首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To date, the intracellular regulation of protein kinase CK2 is unknown. However it was observed that the enzyme associates with several intracellular proteins and the formation of such molecular complexes may represent a mechanism for the control of CK2 activity. Using the Interaction Trap system in yeast, with the CK2 as a bait, we looked for CK2 partners. We present the identification of new potential partners of CK2 and it is hoped that their classification will help in understanding the physiological roles and the regulation of CK2 in the cell.  相似文献   

2.
AMP-activated protein kinase (AMPK) plays a pivotal role in regulating cellular energy metabolism. We previously showed that AMPKα1−/− mice develop moderate anemia associated with splenomegaly and high reticulocytosis. Here, we report that splenectomy of AMPKα1−/− mice worsened anemia supporting evidence that AMPKα1−/− mice developed a compensatory response through extramedullary erythropoiesis in the spleen. Transplantation of bone marrow from AMPKα1−/− mice into wild-type recipients recapitulated the hematologic phenotype. Further, AMPKα1−/− red blood cells (RBC) showed less deformability in response to shear stress limiting their membrane flexibility. Thus, our results highlight the crucial role of AMPK to preserve RBC integrity.  相似文献   

3.
Normal and pathological stressors engage the AMP-activated protein kinase (AMPK) signalling axis to protect the cell from energetic pressures. Sex steroid hormones also play a critical role in energy metabolism and significantly modify pathological progression of cardiac disease, diabetes/obesity and cancer. AMPK is targeted by 17β-oestradiol (E2), the main circulating oestrogen, but the mechanism by which E2 activates AMPK is currently unknown. Using an oestrogen receptor α/β (ERα/β) positive (T47D) breast cancer cell line, we validated E2-dependent activation of AMPK that was mediated through ERα (not ERβ) by using three experimental strategies. A series of co-immunoprecipitation experiments showed that both ERs associated with AMPK in cancer and striated (skeletal and cardiac) muscle cells. We further demonstrated direct binding of ERs to the α-catalytic subunit of AMPK within the βγ-subunit-binding domain. Finally, both ERs interacted with the upstream liver kinase B 1 (LKB1) kinase complex, which is required for E2-dependent activation of AMPK. We conclude that E2 activates AMPK through ERα by direct interaction with the βγ-binding domain of AMPKα.  相似文献   

4.
AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. It is a heterotrimer composed of a catalytic α and two regulatory subunits (β and γ). AMPK activity is regulated allosterically by AMP and by the phosphorylation of residue Thr-172 within the catalytic domain of the AMPKα subunit by upstream kinases. We present evidence that the AMPKβ2 subunit may be posttranslationally modified by sumoylation. This process is carried out by the E3-small ubiquitin-like modifier (SUMO) ligase protein inhibitor of activated STAT PIASy, which modifies the AMPKβ2 subunit by the attachment of SUMO2 but not SUMO1 moieties. Of interest, AMPKβ1 is not a substrate for this modification. We also demonstrate that sumoylation of AMPKβ2 enhances the activity of the trimeric α2β2γ1 AMPK complex. In addition, our results indicate that sumoylation is antagonist and competes with the ubiquitination of the AMPKβ2 subunit. This adds a new layer of complexity to the regulation of the activity of the AMPK complex, since conditions that promote ubiquitination result in inactivation, whereas those that promote sumoylation result in the activation of the AMPK complex.  相似文献   

5.

Background

In endothelial cells, activation of the AMP-activated protein kinase (AMPK) has been linked with anti-inflammatory actions but the events downstream of kinase activation are not well understood. Here, we addressed the effects of AMPK activation/deletion on the activation of NFκB and determined whether the AMPK could contribute to the anti-inflammatory actions of nitric oxide (NO).

Methodology/Principal Findings

Overexpression of a dominant negative AMPKα2 mutant in tumor necrosis factor-α-stimulated human endothelial cells resulted in increased NFκB activity, E-selectin expression and monocyte adhesion. In endothelial cells from AMPKα2-/- mice the interleukin (IL)-1β induced expression of E-selectin was significantly increased. DETA-NO activated the AMPK and attenuated NFκB activation/E-selectin expression, effects not observed in human endothelial cells in the presence of the dominant negative AMPK, or in endothelial cells from AMPKα2-/- mice. Mechanistically, overexpression of constitutively active AMPK decreased the phosphorylation of IκB and p65, indicating a link between AMPK and the IκB kinase (IKK). Indeed, IKK (more specifically residues Ser177 and Ser181) was found to be a direct substrate of AMPKα2 in vitro. The hyper-phosphorylation of the IKK, which is known to result in its inhibition, was also apparent in endothelial cells from AMPKα2+/+ versus AMPKα2-/- mice.

Conclusions

These results demonstrate that the IKK is a direct substrate of AMPKα2 and that its phosphorylation on Ser177 and Ser181 results in the inhibition of the kinase and decreased NFκB activation. Moreover, as NO potently activates AMPK in endothelial cells, a portion of the anti-inflammatory effects of NO are mediated by AMPK.  相似文献   

6.
Wang S  Zhang C  Zhang M  Liang B  Zhu H  Lee J  Viollet B  Xia L  Zhang Y  Zou MH 《Nature medicine》2012,18(6):902-910
Smoking is the only modifiable risk factor that is associated with the development, expansion and rupture of abdominal aortic aneurysm (AAA). However, the causative link between cigarette smoke and AAA is unknown. Here we report a causative link between smoking and AAA in vivo. Acute infusion of angiotensin II (AngII) or nicotine, a major component of cigarette smoke, markedly increased the incidence of AAA in apolipoprotein E (apoE) knockout (Apoe(-/-)) mice and in mice deficient in both apoE and the AMP-activated kinase α1 subunit (AMPK-α1) (Apoe(-/-); Prkaa1(-/-) mice). In contrast, genetic deletion of AMPK-α2 (Apoe(-/-); Prkaa2(-/-) mice) ablated nicotine- or AngII-triggered AAA in vivo. Mechanistically, we found that both nicotine and AngII activated AMPK-α2 in cultured vascular smooth muscle cells (VSMCs), resulting in the phosphorylation of activator protein 2α (AP-2α) and consequent matrix metallopeptidase 2 (MMP2) gene expression. We conclude that smoking (through nicotine) instigates AAA through AMPK-α2–mediated AP-2α–dependent MMP2 expression in VSMCs.  相似文献   

7.
AMP-activated protein kinase: also regulated by ADP?   总被引:1,自引:0,他引:1  
AMPK is a ubiquitous sensor of cellular energy status in eukaryotic cells. It is activated by stresses causing ATP depletion and, once activated, maintains energy homeostasis by phosphorylating targets that activate catabolism and inhibit energy-consuming processes. Evidence derived from non-mammalian orthologs suggests that its ancestral role was in the response to starvation for a carbon source. We review recent findings showing that AMPK is activated by ADP as well as AMP, and discuss the mechanism by which binding of these nucleotides prevent its dephosphorylation and inactivation. We also discuss the role of the carbohydrate-binding module on the β subunit and the mechanisms by which it is activated by drugs and xenobiotics such as metformin and resveratrol.  相似文献   

8.
Protein kinase CK2 is a ubiquitous, highly conserved protein kinase with a tetrameric 22 structure. For the formation of this tetrameric complex a - dimer seems to be a prerequisite. Using the two-hybrid system and a series of CK2 deletion mutants, we mapped domains involved in - and - interactions. We also detected an intramolecular b interaction within the amino acid stretch 132-165.Using CK2 as a bait in a two-hybrid library screening several new putative cellular partners have been identified, among them the S6 kinase p90rsk, the putative tumor suppressor protein Doc-1, the Fas-associated protein FAF1, the mitochondrial translational initiation factor 2 and propionyl CoA carboxylase subunit.  相似文献   

9.
Phosphorylation of theα subunit of the sodium channel by protein kinase C   总被引:5,自引:0,他引:5  
The alpha subunit of the purified voltage-sensitive sodium channel from rat brain is rapidly phosphorylated to the extent of 3-4 mol phosphate/mol by purified protein kinase C. The alpha subunit of the native sodium channel in synaptosomal membranes is also phosphorylated by added protein kinase C as assessed by specific immunoprecipitation and polyacrylamide gel electrophoresis of labeled membranes. Our results suggest coordinate regulation of sodium channel phosphorylation state by cAMP-dependent and calcium/phospholipid-dependent protein kinases.  相似文献   

10.
Protein phosphatase 2A (PP2A) bearing the B’γ (= B’α/B56γ1/PR61γ) subunit is recruited to dephosphorylation targets by cyclin G. We demonstrate here that cyclin G-associated kinase (GAK), a component of the GAK/B’γ/cyclin G complex, directly phosphorylates the B’γ-Thr104 residue and regulates PP2A activity. Indeed, an anti-B’γ-pT104 antibody detected immunofluorescence signals at the chromosome and centrosome during mitosis; these signals were reduced by siRNA-mediated GAK knockdown. After DNA damage by γ-irradiation, the chromosome signals formed foci that colocalized with a DNA double-strand break (DSB) marker H2AX-pS139 (γH2AX) and CHK2-pT68. Moreover, B’γ-pT104 enhanced PP2A holoenzyme assembly and PP2A activity, as shown by the results of an in vitro phosphatase assay. These results suggest a novel role for GAK as a regulator of dephosphorylation events under the control of the PP2A B’γ subunit.  相似文献   

11.
Autophagy is a lysosomal pathway involved in the turnover of cellular macromolecules and organelles. Starvation and various other stresses increase autophagic activity above the low basal levels observed in unstressed cells, where it is kept down by mammalian target of rapamycin complex 1 (mTORC1). In starved cells, LKB1 activates AMP-activated protein kinase (AMPK) that inhibits mTORC1 activity via a pathway involving tuberous sclerosis complex 1 and 2 (TSC1/2) and its substrate Rheb. The present study suggests hat AMPK inhibits mTORC1 and autophagy also in nonstarved cells. Various Ca(2+) mobilizing agents (vitamin D compounds, thapsigargin, ATP and ionomycin) activate MPK via activation of Ca(2+)/calmodulin-dependent kinase kinase-beta (CaMKK-beta), and his pathway is required for Ca(2+)-induced autophagy. Thus, we propose that an increase in free cytosolic Ca(2+) ([Ca(2+)](c)) induces autophagy via the CaMKK/beta-AMPK-TSC1/2-Rheb-mTORC1 signaling pathway and that AMPK is a more general regulator of autophagy than previously expected.  相似文献   

12.
Adiponectin receptor ADIPOR1 activates the intracellular second messenger AMP-activated protein kinase (AMPK) that participates in the control of the oxidative stress and apoptosis. This study reveals the presence of a functional ADIPOR1 receptor in all the cells of the renal glomeruli. Isolated glomeruli were incubated in vitro with adiponectin and proteins analysed by western blot. Electron microscopy using immunogold labeling was carried out on kidney sections. ADIPOR1 and catalytic AMPK sub-units α1 and α2 were revealed in normal rat glomeruli and incubation of freshly isolated rat glomeruli with either adiponectin or AICAR led to the activation by phosphorylation of catalytic AMPK. Electron microscopy localized with high resolution these proteins at the plasma membrane of the three glomerular cells, namely the endothelial, the mesangial and the podocyte cells, as well as on Bowman’s capsule epithelial cells. It is concluded that glomerular cells express a functional adiponectin receptor ADIPOR1 which, through activation of AMPK, may play important roles in the control of oxidative stress and cell survival within the glomerulus.  相似文献   

13.
3',5' Cyclic guanosine monophosphate (cGMP)-dependent protein kinase G-1α (PKG-1α) is an enzyme that is a target of several anti-hypertensive and erectile dysfunction drugs. Binding of cGMP to PKG-1α produces a conformational change that leads to enzyme activation. Activated PKG-1α performs important roles both in blood vessel vasodilation and in maintaining the smooth muscle cell in a differentiated contractile state. Recombinant PKG-1α has been expressed and purified using Sf9-insect cells. However, attempts at purifying full length protein in a soluble and active form in prokaryotes have thus far been unsuccessful. These attempts have been hampered by the lack of proper eukaryotic protein folding machinery in bacteria. In this study, we report the successful expression and purification of PKG-1α using a genetically engineered Escherichia coli strain, Rosetta-gami 2(DE3), transduced with full-length human PKG-1α cDNA containing a C-terminal histidine tag. PKG-1α was purified to homogeneity using sequential nickel affinity chromatography, gel filtration and ion exchange MonoQ columns. Protein identity was confirmed by immunoblot analysis. N-terminal sequencing using Edman degradation demonstrated that the purified protein was full length. Analysis of enzyme kinetics, using a nonlinear regression curve, identified that, at constant cGMP levels (10μM) and varying ATP concentrations, PKG-1α had a maximal velocity (V(max)) of 5.02±0.25pmol/min/μg and a Michaelis-Menten constant (K(m)) of 11.78±2.68μM ATP. Recent studies have suggested that endothelial function can be attenuated by oxidative and/or nitrosative stress but the role of PKG-1α under these conditions is unclear. We found that PKG-1α enzyme activity was attenuated by exposure to the NO donor, spermine NONOate, hydrogen peroxide, and peroxynitrite but not by superoxide, suggesting that the attenuation of PKG-1α activity may be an under-appreciated mechanism underlying the development of endothelial dysfunction in a number of cardiovascular diseases.  相似文献   

14.
15.
Interleukin-8 (IL-8) is considered as the major polymorphonuclear neutrophils (PMNs) chemoattractant cytokine in lung diseases such as asthma and adult respiratory distress syndrome (ARDS). However, controversial results were obtained regarding the involvement of IL-8 in the pathogenesis of pneumonia. This study examines the role of IL-8 in the recruitment and activation of PMNs in the lung of pneumonia patients. The interesting aspect of this study is that it is a site- specific analysis of the infected and uninfected lungs of the same patient. The level of IL-8 mRNA, protein and myeloperoxidase present in the cells of the bronchioalveolar lavages (BALs) taken from the areas of known pneumonic consolidations on chest X-ray (infected lung) are compared with the BALs obtained from areas of no obvious infiltrate (non-infected lung). The results obtained from the infected and non-infected lungs of pneumonic patients were further compared with that of a control group of non-smoking patients. The level of IL-8 mRNA and protein were determined by RT-PCR and ELISA respectively. There was a significant increase in the level of IL-8 mRNA in the infected lung as compared to its level in the non-infected lung (p < 0.001). In correlation with the increase in mRNA, IL-8 protein concentrations in BAL fluids from the infected lung were 6 fold higher than those taken from the non-infected lung (p < 0.0001). This pattern was also consistent with MPO activity in the BALs (4.5 fold more MPO activity in the infected lung as compared to that of the non-infected lung), indicating that IL-8 is directly implicated in neutrophil accumulation that follows acute respiratory infection. The results of the present study, therefore, indicate the involvement of IL-8 in the pathogenesis of pneumonia.  相似文献   

16.
BackgroundCa2+/calmodulin-dependent protein kinase kinase (CaMKK) is a pivotal activator of CaMKI, CaMKIV and 5’-AMP-activated protein kinase (AMPK), controlling Ca2+-dependent intracellular signaling including various neuronal, metabolic and pathophysiological responses. Recently, we demonstrated that CaMKKβ is feedback phosphorylated at Thr144 by the downstream AMPK, resulting in the conversion of CaMKKβ into Ca2+/CaM-dependent enzyme. However, the regulatory phosphorylation of CaMKKβ at Thr144 in intact cells and in vivo remains unclear.MethodsAnti-phosphoThr144 antibody was used to characterize the site-specific phosphorylation of CaMKKβ in immunoprecipitated samples from mouse cerebellum and in transfected mammalian cells that were treated with various agonists and protein kinase inhibitors. CaMKK activity assay and LC-MS/MS analysis were used for biochemical characterization of phosphorylated CaMKKβ.ResultsOur data suggest that the phosphorylation of Thr144 in CaMKKβ is rapidly induced by cAMP/cAMP-dependent protein kinase (PKA) signaling in CaMKKβ-transfected HeLa cells, that is physiologically relevant in mouse cerebellum. We confirmed that the catalytic subunit of PKA was capable of directly phosphorylating CaMKKβ at Thr144 in vitro and in transfected cells. In addition, the basal phosphorylation of CaMKKβ at Thr144 in transfected HeLa cells was suppressed by AMPK inhibitor (compound C). PKA-catalyzed phosphorylation reduced the autonomous activity of CaMKKβ in vitro without significant effect on the Ca2+/CaM-dependent activity, resulting in the conversion of CaMKKβ into Ca2+/CaM-dependent enzyme.ConclusioncAMP/PKA signaling may confer Ca2+-dependency to the CaMKKβ-mediated signaling pathway through direct phosphorylation of Thr144 in intact cells.General significanceOur results suggest a novel cross-talk between cAMP/PKA and Ca2+/CaM/CaMKKβ signaling through regulatory phosphorylation.  相似文献   

17.
Programs that govern stem cell maintenance and pluripotency are dependent on extracellular factors and of intrinsic cell modulators. Embryonic stem (ES) cells with a specific depletion of the gene encoding the regulatory subunit of protein kinase CK2 (CK2β) revealed a viability defect. However, analysis of CK2β functions along the neural lineage established CK2β as a positive regulator for neural stem/progenitor cell (NSC) proliferation and multipotency. By using an in vitro genetic conditional approach, we demonstrate in this work that specific domains of CK2β involved in the regulatory function towards CK2 catalytic subunits are crucial structural determinants for ES cell homeostasis.  相似文献   

18.
19.
DNA-PKcs is the catalytic subunit of DNA-dependent protein kinase, an enzyme necessary for non-homologous end-joining (NHEJ) and hence repair of DNA double strand breaks. Characterization of two isogenic cell lines, M059K and M059J, which are DNA-PKcs-proficient and -deficient, respectively, revealed that lack of DNA-PKcs is accompanied by an increase in the protein level of one of the catalytic isozymes of protein kinase CK2, i.e., CK2α' and a concomitant increase in CK2 activity. The increase was also detectable at the mRNA level as measured by quantitative real time PCR. However, no increase at the DNA level was observed either by comparative PCR or fluorescent in situ hybridization indicating that gene amplification is not involved. Interestingly, only CK2α' was increased and not the other two subunits of CK2, i.e., CK2β or CK2α. In addition, the increase in CK2α' protein level was also observed in a DNA-PKcs-deficient mouse cell line.  相似文献   

20.
We have previously shown that the synthesis of ribosomal proteins (r proteins) in E. coli cells is under stringent control (Dennis and Nomura, 1974). Since guanosine tetraphosphate (ppGpp) had been implicated in stringent control, we examied the effects of ppGpp on the in vitro synthesis of r proteins directed by DNA from transducing phage λfus3 and λrifd18. λfus3 carries genes for protein elongation factors EF-Tu and EF-G, and RNA polymerase subunit α, in addition to genes for approximately 27 r proteins. λrifd18 carries genes for EF-Tu, RNA polymerase subunits β and βI, and a set of rRNAs, in addition to genes for approximately five r proteins. We have shown that low concentrations of ppGpp (0.2–0.3 mM) specifically inhibit DNA-dependent r protein synthesis in this system, and that this inhibition takes place directly, rather than as a consequence of the inhibition of rRNA synthesis by ppGpp. In addition, we have also shown that ppGpp inhibits the synthesis of EF-G, EF-Tu, and RNA polymerase subunit α, as well as rRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号