首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonspecific alkaline phosphatase of yeast (Saccharomyces strain 1710) has been purified by ion exchange, hydrophobic, and affinity chromatography. This vacuolar enzyme has a molecular weight of 130,000 and is composed of subunits (probably of 66,000 molecular weight). It also has a small quantity of covalently associated carbohydrate; hydrolysis yielded mannose and glucosamine. The endo-beta-N-acetylglucosaminidase of Streptomyces plicatus released carbohydrate indicating that the latter was attached to protein through an N-acetylglucosaminylasparginyl bond. Synthesis of active alkaline phosphatase by yeast protoplasts is not depressed by tunicamycin, an inhibitor of dolichol-mediated protein glycosylation. Unlike the enzyme normally produced, the alkaline phosphatase which is formed in the presence of the antibiotic does not interact with concanavalin A and, therefore is deficient in or lacking carbohydrate. We infer that there is no regulatory link in yeast between the glycosylation of a protein and its synthesis. The fact that other Asn-GlcNAc-type glycoprotein enzymes of yeast such as acid phosphatase are not produced in their active forms by tunicamycin-treated protoplasts may mean that, as unglycosylated proteins, they cannot be correctly folded or processed. Protoplasts derepressed for phosphatase production contained substantial amounts of a second alkaline phosphatase which differed from the purified enzyme in substrate specificity, sensitivity to calcium, and reactivity with concanavalin A.  相似文献   

2.
The subcellular localization of the enzyme anthocyanin-methyltransferase was studied in cells (protoplasts) obtained from the upper epidermis of petals of Petunia hybrida Hort. Vacuoles were isolated from protoplasts to ascertain the possible presence of the enzyme in these organelles. The recovery of methyltransferase activity in vacuole-enriched fractions equalled that of the cytosolic marker enzyme glucose-6-phosphate dehydrogenase. The relative activity of methyltransferase in the vacuole fraction was one tenth of that in the protoplast. Neither whole protoplasts nor isolated vacuoles contained inhibitors of methyltransferase activity. Examination of fractions obtained by differential centrifugation of a protoplast lysate showed that the major part of the methyltransferase activity was cytosolic. Activity found in a 130,000g pellet was due to nonspecific adhesion to membranes. The results indicate that terminal steps of anthocyanin biosynthesis take place in the cytosol. They do not lend support to the notion that the vacuole might be involved in (part of) this process.  相似文献   

3.
Previous histochemical and biochemical localizations of alkaline phosphatase in Bacillus licheniformis MC14 have shown that the membrane-associated form of the enzyme is located on the inner surface of the cytoplasmic membrane, and soluble forms are located in the periplasmic space and in the growth medium. The distribution of salt-extractable alkaline phosphatase on the surfaces of the cytoplasmic membrane of B. licheniformis MC14 was determined by using lactoperoxidase-125I labeling techniques. Cells harvested during rapid alkaline phosphatase production were converted to protoplasts or lysed protoplasts and labeled. Analysis of the data obtained indicated that 30% of the salt-extractable, membrane-associated alkaline phosphatase was located on the outer surface of the cytoplasmic membrane, whereas 70% of the membrane-associated enzyme was localized on the inner surface. Controls for protoplast integrity (release of tritiated thymidine or examination of cytoplasmic proteins for label content) indicated excellent protoplast stability. Controls indicated that chemical labeling was not a factor in the apparent distribution of alkaline phosphatase on the membrane. These results support the previously reported histochemical localization of alkaline phosphatase on the membrane inner surface. The presence of alkaline phosphatase on the membrane outer surface is reasonable, considering the soluble forms of the enzyme found in the periplasmic region and in the culture medium.  相似文献   

4.
Study of protoplasts, lysed protoplasts, and cells treated with lysozyme in the absence of osmotic stabilizer suggested that the alkaline phosphatase (EC 3.1.3.1.) of Bacillus subtilis is located in the protoplasmic membrane. Cytochemical evidence in support of this view is presented. The enzyme protein was strongly bound to the membrane structure and could not be solubilized by a number of treatments known to release enzymes from membranes and other lipoprotein structures. Alkaline phosphatase was, however, solubilized by treatment of intact B. subtilis cells or isolated protoplasmic membranes with strong salt solutions at pH 7.2, suggesting that electrostatic forces are responsible for the association between membrane and enzyme protein. Dialysis of alkaline phosphatase solutions against buffer of low ionic strength resulted in precipitation of the enzyme.  相似文献   

5.
The Escherichia coli structural gene for alkaline phosphatase was inserted into Salmonella typhimurium by episomal transfer in order to determine whether this enzyme would continue to be localized to the periplasmic space of the bacterium even though it was formed in a cell that does not synthesize alkaline phosphatase. The S. typhimurium heterogenote synthesized alkaline phosphatase under conditions identical to that observed with E. coli. This enzyme appeared to be identical to that synthesized by E. coli, and was quantitatively released from the bacterial cell by spheroplast formation with lysozyme. These results showed that localization is not a property unique to the E. coli cell and suggested that, in E. coli, enzyme location is related to the structure of the protein. Formation of alkaline phosphatase in the S. typhimurium heterogenote was repressed in cells growing in a medium with excess inorganic phosphate, even though only one of the three regulatory genes for this enzyme is on the episome. Thus, S. typhimurium can supply the products of the other two regulatory genes essential for repression even though this bacterium seems to lack the structural gene for alkaline phosphatase.  相似文献   

6.
The structure of the contractile vacuole complex of Dictyostelium discoideum has long been a subject of controversy. A model that originated from the work of John Heuser and colleagues described this osmoregulatory organelle as an interconnected array of tubules and cisternae the membranes of which are densely populated with vacuolar proton pumps. A conflicting model described this same organelle as bipartite, consisting of a pump-rich spongiome and a pump-free bladder, the latter membranes being identified by their alkaline phosphatase activity. In the present study we have employed an antiserum specific for Dictyostelium alkaline phosphatase to examine the distribution of this enzyme in vegetative cells. The antiserum labels puncta, probably vesicles, that lie at or near the plasma membrane and are sometimes, but only rarely, enriched near contractile vacuole membranes. We conclude that alkaline phosphatase is not a suitable marker for contractile vacuole membranes. We discuss these results in relation to the two models of contractile vacuole structure and suggest that all data are consistent with the first model.  相似文献   

7.
Plasma membranes were isolated from both exponential and stationary phase cells and their properties compared, to determine whether alterations are sustained coincident with the transition to plateau phase growth. Polyacrylamide gel electrophoresis revealed no significant differences in macromolecular composition between the two types of membrane. However, the specific activity of alkaline phosphatase (EC 3.1.3.1), an enzyme which shows enrichments in purified plasma membrane fractions relative to homogenates, was markedly reduced in preparations from stationary as compared with exponentially growing cells. The total activity per cell did not change, but in cell fractionation experiments the stationary phase cells yielded a higher proportion of the enzyme in microsomal fractions than did exponentially growing cells. This indicates that once plateau phase is attained, a greater proportion of the membrane bearing alkaline phosphatase activity is internalized as opposed to being associated with the plasmalemma.Alkaline phosphatase is known to be present on the contractile vacuole membrane. During discharge this vacuole becomes associated with the plasmalemma, an event which presumably accounts for at least part of the alkaline phosphatase in plasma membrane preparations. Thus one interpretation of the decreased levels of alkaline phosphatase in plasma membrane fractions from stationary phase cells is that they reflect a decline in the rate of water expulsion. This in turn suggests that the plasmalemma of stationary phase cells may have undergone changes leading to a decreased rate of water influx.  相似文献   

8.
The effect of exogenous orthophosphate and mutations in regulatory genes of alkaline phosphatase on the level of nonspecific acid phosphatase was studied. The level of this enzyme as well as the level of alkaline phosphatase were shown to be regulated by exogenous orthophosphate being derepressed under phosphate starvation. The derepression of acid phosphatase is accompanied by more rapid secretion of enzyme from membranes to soluble fraction. Mutations in all the four regulatory genes decrease the level of enzyme in cells. Genes phoR and phoS, participating in regulation of alkaline phosphatase, are required for the derepression of acid phosphatase under the conditions of phosphate starvation.  相似文献   

9.
The specific phosphatase, sucrose phosphate phosphohydrolase (sucrose phosphatase, EC 3.1.3.24) was present in vacuole preparations from storage tissue of red beet (Beta vulgaris L.), sugar beet (Beta vulgaris L. cultivar Kawemono), and immature sugarcane (Saccharum spp. hybrid, cultivar NCO 310). In red beet vacuole preparations the specific activity of sucrose phosphatase, using the naturally occurring vacuole marker, betanin, as reference, was higher than the specific activity of cytoplasmic markers, phosphoenolpyruvate carboxylase and glucose 6-phosphate dehydrogenase, suggesting that sucrose phosphatase is associated with the vacuoles. High speed centrifugation of lysed vacuoles did not result in precipitation of the enzyme indicating that the enzyme is not tightly bound to the tonoplast. Sucrose phosphatase was more sensitive to inhibition by sodium vanadate and less sensitive to ammonium molybdate than was the nonspecific phosphatase which was also present in the extracts. Sucrose phosphatase might be part of the group translocator proposed recently to operate in the tonoplast of sugarcane and red beet.  相似文献   

10.
The role of mannan chains in the formation and secretion of active acid phosphatase of yeast (Saccharomyces cerevisiae), a repressible cell surface mannoprotein, was studied in yeast protoplast systems by using tunicamycin at various temperatures. At 30 degrees C, tunicamycin-treated protoplasts did not produce active acid phosphatase; however, at 25 or 20 degrees C they formed and secreted active enzyme. This form of acid phosphatase gave 59-, 57-, and 55-kDa bands on SDS-PAGE which neither bound to concanavalin A Sepharose, nor changed in molecular weight upon treatment with endoglycosidase H, indicating that the peptides are nonglycosylated. The nonglycosylated form, like its glycosylated counterpart, is a dimer on the basis of gel permeation chromatography. The Km for para-nitrophenyl-phosphate and Ki for inorganic phosphate of both glycosylated and nonglycosylated acid phosphatases were almost the same. These results suggested that 1) the conformation of the nonglycosylated acid phosphatase secreted at low temperatures is probably identical with that of the glycosylated one, and 2) the conformation of acid phosphatase is very important for its secretion. The rate of intracellular transport of nonglycosylated acid phosphatase is about one-fourth that of the glycosylated enzyme, indicating that glycosylation facilitates the transport of acid phosphatase proteins.  相似文献   

11.
Tissue non-specific alkaline phosphatase is a membrane-bound glycoprotein enzyme which is characterized by its phosphohydrolytic, protein phosphatase, and phosphotransferase activities. This enzyme is distributed virtually in all mammalian tissues, particularly during embryonic development. Its expression is stagespecific and can be demonstrated in the developing embryo as early as the 2-cell stage. It has been suggested that tissue non-specific alkaline phosphatase might play a role in tissue formation. In the study reported here, a genetransfer approach was employed to investigate possible roles for this enzyme by inserting the cDNA for rat tissue non-specific alkaline phosphatase into CHO and LLC-PK1 cells. Permanently transfected cell-lines expressing varying levels of alkaline phosphatase were estblished. The data showed that functional enzyme was expressed in the transfected cells. Cell spreading and attachment were enhanced in transfected CHO cells expressing high levels of tissue non-specific alkaline phosphatase but not in the LLC-PK1 cells. Further, in CHO cells, proliferation was shown to be inversely proportional to the level of the tissue non-specific alkaline phosphatase expression. Homotypic cell association was demonstrated in both alkaline phosphatase-positive and alkaline phosphatase-negative cells in both CHO and LLC-PK1 celllines. Taken together, these findings suggest that in addition to a role in mineralization of bone, tissue nonspecific alkaline phosphatase might also play a role in other cell activities, including those related to differentiation, such as cell-cell or cell-substrate interaction and proliferation.  相似文献   

12.
The key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is targeted to Vid vesicles when glucose-starved cells are replenished with glucose. Vid vesicles then deliver FBPase to the vacuole for degradation. A modified alkaline phosphatase assay was developed to study the trafficking of Vid vesicles to the vacuole. For this assay, FBPase was fused with a truncated form of alkaline phosphatase. Under in vivo conditions, FBPase-delta60Pho8p was targeted to the vacuole via Vid vesicles, and it exhibited Pep4p- and Vid24p-dependent alkaline phosphatase activation. Vid vesicle-vacuole targeting was reconstituted using Vid vesicles that contained FBPase-delta60Pho8p. These vesicles were incubated with vacuoles in the presence of cytosol and an ATP-regenerating system. Under in vitro conditions, alkaline phosphatase was also activated in a Pep4p- and Vid24p-dependent manner. The GTPase Ypt7p was identified as an essential component in Vid vesicle-vacuole trafficking. Likewise, a number of v-SNAREs (Ykt6p, Nyv1p, Vti1p) and homotypic fusion vacuole protein sorting complex family members (Vps39p and Vps41p) were required for the proper function of Vid vesicles. In contrast, the t-SNARE Vam3p was a necessary vacuolar component. Vid vesicle-vacuole trafficking exhibits characteristics similar to heterotypic membrane fusion events.  相似文献   

13.
A survey of Salmonella typhimurium enzymes possessing phosphatase or phosphodiesterase activity was made using several different growth conditions. These studies revealed the presence of three major enzymes, all of which were subsequently purified: a cyclic 2' ,3'-nucleotide phosphodiesterase (EC 3.1.4.d), an acid hexose phosphatase (EC 3.1.3.2), and a nonspecific acid phosphatase (EC 3.1.3.2). A fourth enzyme hydrolyzed bis-(p-nitrophenyl)phosphate but none of the other substrates tested. No evidence was found for the existence of an alkaline phosphatase (EC 3.1.3.1) or a specific 5'-nucleotidase (EC 3.1.3.5) in S. typhimurium LT2. All three phosphatases could be measured efficiently in intact cells, which suggested a periplasmic location; however, they were not readily released by osmotic shock procedures. The nonspecific acid phosphatase, which was purified to apparent homogeneity, yielded a single polypeptide band on both sodium dodecyl sulfate and acidic urea gel electrophoretic systems.  相似文献   

14.
Plasma membrane localization of alkaline phosphatase in HeLa cells.   总被引:3,自引:0,他引:3  
The localization of alkaline phosphatase in HeLa cells was examined by electron microscopic histochemistry and subcellular fractionation techniques. Two monophenotypic sublines of HeLa cells which respectively produced Regan and non-Regan isoenzymes of alkaline phosphatase were used for this study. The electron microscopic histochemical results showed that in both sublines the major location of alkaline phosphatase is in the plasma membrane. The enzyme reaction was occasionally observed in some of the dense body lysosomes. This result was supported by data obtained from a subcellular fractionation study which showed that the microsomal fraction rich in plasma membrane fragments had the highest activity of alkaline phosphatase. The distribution of this enzyme among the subcellular fractions closely paralleled that of the 5'-nucleotidase, a plasma membrane marker enzyme. Characterization of the alkaline phosphatase present in each subcellular fraction showed identical enzyme properties, which suggests that a single isoenzyme exists among fractions obtained from each cell line. The results, therefore, confirm the reports suggesting that plasma membrane is the major site of alkaline phosphatase localization in HeLa cells. The absence of any enzyme reaction in the perimitochondrial space in these cultured tumor cells also indicates that the mitochondrial localization of the Regan isoenzyme reported in ovarian cancer may not be a common phenomenon in Regan-producing cancer cells.  相似文献   

15.
Optimal conditions of the cytochemical assay for acid phosphatase in protoplasts and whole cells of S. cerevisiae have been described. Dimethyl sulfoxide was used to increase the permeability of the yeast cell envelope. In the yeast cells, grown up to the end of the exponential phase, acid phosphatase is shown to be located mainly in the central vacuole and on the cell envelope surface. A considerable activity of acid phosphatase is demonstrable on the surface of the plasma membrane and within adjacent vesicles that represent, presumably, part of the endoplasmic reticulum. Acid phosphatase can be considered as a marker enzyme for yeast cell vacuoles.  相似文献   

16.
C Meban 《Histochemistry》1975,43(4):367-372
The fine structural localization of nonspecific alkaline phosphatase was studied in the granular pneumonocytes (type II alveolar epithelial cells) of hamster lung by incubating sections of glutaraldehyde-fixed tissues in a medium containing lead ions and sodium beta-glycerophosphate or alpha-naphthyl acid phosphate. The specificity of the reaction was tested by exposing the sections to inhibitors of alkaline phosphatase. The results showed that alkaline phosphatase activity was present in the inclusion bodies of granular pneumonocytes. The enzyme reaction was strong in the membrane lining the inclusion bodies and a weaker reaction was generally detectable in the inclusion contents. Although only a proportion of the inclusion bodies showed enzyme activity, there was no obvious correlation between the reactivity of the inclusions and their intracellular position or size. The other organelles were unreactive. The finding of alkaline phosphatase activity within the inclusion bodies of granular pneumonocytes is an enigma as these organelles are generally considered to be lyosomes.  相似文献   

17.
Glutaraldehyde prefixation causes a considerable inactivation of the acid phosphatase of yeast protoplasts in dependence on the duration of aldehyde influence. Lead ions necessary for ultracytochemical demonstration effect a still stronger inhibition of enzymatic activity. Prefixation, however, protects the enzyme from further inhibition by lead. At pH 4.4 in intact cells acid phosphatase activities are mainly localized in the periplasmic space and in vesicles fused with the plasma membrane. The cell wall and cytoplasm usually remain free of reaction products. On the cell surface activities are found in form of globular lead deposits. At pH 5.2 and 6.3 the periplasmic activity appears decreased compared to that at lower pH values and the intracellular activity is increased. The plasma membrane of protoplasts is completely free of precipitates. The intracellular activity sites of protoplasts (cisternae of endoplasmic reticulum and/or Golgi-like system, small vesicles, central vacuole, nuclear envelope) are the same as for intact cells. The occurrence of at least two forms of acid phosphatase in S. cerevisiae id deduced.  相似文献   

18.
The present study was designed to identify alkaline phosphatases in non-permeabilized hyphal cells of the fungus Neurospora crassa by staining these enzymatic activities with a modified azo dye coupling method. Our strategy allowed the identification of three non-specific alkaline phosphatase activities, one of them possibly being a novel putative enzyme, which is not responsive to either Mg(2+) or EDTA. Another alkaline phosphatase activity, whose location in the hyphal cell is regulated by phosphate, is stimulated by Mg(2+), inhibited by EDTA, and somehow dependent on the expression of the pho-2(+) -encoded Pi-repressible alkaline phosphatase.  相似文献   

19.
The kinetics of the alkaline phosphatase catalyzed hydrolysis of disodium p-nitrphenyl phosphate was studied at 25 degrees C in the presence of the carbohydrates sucrose, fructose, lactose, maltodextrin (DE = 13-17), carboxymethylcellulose (CMC), and CMC-lactose (in 1:1 proportion) at different concentrations and in the presence of sucrose at two different concentrations in a temperature range between 25 and -10 degrees C in subcooled and frozen systems. The objective was to determine whether the reaction is diffusion-controlled, to gain an insight about the factors that determine the diffusion of the reaction species, to understand the mechanism through which the different carbohydrate additives affect the kinetics of the reaction, and to determine the effect of low temperature and freezing on the structural conformation of the enzyme. It was found that the alkaline phosphatase catalyzed hydrolysis of DNPP under the condition studied is at least partially diffusion-controlled. The results also indicate that the diffusion is not controlled by the macroviscosity of the reaction media. The concentration and type of the molecules that constitute the background matrix seem to be the main factors governing the reaction. The results indicate that the different carbohydrates affect the kinetics of the reaction through the excluded volume effect of molecular crowding and decreased substrate and product diffusion rate and not through nonspecific solute effects, which may cause protein denaturation and alteration in enzyme activity. Low temperature does not seem to affect the structural conformation of the enzyme in the temperature range studied, whereas freezing affected the catalytic properties of the enzyme perhaps through its effect on the structural conformation of the enzyme.  相似文献   

20.
The tissue content of pyridoxal 5'-phosphate is controlled principally by the protein binding of this coenzyme and its hydrolysis by a cellular phosphatase. The present study identifies this enzyme and its intracellular location in rat liver. Pyridoxal-P is not hydrolyzed by the acid phosphatase of intact lysosomes. At pH 7.4 and 9.0, the subcellular distribution of pyridoxal-P phosphatase activity is similar to the for p-nitrophenyl-P, and the major portion of both activities is found in the plasma membrane fraction. The ratio of specific activities for pyridoxal-P and p-nitrophenyl-P hydrolysis remains relatively constant during the isolation of plasma membranes. These activities also behave concordantly with respect to pH rate profile, pH-Km profile, and response to chelating agents, Zn2+, Mg2+, and inhibitors. Kinetic studies indicate that pyridoxal-P binds to same enzyme sites as beta-glycerophosphate and phosphorylcholine. The data strongly favor alkaline phosphatase as the enzyme which functions in the control of pyridoxal-P and pyridoxamine-P metabolism in rat liver. Alkaline phosphatase was solubilized from isolated plasma membranes. The kinetic properties of the enzyme are not markedly altered by its dissociation from the membrane matrix. However, there are significant differences in its behavior toward Mg2+ which suggest a structural role for Mg2+ in liver alkaline phosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号