首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism underlying the shark repellency of SDS was studied by comparing it with the shark nonrepelling detergent, Triton X-100. The findings can be summarized as follows: (1) The effective concentration of SDS for termination of shark tonic immobility (an immediate and fast response) was close to its critical micellar concentration in sea water (70 microM). The fish lethal concentrations (LD50) were far below the CMC value for SDS, and at CMC level for Triton X-100. (2) In sea water SDS possesses a strong affinity for lipid membranes, expressed in a lipid sea water partition coefficient (Kp) of about 3000. (3) In liposomal systems examined by assays of turbidity, fluorescence resonance energy transfer and kinetics of carboxyfluorescein (CF) release, the pattern of SDS induced changes in the phospholipid bilayer suggests: (a) absence of vesicle-vesicle fusion; (b) occurrence of vesicle size increase, and (c) nonlytic gradual release of CF above and below its CMC values. In contrast, Triton X-100 above its CMC induces membrane solubilization. (4) Assays coupling CF release from liposomes to potassium diffusion potential induced by valinomycin indicate that SDS related CF release can also be attributed to a specific mechanism such as cation pore formation and not only to membrane solubilization. The hypothesis of pore formation by SDS is discussed.  相似文献   

2.
The activities of acetylcholinesterase and Ca2+ + Mg2+ ATPase were measured following treatment of human erythrocyte membranes with nonsolubilizing and solubilizing concentrations of Triton X-100. A concentration of 0.1% (v/v) Triton X-100 caused a significant inhibition of both enzymes. The inhibition appears to be caused by perturbations in the membrane induced by Triton X-100 incorporation. No acetylcholinesterase activity and little Ca2+ + Mg2+ ATPase activity were detected in the supernatant at 0.05% Triton X-100 although this same detergent concentration induced changes in the turbidity of the membrane suspension. Also, no inhibition of soluble acetylcholinesterase was observed over the entire detergent concentration range. The inhibition of these enzymes at 0.1% Triton X-100 was present over an eightfold range of membrane protein in the assay indicating an independence of the protein/detergent ratio. The losses in activities of these two enzymes could be prevented by either including phosphatidylserine in the Triton X-100 suspension or using Brij 96 which has the same polyoxyethylene polar head group but an oleyl hydrophobic tail instead of the p-tert-octylphenol group of Triton X-100. The results are discussed in regard to the differential recovery of enzyme activities over the entire detergent concentration range.  相似文献   

3.
A colorimetric method for the determination of orthophosphate in the presence of Triton X-100 and the extent of their mutual interference is presented. Effects of albumin and trichloroacetic acid on the reaction are also examined. The method is based on the very sensitive reaction developed for determination of orthophosphate by complex formation with ammonium molybdate followed by reduction with stannous chloride. The method allows determination of 0.005 μmol of orthophosphate in the presence of up to 0.5% Triton X-100 and as little as 0.3% (vv) Triton X-100 in the absence of phosphate.  相似文献   

4.
The outer membrane of Pseudomonas aeruginosa PA01 is permeable to saccharides of molecular weights lower than about 6000. Triton X-100/EDTA-soluble outer membrane proteins were fractionated by ion-exchange chromatography in the presence of Triton X-100 and EDTA, and the protein contents of the various fractions analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Each of the major protein bands present in the Triton X-100/EDTA soluble outer membrane was separated from one another. Adjacent fractions were pooled, concentrated and extensively dialyzed to reduce the Triton X-100 concentration. Vesicles were reconstituted from lipopolysaccharide, phospholipids and each of these dialyzed fractions, and examined for their ability to retain [14C]sucrose. Control experiments indicated that the residual levels of Triton X-100 remaining in the dialyzed fractions had no effect on the formation or permeability to saccharides of the reconstituted vesicles. It was concluded that a major outer membrane polypeptide with an apparent weight of 35,000 is a porin, responsible for the size-dependent permeability of the outer membrane.  相似文献   

5.
The effect of Triton X-100 on catalytic properties of acetylcholinesterase from human erythrocytes under acetylcholine hydrolysis, on sensitivity of acetylcholinesterase to specific phosphoorganic inhibitors and eserine, and on the mobility and isoenyme spectrum under analytical electrophoresis in polyacrylamide gel is investigated. Triton X-100, independently on its concentration within 0.05-1.0%, slightly changes V and [S]opt values and increases Km value in 2-3 times. The inhibitory effect of Triton X-100 is mainly competitive, 0.5% Triton X-100 decreases bimolecular constant (kII) of the interaction of acetylcholinesterase with phosphoorganic inhibitor and eserine in 2.5-4 times. In the presence of phosphoorganic inhibitor, kII sharply decreased when 0.02% Triton X-100 was added, and then it did not change under the increase of Triton X-100 concentration up to 1.0%. On the basis of these data, an analytical method of estimating Triton X-100 content in protein solution is proposed. The introduction of 0.1% Triton X-100 into polyacrylamide gel results in considerable quantitative redistribution of acetylcholinesterase isoenzyme fractions and in the change of the mobility of one fraction under electrophoresis.  相似文献   

6.
Sonicated unilamellar and large multilamellar liposome suspensions have been treated with the non-ionic detergent Triton X-100, and the subsequent changes in turbidity have been studied as a function of time. Sonicated liposome suspensions exhibit an increase in turbidity that takes place in two stages, a fast, low-amplitude one is completed in less than 100 ms, and a slow large-amplitude one occurs in 20-40 s. The first increase in turbidity is associated to detergent incorporation into the bilayer, and the second one, to vesicle fusion. The fast stage may be detected at all detergent concentrations, while the slow one is only seen above the critical micellar concentration of Triton X-100. Both processes may be interpreted in terms of first-order kinetics. Studies of the variation of kexp with lipid and detergent concentration suggest a complex multi-step mechanism. In the case of multilamellar liposomes, a fast increase in turbidity is also seen after detergent addition, which is followed by a slow (20-60 s) decrease in turbidity and a very slow (up to 12 h) large scale decrease in turbidity. These processes do not conform to single-exponential patterns. The fast stage is also thought to reflect surfactant incorporation, while the decrease in turbidity is interpreted as bilayer solubilization starting with the outer bilayer (slow stage) and proceeding through the remaining ones (very slow stage).  相似文献   

7.
The Formation of Triton X-100-silicotungstic acid complex was studied. Quantitative turbidimetric determination of the detergent based on this process was suggested. This method allows to determining the complex formation at any wavelength in the range from 350 (epsilon 350 = 15,600 cm-1 M-1) to 600 nm (epsilon 600 = = 9090 cm-1 M-1). The calibration curve for Triton X-100 recorded at 350 nm is linear in the concentration range of 0 to 30 micrograms/ml. A sigmoid calibration curve was observed at longer wavelengths. A linear fragment of the calibration curve recorded at 600 nm was found at a concentration of Triton X-100 of about 5 micrograms/ml. The complex nature of calibration curves can be explained by heterogeneity of the complex dispersion.  相似文献   

8.
The outer membrane of Pseudomonas aeruginosa PA01 is permeable to saccharides of molecular weights lower than about 6000. Triton X-100/EDTA-soluble outer membrane proteins were fractionated by ion-exchange chromatography in the presence of Triton X-100 and EDTA, and the protein contents of the various fractions analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Each of the major protein bands present in the Triton X-100/EDTA soluble outer membrane was separated from one another. Adjacent fractions were pooled, concentrated and extensively dialyzed to reduce the Triton X-100 concentration. Vesicles were reconstituted from lipopolysaccharide, phospholipids and each of these dialyzed fractions, and examined for their ability to retain [14C]sucrose. Control experiments indicated that the residual levels of Triton X-100 remaining in the dialyzed fractions had no effect on the formation or permeability to saccharides of the reconstituted vesicles. It was concluded that a major outer membrane polypeptide with an apparent weight of 35 000 is a porin, responsible for the size-dependent permeability of the outer membrane.  相似文献   

9.
Mixed micelles of the nonionic surfactant Triton X-100 and egg phosphatidylcholine were isolated by column chromatography on 6% agarose and by centrifugation at 35,000g. It was found that egg phosphatidylcholine bilayers are able to incorporate Triton X-100 at molar ratios of Triton to phospholipid below about 1:1, whereas above a molar ratio of about 2:1 Triton/phospholipid all of the phospholipid is converted into mixed micelles. Mixed micelles at a molar ratio of about 10:1 Triton/phospholipid were found to be in the same size range as pure micelles of Triton X-100. The formation of mixed micelles with dipalmitoyl phosphatidylcholine at room temperature, when the phospholipid is below its thermotropic phase transition, is shown to require relatively high concentrations of Triton X-100. The point at which dimyristoyl phosphatidylcholine bilayers are converted to mixed micelles was found to be less clear cut than with egg phosphatidylcholine, but above a molar ratio of about 2:1 Triton/phospholipid, all of this phospholipid is also in mixed micelles. The relevance of these results to the solubilization of membrane-bound proteins with Triton X-100 and the action of phospholipase A2, which hydrolyzes phosphatidylcholine when it is in mixed micelles with Triton X-100, is discussed.  相似文献   

10.
The mechanisms governing the solubilization by Triton X-100, octyl glucoside, and sodium cholate of large unilamellar liposomes prepared by reverse-phase evaporation were investigated. The solubilization process is described by the three-stage model previously proposed for these detergents [Lichtenberg, D., Robson, R.J., & Dennis, E.A.(1983) Biochim. Biophys. Acta 737, 285-304]. In stage I, detergent monomers are incorporated into the phospholipid bilayers until they saturate the liposomes. At that point, i.e., stage II, mixed phospholipid-detergent micelles begin to form. By stage III, the lamellar to micellar transition is complete and all the phospholipids are present as mixed micelles. The turbidity of liposome preparations was systematically measured as a function of the amount of detergent added for a wide range of phospholipid concentrations (from 0.25 to 20 mM phospholipid). The results allowed a quantitative determination of RSat, the effective detergent to lipid molar ratios in the saturated liposomes, which were 0.64, 1.3, and 0.30 for Triton X-100, octyl glucoside, and sodium cholate, respectively. The corresponding ratios in the mixed micelles, RSol, were 2.5, 3.8, and 0.9 mol of detergent/mol of phospholipid. The monomer concentrations of the three detergents in the aqueous phase were also determined at the lamellar to micellar transitions (0.18, 17, and 2.8 mM, respectively). These transitions were also investigated by 31P NMR spectroscopy, and complete agreement was found with turbidity measurements. Freeze-fracture electron microscopy and permeability studies in the sublytic range of detergent concentrations indicated that during stage I of solubilization detergent partitioning between the aqueous phase and the lipid bilayer greatly affects the basic permeability of the liposomes without significantly changing the morphology of the preparations. A rough approximation of the partition coefficients was derived from the turbidity and permeability data (K = 3.5, 0.09, and 0.11 mM-1 for Triton X-100, octyl glucoside, and sodium cholate, respectively). It is concluded that when performed systematically, turbidity measurements constitute a very convenient and powerful technique for the quantitative study of the liposome solubilization process by detergents.  相似文献   

11.
Mixed dispersions of sphingomyelin and Triton X-100 were prepared by two procedures. In method A, aqueous dispersions of sphingomyelin were mixed with aqueous solutions of Triton X-100. In method B, solutions of sphingomyelin and Triton X-100 in organic solvent were mixed, the solvent was evaporated and the dry residue was dispersed in buffer. Measurement of turbidities, electron microscopy and sedimentation of the mixed dispersions suggested the following: Below the critical micellar concentration of Triton X-100, the sphingomyelin is present as liposomes which sediment in the ultracentrifuge. Above the CMC, mixed micelles of sphingomyelin and Triton form. Method B resulted in aggregates of sphingomyelin which contain Triton X-100 even below its critical micellar concentration and which are smaller than those obtained by method A.  相似文献   

12.
Phosphatidylserine decarboxylase activity has been characterized in membrane preparations from Clostridium butyricum ATCC 19398. A particulate fraction was shown to catalyze the formation of phosphatidylethanolamine and plasmenylethanolamine when vesicles containing phosphatidylserine and plasmenylserine were used as substrate. No plasmenylethanolamine was formed when phosphatidylserine alone was used as substrate. The activity with phosphatidylserine was activated by divalent cations and was optimal under anaerobic conditions. Ionic detergents inhibited phosphatidylethanolamine formation strongly and nonionic detergents inhibited partially. In the presence of Triton X-100, phosphate from [32P]phosphatidylserine appeared in three unidentified lipid products, in addition to phosphatidylethanolamine. The formation of these products was time- and Triton X-100 concentration-dependent. Hydroxylamine inhibited phosphatidylserine decarboxylase, but did not prevent the reactions stimulated by Triton X-100.  相似文献   

13.
A major step in purifying membrane bound proteins involves the solubilization of the protein of interest from the cell membranes. Glycosylphosphatidyl inositol (GPI)-anchored proteins pose a singular problem in this solubilization step since they are found in detergent-resistant membrane complexes and accordingly are insoluble in cold Triton X-100. In this study we have developed a modified cell ELISA that determines the solubility of these cell surface proteins under various solubilization conditions. Using this non-radioactive method we show that the combination of saponin/Triton X-100 at 4 degrees C solubilized GPI-anchored proteins more efficiently than Triton X-100 at 4 degrees C. The combination of saponin/Triton X-100 at 4 degrees C avoids the potential of activating proteases that occurs when using Triton X-100 at 37 degrees C. Furthermore, our method also shows the saponin/Triton X-100 solubilized GPI-anchored proteins equivalent to the more expensive octyl beta-glucoside. This is a particularly important consideration in large-scale protein purification. This method obviates the need to use radioactivity, gel electrophoresis and immunoblotting procedures. The solubilization conditions determined by this modified ELISA are readily translated to the practical application of large-scale protein purification as demonstrated in the purification of two different recombinant GPI-anchored proteins, GPI-hB7-1 (CD80) and GPI-mICAM-1 (CD54).  相似文献   

14.
The effect of Triton X-100 on purified sarcoplasmic reticulum vesicles has been studied by means of chemical, ultrastructural and enzymic techniques. At low detergent/membrane ratios (about 1 Triton X-100 per 60 phospholipid molecules) the only effect observed is an increase in vesicle permeability. Higher surfactant concentrations, up to a 1:1 detergent/phospholipid ratio, produce a large enhancement of ATPase activity. Membrane solubilization occurs as a critical phenomenon when the surfactant/phospholipid molar ratio reaches a value around 1.5:1, corresponding to 2 mumol Triton X-100/mg protein. At this point, the suspension turbidity drops, virtually all the protein and phospholipid is solubilized and every organized structure disappears. Simultaneously, a dramatic increase in the specific activity of the solubilized ATPase is observed. The sudden solubilization of almost all the bilayer components at a given detergent concentration is attributed to the relative simplicity of this membrane system. Solubilization takes place at the same surfactant/membrane ratio, at least between 0.5 and 4 mg membrane protein/ml. The non-solubilized residue seems to consist mainly of delipidized aggregated forms of ATPase.  相似文献   

15.
The effect of Triton X-100 on purified sarcoplasmic reticulum vesicles has been studied by means of chemical, ultrastructural and enzymic techniques. At low detergent/membrane ratios (about 1 Triton X-100 per 60 phospholipid molecules) the only effect observed is an increase in vesicle permeability. Higher surfactant concentrations, up to a 1:1 detergent/phospholipid ratio, produce a large enhancement of ATPase activity. Membrane solubilization occurs as a critical phenomenon when the surfactant/phospholipid molar ratio reaches a value around 1.5:1, corresponding to 2 μmol Triton X-100/mg protein. At this point, the suspension turbidity drops, virtually all the protein and phospholipid is solubilized and every organized structure disappears. Simultaneously, a dramatic increase in the specific activity of the solubilized ATPase is observed. The sudden solubilization of almost all the bilayer components at a given detergent concentration is attributed to the relative simplicity of this membrane system. Solubilization takes place at the same surfactant/membrane ratio, at least between 0.5 and 4 mg membrane protein/ml. The non-solubilized residue seems to consist mainly of delipidized aggregated forms of ATPase.  相似文献   

16.
A procedure for the estimation of microgram quantities of triton X-100   总被引:10,自引:0,他引:10  
A spectrophotometric procedure is reported for the assay of microgram amounts of the nonionic detergent Triton X-100. The method is based on the reaction of ammonium cobaltothiocyanate with the poly (ethylene oxide) groups of Triton X-100 to form a blue precipitate. The latter is extracted into ethylene dichloride and assayed spectrophotometrically. Capable of assaying as little as 40 μg of Triton X-100, the procedure is applicable in the presence of proteins provided a small easily determined correction is applied. High ionic strength (up to 2 m NaCl tested) did not interfere with the method.  相似文献   

17.
It is desirable to modify the normally filamentous Trichoderma reesei Rut C-30 to a pellet form, for easy biomass separation from the fermentation medium containing soluble products (e.g., cellulase). It was found in this study that this morphological modification could be successfully achieved by addition of the biosurfactant rhamnolipid (at ≥ 0.3g/L) and the synthetic Triton X-100 (at ≥ 0.1g/L) to the fermentation broth before the cells started to grow actively. Thirteen other surfactants tested were not as effective. Furthermore, the added rhamnolipid and Triton X-100 increased the maximum cellulase activity (Filter Paper Units) produced in the fungal fermentation; the increase was 68 ± 7.8% for rhamnolipid and 73 ± 12% for Triton X-100. At the concentrations required for pellet formation, rhamnolipid had negative effect on the cell growth: with increasing rhamnolipid concentrations, the growth rate decreased and the lag-phase duration increased linearly. Triton X-100 caused no significant differences in growth rate or lag phase.  相似文献   

18.
Effect of different concentration of non-ionic detergents (Triton X-100, Triton X-305, BRIJ-35 and Triton WR-1339) on total and non-sedimentable activity of 8 rat liver lysosome enzymes (acid phosphatase, acid DNase, acid RNase, arylsulphatases A and B, beta-glucuronidase, beta-galactosidase, beta-glucosidase and beta-acetylglucosaminidase) was studied. Only Triton X-100 at the concentration of 0.1% (and higher) was found to release completely lysosome enzymes. Low concentrations of Triton X-100 (0.025-0.05%) were used to characterize the strength of enzyme binding: the level of releasing acid DNase, beta-galactosidase, beta-glucuronidase and acid phsophatase being considerably higher than that of other lysosome enzymes studied. On the basis of the data obtained a method is worked out, which is suitable for series studies of the stability of lysosome membranes under different physiological and pathological conditions. The essence of the method is the treatment of membrane particles with increasing concentrations of Triton X-100 (0.025; 0.05 AND 0.1%) AND THE SUCCESSIVE ESTIMATION OF NON-Sedimentable activity of marker enzymes. The method detected troubles in the stability of rat liver lysosome membranes under starvation, protein deficiency and aging.  相似文献   

19.
The hydrogenase from Paracoccus denitrificans, which is an intrinsic membrane protein, has been solubilised from membranes by Triton X-100. The partial specific volume of the solubilised protein has been determined using sucrose density gradient centrifugation in H2O and 2H2O. The values of the specific volumes of hydrogenase, measured in the presence or absence of Triton X-100, are 0.73 and 0.74 ml . g-1, respectively, indicating that hydrogenase binds much less than one micelle of Triton X-100. The sedimentation coefficient of hydrogenase is increased from 10.4 S to 15.9 S on removal of detergent. The Stokes' radius of hydrogenase, determined by gel filtration on Sepharose 6B, is 5.5 nm in the presence of Triton X-100 compared to 6.7 nm in the absence of detergent. The apparent molecular weight therefore increases from 242,500 to 466,000 on removal of detergent. In the presence of urea and sodium dodecylsulphate, the hydrogenase has an apparent molecular weight of 63,000. The enzyme therefore behaves as a non-covalently linked tetramer in the presence of Triton X-100. Removal of Triton X-100 results in association of tetramers to form octamers.  相似文献   

20.
The calcium-transport ATPase of the sarcoplasmic reticulum membranes is irreversibly inactivated by the combined action of Lasolocid and Triton X-100 at concentrations which separately do not interfere with the enzyme's activity. In the presence of Lasolocid the enzyme is most susceptible to inactivation when the Triton X-100 concentration just exceeds its critical micellar concentration, approximately, 0.2 mg X ml-1. Lasolocid becomes effective at a concentration of 10 microM and produces rapid inactivation at 100 microM. Phosphoprotein formation is less affected than phosphate liberation. The influence of the ATPase protein on the fluorescence intensity of Lasolocid passes a distinct maximum at the most effective Triton X-100 concentration of 0.2 mg X ml-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号