Saccharomyces cerevisiae were identified and characterized by immunoelectron microscopy. Using improved fixation methods, Golgi compartments were identified by labeling with antibodies specific for alpha 1-6 mannose linkages, the Sec7 protein, or the Ypt1 protein. The compartments labeled by each of these antibodies appear as disk-like structures that are apparently surrounded by small vesicles. Yeast Golgi typically are seen as single, isolated cisternae, generally not arranged into parallel stacks. The location of the Golgi structures was monitored by immunoelectron microscopy through the yeast cell cycle. Several Golgi compartments, apparently randomly distributed, were always observed in mother cells. During the initiation of new daughter cells, additional Golgi structures cluster just below the site of bud emergence. These Golgi enter daughter cells at an early stage, raising the possibility that much of the bud's growth might be due to secretory vesicles formed as well as consumed entirely within the daughter. During cytokinesis, the Golgi compartments are concentrated near the site of cell wall synthesis. Clustering of Golgi both at the site of bud formation and at the cell septum suggests that these organelles might be directed toward sites of rapid cell surface growth. 相似文献
4.
Reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex in yeast: the acceptor Golgi compartment is defective in the sec23 mutant 总被引:15,自引:24,他引:15 下载免费PDF全文
Using either permeabilized cells or microsomes we have reconstituted the early events of the yeast secretory pathway in vitro. In the first stage of the reaction approximately 50-70% of the prepro-alpha-factor, synthesized in a yeast translation lysate, is translocated into the endoplasmic reticulum (ER) of permeabilized yeast cells or directly into yeast microsomes. In the second stage of the reaction 48-66% of the ER form of alpha-factor (26,000 D) is then converted to the high molecular weight Golgi form in the presence of ATP, soluble factors and an acceptor membrane fraction; GTP gamma S inhibits this transport reaction. Donor, acceptor, and soluble fractions can be separated in this assay. This has enabled us to determine the defective fraction in sec23, a secretory mutant that blocks ER to Golgi transport in vivo. When fractions were prepared from mutant cells grown at the permissive or restrictive temperature and then assayed in vitro, the acceptor Golgi fraction was found to be defective. 相似文献
5.
The glycoprotein Ib-IX (GPIb-IX) complex expressed on platelet plasma membrane is involved in thrombosis and hemostasis via the initiation of adhesion of platelets to von Willebrand factor (VWF) exposed at the injured vessel wall. While most of the knowledge of the GPIb-IX complex was obtained from studies on platelets and transfected mammalian cells expressing the GPIb-IX complex, there is not an in vitro membrane system that allows systematic analysis of this receptor. The phospholipid bilayer Nanodisc composed of a patch of phospholipid surrounded by membrane scaffold protein is an attractive tool for membrane protein study. We show here that the GPIb-IX complex purified from human platelets has been reconstituted into the Nanodisc. The Nanodisc-reconstituted GPIb-IX complex was able to bind various conformation-sensitive monoclonal antibodies. Furthermore, it bound to VWF in the presence of botrocetin with an apparent K(d) of 0.73 ± 0.07 nM. The binding to VWF was inhibited by anti-GPIbα antibodies with epitopes overlapping with the VWF-binding site, but not by anti-GPIbβ monoclonal antibody RAM.1. Finally, the Nanodisc-reconstituted GPIb-IX complex exhibited ligand binding activity similar to that of the isolated extracellular domain of GPIbα. In conclusion, the GPIb-IX complex in Nanodiscs adopts a native-like conformation and possesses the ability to bind its natural ligands, thus making a Nanodisc a suitable in vitro platform for further investigation of this hemostatically important receptor complex. 相似文献
6.
Efficient transport of Semliki Forest virus glycoproteins through a Golgi complex morphologically altered by Uukuniemi virus glycoproteins. 总被引:7,自引:0,他引:7 下载免费PDF全文
In infected BHK21 cells, the glycoproteins G1 and G2 of a temperature-sensitive mutant (ts12) of Uukuniemi virus (UUK) accumulate at 39 degrees C in the Golgi complex (GC) causing an expansion and vacuolization of this organelle. We have studied whether such an altered Golgi complex can carry out the glycosylation and transport to the plasma membrane (PM) of the Semliki Forest virus (SFV) glycoproteins in double-infected cells. Double-immunofluorescence staining showed that approximately 90% of the cells became infected with both viruses. Almost the same final yield of infectious SFV was obtained from double-infected cells as from cells infected with SFV alone. The rate of transport from the endoplasmic reticulum (ER) via the GC to the plasma membrane of the SFV glycoproteins was analysed by immunofluorescence, surface radioimmunoassay and pulse-chase labeling followed by immunoprecipitation, endoglycosidase H digestion and SDS-PAGE. The results showed that: the SFV glycoproteins were readily transported to the cell surface in double-infected cells, whereas the UUK glycoproteins were retained in the GC; the transport to the PM was retarded by approximately 20 min, due to a delay between the ER and the central Golgi; E1 of SFV appeared at the PM in a sialylated form. These results indicate that the morphologically altered GC had retained its functional integrity to glycosylate and transport plasma membrane glycoproteins. 相似文献
7.
8.
Lipid regulators of membrane traffic through the Golgi complex. 总被引:6,自引:0,他引:6
M G Roth 《Trends in cell biology》1999,9(5):174-179
Enzymes that modify phospholipids play necessary, but poorly understood, roles in constitutive membrane traffic. Local production of specific phosphoinositides is required for endocytosis and regulated exocytosis, and enzymes that produce and consume phosphoinositides are components of post-Golgi membrane vesicles. Both biochemical and genetic data indicate that regulation of the membrane content of phosphatidic acid, diacylglycerol and phosphoinositides is necessary for protein traffic from the Golgi complex. Evidence for a regulatory role for lipids earlier in the constitutive secretory pathway is more limited and controversial. Although the mechanisms that regulate traffic between the endoplasmic reticulum and Golgi might be qualitatively different from those that control later membrane transport pathways, recent studies suggest that production of specific lipids is important for transport both into and out of the Golgi. As discussed in this article, one potential mechanism for the involvement of lipids is to control the GTPase cycle of a small GTP-binding protein, ARF (ADP-ribosylation factor). 相似文献
9.
A novel prefusion complex formed during protein transport between Golgi cisternae in a cell-free system 总被引:19,自引:0,他引:19
Examination of a cell-free reconstitution of intercompartmental transport through the Golgi apparatus has enabled detection of two intermediates in the pathway (Balch, W. E., Glick, B. S., and Rothman, J. E. (1984) Cell 39, 525-536). These intermediates are thought to represent stages in the budding and fusion reactions of transport vesicles mediating such a transport process. Here we describe a new transport intermediate that is interposed between the previously established primed donor formation and the N-ethylmaleimide (NEM)-resistant acceptor intermediates. Consumption of this intermediate requires much less cytosol than its formation, and thus it has been termed the "dilution-resistant" intermediate. The dilution-resistant intermediate only forms in the presence of donor and acceptor membranes, and its consumption is sensitive to NEM. The transition from this state to the later, NEM-resistant form of the prefusion complex requires ATP as well as cytosol and may represent a processing of transport vesicles to permit their fusion. 相似文献
10.
11.
Targeting of a heterodimeric membrane protein complex to the Golgi: rubella virus E2 glycoprotein contains a transmembrane Golgi retention signal. 总被引:6,自引:1,他引:6 下载免费PDF全文
Rubella virus (RV) envelope glycoproteins, E2 and E1, form a heterodimeric complex that is targeted to medial/trans-Golgi cisternae. To identify the Golgi targeting signal(s) for the E2/E1 spike complex, we constructed chimeric proteins consisting of domains from RV glycoproteins and vesicular stomatitis virus (VSV) G protein. The location of the chimeric proteins in stably transfected Chinese hamster ovary cells was determined by immunofluorescence, immunoelectron microscopy, and by the extent of processing of their N-linked glycans. A trans-dominant Golgi retention signal was identified within the C-terminal region of E2. When the transmembrane (TM) and cytoplasmic (CT) domains of VSV G were replaced with those of RV E2, the hybrid protein (G-E2TMCT+) was retained in the Golgi. Transport of G-E2TMCT+ to the Golgi was rapid (t1/2 = 10-20 min). The G-E2TMCT+ protein was determined to be distal to or within the medial Golgi based on acquisition of endo H resistance but proximal to the trans-Golgi network since it lacked sialic acid. Deletion analysis revealed that only the TM domain of E2 was required for Golgi targeting. Although the cytoplasmic domain of E2 was not necessary for Golgi retention, it was required for efficient transport of VSV G-RV chimeras out of the endoplasmic reticulum. When assayed in sucrose velocity sedimentations gradients, the Golgi-retained G-E2TMCT+ protein behaved as a dimer. Unlike virtually all other Golgi targeting signals, the E2 TM domain does not contain any polar amino acids. The TM and CT domains of E1 were not required for targeting of E2 and E1 to the Golgi indicating that a heterodimer of two integral membrane proteins can be retained in the Golgi by a single retention signal. 相似文献
12.
13.
H Sprong S Degroote T Claessens J van Drunen V Oorschot B H Westerink Y Hirabayashi J Klumperman P van der Sluijs G van Meer 《The Journal of cell biology》2001,155(3):369-380
Although glycosphingolipids are ubiquitously expressed and essential for multicellular organisms, surprisingly little is known about their intracellular functions. To explore the role of glycosphingolipids in membrane transport, we used the glycosphingolipid-deficient GM95 mouse melanoma cell line. We found that GM95 cells do not make melanin pigment because tyrosinase, the first and rate-limiting enzyme in melanin synthesis, was not targeted to melanosomes but accumulated in the Golgi complex. However, tyrosinase-related protein 1 still reached melanosomal structures via the plasma membrane instead of the direct pathway from the Golgi. Delivery of lysosomal enzymes from the Golgi complex to endosomes was normal, suggesting that this pathway is not affected by the absence of glycosphingolipids. Loss of pigmentation was due to tyrosinase mislocalization, since transfection of tyrosinase with an extended transmembrane domain, which bypassed the transport block, restored pigmentation. Transfection of ceramide glucosyltransferase or addition of glucosylsphingosine restored tyrosinase transport and pigmentation. We conclude that protein transport from Golgi to melanosomes via the direct pathway requires glycosphingolipids. 相似文献
14.
Reconstitution of the purified platelet fibrinogen receptor. Fibrinogen binding properties of the glycoprotein IIb-IIIa complex 总被引:8,自引:0,他引:8
Several lines of evidence indicate that the platelet membrane glycoprotein IIb-IIIa complex (GP IIb-IIIa) is necessary for the expression of platelet fibrinogen receptors. The purpose of the present study was to determine whether purified GP IIb-IIIa retains the properties of the fibrinogen receptor on platelets. Glycoprotein IIb-IIIa was incorporated by detergent dialysis into phospholipid vesicles composed of 30% phosphatidylcholine and 70% phosphatidylserine. 125I-Fibrinogen binding to the GP IIb-IIIa vesicles, as measured by filtration, had many of the characteristics of 125I-fibrinogen binding to whole platelets or isolated platelet plasma membranes: binding was specific, saturable, reversible, time dependent, and Ca2+ dependent. The apparent dissociation constant for 125I-fibrinogen binding to GP IIb-IIIa vesicles was 15 nM, and the maximal binding capacity was 0.1 mol of 125I-fibrinogen/mol of GP IIb-IIIa. 125I-Fibrinogen binding was inhibited by amino sugars, the GP IIb and/or IIIa monoclonal antibody 10E5, and the decapeptide from the carboxyl terminus of the fibrinogen gamma chain. Furthermore, little or no 125I-fibrinogen bound to phospholipid vesicles lacking protein or containing proteins other than GP IIb-IIIa (i.e. bacteriorhodopsin, apolipoprotein A-I, or glycophorin). Also, other 125I-labeled plasma proteins (transferrin, orosomucoid) did not bind to the GP IIb-IIIa vesicles. These results demonstrate that GP IIb-IIIa contains the platelet fibrinogen receptor. 相似文献
15.
The lysosomotropic amine primaquine has previously been shown to inhibit both secretory and recycling processes of cells in culture. We have used a cell-free assay that reconstitutes glycoprotein transport through the Golgi apparatus to investigate the mechanism of action of primaquine. In this assay, primaquine inhibits protein transport at a half-maximal concentration of 50 microM, similar to the concentration previously reported to disrupt protein secretion in cultured cells. Kinetic analysis of primaquine inhibition indicates that its point of action is at an early step in the vesicular transport mechanism. Primaquine does not inhibit the fusion of vesicles already attached to their target membranes. Primaquine irreversibly inactivates the membranes that form transport vesicles (donor), but not the membranes that are the destination of those vesicles (acceptor). Morphological data indicate that primaquine inhibits the budding of vesicles from the donor membranes. Once formed, the vesicles are refractile to primaquine action, and their attachment to and fusion with acceptor membranes proceeds unimpeded. In addition to illuminating the mechanism of action of primaquine, this study suggests that the selective action of this agent will make it a useful tool in the study of the formation of transport vesicles. 相似文献
16.
17.
The effect of puromycin has been investigated on protein and glycoprotein synthesis and on ultrastructure of the Golgi complex from rat liver. Incorporation of [14C]leucine into protein in Golgi fractions and into serum proteins was depressed rapidly after puromycin treatment. In the serum proteins, incorporation returned to normal levels at 2 h whereas in Golgi fractions it continued to rise to 200% of the control levels at 3 h and was still elevated at 24 h after puromycin treatment. Incorporation of [14C]glucosamine into glycoprotein was depressed in Golgi and serum fractions in a similar manner but slightly later than that of leucine. Leucine labelled material found at 3 h was a poor acceptor for carbohydrate, since [14C]glucosamine incorporation was not elevated above control values. Galactosyl transferase activity was not depressed in the Golgi membranes and, at 3 h, was elevated implying that an adequate supply of enzyme was available at all times. The activity of the galactosyl transferase in serum appeared to be depressed suggesting that transport of enzyme from Golgi complex to serum was defective. Ultrastructural changes in the Golgi complex were observed to occur rapidly after puromycin treatment. The cisternae became irregular, compressed, and degenerated progressively from central region towards the periphery. Irregular tubular structures formed at the expense of cisternal membrane and showed accumulation of low density lipoprotein. Vesiculation and degenerative changes of the Golgi membranes continued from 2-12 h while more typical arrangements of the Golgi complex were observed between 24-48 h. The morphological changes correlated with changes in glycoprotein synthesis. 相似文献
18.
The periplasmic histidine transport system of Salmonella typhimurium has been reconstituted in isolated right-side-out membrane vesicles. The reconstituted system is entirely dependent on both the periplasmic protein, HisJ, and the membrane-bound complex, composed of proteins HisQ, HisM, and HisP. Transport is also dependent on the presence of ascorbate and phenazine methosulfate, which provide the energy for transport. Ascorbate oxidation generates a proton-motive-force, which allows ATP synthesis. ATP (or a cogenerated molecule) appears to be the immediate energy donor. Dissipation of the proton-motive-force or reduction of the level of ATP by a variety of treatments results in inhibition of transport. Vanadate inhibits transport, indicating that ATP utilization is necessary to energize transport. The interaction between liganded HisJ and the membrane complex has been measured directly: it displays Michaelis-Menten type kinetics, with a K1/2 of approximately 65 microM. The significance of this finding in terms of transport properties of whole cells is discussed. 相似文献
19.
Transport of the vesicular stomatitis glycoprotein to trans Golgi membranes in a cell-free system 总被引:13,自引:0,他引:13
J E Rothman 《The Journal of biological chemistry》1987,262(26):12502-12510
Terminal steps in the transport of the vesicular stomatitis virus glycoprotein (G protein) in the Golgi stack have been reconstituted in a cell-free system. Incorporation of sialic acid into the oligosaccharide chains of G protein was used to monitor transport into the trans Golgi compartment. Transport-coupled sialylation required cytosol, ATP, an N-ethylmaleimide-sensitive factor extractable from Golgi membranes, and long chain acyl coenzyme A. The G protein receiving sialic acid in the cell-free system begins its in vitro transport bearing galactose residues acquired in vivo. Earlier reports (Balch, W. E., Dunphy, W. G., Braell, W. A., and Rothman, J. E. (1984a) Cell 39, 405-416) documented that transport of G protein into the medial (GlcNAc Transferase-containing) compartment is reconstituted under the same conditions. On the basis of the results reported here, it now appears that a more complete set of transport operations of the Golgi stack may be simultaneously reconstituted. 相似文献
20.
Non-clathrin-coated vesicles mediate membrane traffic through the Golgi complex. The proteins that constitute the coats of these vesicles have similar molecular weights to the clathrin coat proteins. A major component of the coat of non-clathrin-coated vesicles, beta-COP, has significant homology with the clathrin coat protein beta-adaptin, indicating that the coats of the two different classes of vesicles may be structurally and functionally homologous. 相似文献