首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We examined the changes in systemic blood volume and regional venous outflow from the splanchnic, coronary, and other remaining vascular beds in response to acute hypercapnia or hypoxic hypercapnia in dogs, using cardiopulmonary bypass and a reservoir. Hypercapnia (PCO2 = 105 mmHg) (1 mmHg = 133 Pa) and hypoxic hypercapnia (PO2 = 23 mmHg, PCO2 = 99 mmHg) caused marked decreases in systemic blood volume of 14 +/- 3 and 16 +/- 3 mL/kg in spleen-intact dogs, and 3 +/- 2 and 10 +/- 2 mL/kg in splenectomized dogs, respectively. Splanchnic venous outflow increased by 12% at 3.5 min hypercapnia, whereas it decreased by 60% at 3.5 min hypoxic hypercapnia. Coronary venous outflow increased by 85 and 400% at 3.5 min hypercapnia and hypoxic hypercapnia, respectively. Sympathetic efferent nerve activity revealed a significant augmentation during hypoxic hypercapnia and a relatively smaller increase (30% of the response to hypoxic hypercapnia) during hypercapnia. Carotid and aortic chemoreceptor and baroreceptor denervation attenuated significantly the response of systemic blood volume to hypercapnia and hypoxic hypercapnia. The regional venous outflow responses to hypercapnia were not altered after chemodenervation, but those to hypoxic hypercapnia were significantly attenuated after chemodenervation. These results suggest that acute hypercapnia and hypoxic hypercapnia caused a marked decrease in vascular capacitance owing primarily to an increase in sympathetic efferent nerve activity via chemoreceptor stimulation. They also indicate that blood flow to the splanchnic vascular bed during hypercapnia increased (even though the cardiac output was constant), whereas it increased to the extrasplanchnic and coronary vascular beds during hypoxic hypercapnia.  相似文献   

2.
To study the effect of positive airway pressure (Paw) on the pressure gradient for venous return [the difference between mean systemic filling pressure (Pms) and right atrial pressure (Pra)], we investigated 10 patients during general anesthesia for implantation of defibrillator devices. Paw was varied under apnea from 0 to 15 cmH(2)O, which increased Pra from 7.3 +/- 3.1 to 10.0 +/- 2.3 mmHg and decreased left ventricular stroke volume by 23 +/- 22%. Episodes of ventricular fibrillation, induced for defibrillator testing, were performed during 0- and 15-cmH(2)O Paw to measure Pms (value of Pra 7.5 s after onset of circulatory arrest). Positive Paw increased Pms from 10.2 +/- 3.5 to 12.7 +/- 3.2 mmHg, and thus the pressure gradient for venous return (Pms - Pra) remained unchanged. Echocardiography did not reveal signs of vascular collapse of the inferior and superior vena cava due to lung expansion. In conclusion, we demonstrated that positive Paw equally increases Pra and Pms in humans and alters venous return without changes in the pressure gradient (Pms - Pra).  相似文献   

3.
We have investigated the effect of positive end-expiratory pressure ventilation (PEEP) on regional splanchnic vascular capacitance. In 12 anesthetized dogs hepatic and splenic blood volumes were assessed by sonomicrometry. Vascular pressure-diameter curves were defined by obstructing hepatic outflow. With 10 and 15 cmH2O PEEP portal venous pressure increased 3.1 +/- 0.3 and 5.1 +/- 0.4 mmHg (P less than 0.001) while hepatic venous pressure increased 4.9 +/- 0.4 and 7.3 +/- 0.4 mmHg (P less than 0.001), respectively. Hepatic blood volume increased (P less than 0.01) 3.8 +/- 0.9 and 6.3 +/- 1.4 ml/kg body wt while splenic volume decreased (P less than 0.01) 0.8 +/- 0.2 and 1.3 +/- 0.2 ml/kg body wt. The changes were similar with closed abdomen. The slope of the hepatic vascular pressure-diameter curves decreased with PEEP (P less than 0.01), possibly reflecting reduced vascular compliance. There was an increase (P less than 0.01) in unstressed hepatic vascular volume. The slope of the splenic pressure-diameter curves was unchanged, but there was a significant (P less than 0.05) decrease in unstressed diameter during PEEP. In conclusion, hepatic blood volume increased during PEEP. This was mainly a reflection of passive distension due to elevated venous pressures. The spleen expelled blood and thus prevented a further reduction in central blood volume.  相似文献   

4.
The effects of three catecholamines, dopamine, epinephrine, and dobutamine, on the systemic circulation, especially on systemic vascular capacitance, were studied using cardiopulmonary bypass in dogs anesthetized with pentobarbital. Venous outflow was divided into three compartments: splanchnic, renal, and other; changes in systemic blood volume (SBV) were calculated from the changes in total venous outflow. To examine the contribution of sympathetic discharge to these vascular responses, sympathetic efferent nerve activity (SENA) from the ventral ansa subclavian nerve was recorded simultaneously. Experiments were done under three conditions: control, after baroreceptor deafferentation, and after hexamethonium injection with low and high doses of each catecholamine. During control and after baroreceptor deafferentation, dopamine- and epinephrine-induced changes in SBV were less than those after hexamethonium, and not significant except with low dose epinephrine. After hexamethonium, dopamine (200 micrograms/kg), epinephrine (10 micrograms/kg), and dobutamine (100 micrograms/kg) reduced SBV by 10.6 +/- 3.4, 13.1 +/- 1.7, and 1.9 +/- 0.3 mL/kg, respectively. Splanchnic outflow increased significantly with dopamine and epinephrine after hexamethonium. High dose dopamine and epinephrine significantly suppressed SENA to 38 +/- 9 and 15 +/- 6% of baseline, respectively. Low dose dopamine decreased arterial pressure and SENA. This suppression in SENA was attenuated but still observed after baroreceptor deafferentation. Dobutamine reduced SBV, but had no effect on SENA. These results suggest that dopamine and epinephrine primarily decrease SBV by venoconstriction in the splanchnic region, however, these effects are greatly modified by basal sympathetic discharge and changes in SENA and vascular tone.  相似文献   

5.
心房钠泵因子对颈动脉窦压力感受器反射的易化作用   总被引:1,自引:0,他引:1  
赵工  何瑞荣 《生理学报》1991,43(4):360-367
Effects of atriopeptin II (APII) on the carotid sinus baroreflex in anesthetized rats and on the sinus nerve afferent activity in the anesthetized rabbits were investigated. The results were as follows: (1) By perfusing the isolated left carotid sinus with APII (1 microgram/ml) in anesthetized rats (n = 10), the threshold pressure (TP) of the carotid baroreflex did not show any change, while the equilibrium pressure (EP), the saturation pressure (SP) and the operating range (OR) were decreased from 101 +/- 2.8 to 95 +/- 2.0 mmHg (P less than 0.05), 202 +/- 5.2 to 168 +/- 6.1 mmHg (P less than 0.001) and 128 +/- 5.5 to 93 +/- 6.3 mmHg (P less than 0.001), respectively. The function curve of the baroreflex was shifted to the left and downward with a peak slope (PS) increased during perfusing with APII. In contrast, by perfusing the carotid sinus with sodium nitroprusside (NP, 0.5 micrograms/ml), TP and EP remained unchanged, whereas SP and OR were increased from 188 +/- 6.4 to 218 +/- 6.0 mmHg (n = 6, P less than 0.01) and from 107 +/- 6.9 to 132 +/- 7.6 mmHg (P less than 0.05), respectively. The function curve of the baroreflex and its PS were not affected by NP. The sinus nerve afferent activity was quite stable with the perfusion of carotid sinus at constant intrasinus pressure (ISP) in the rabbits (n = 6) and increased during the elevation of ISP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Hypertension (mean arterial pressure, (MAP) 131 +/- 3 mmHg) developed in 18 dogs 4 weeks after left nephrectomy, deoxycorticosterone acetate (DOCA), 5 mg/kg sc twice weekly), and 0.5% NaCl drinking solution. This can be compared with MAP (95 +/- 7 mmHg) of 13 dogs with nephrectomy alone and MAP (86 +/- 4 mmHg) of dogs without nephrectomy. The two-compartment model of the circulation revealed no differences in systemic vascular compliance, compartmental compliance, or flow distribution to the compartments. However, the time constant for venous return for the compartment with the rapid time constant was increased from 0.05 +/- 0.004 min in control animals to 0.07 +/- 0.006 min in the nephrectomy alone group and 0.09 +/- 0.008 min in the hypertensive group (p less than 0.001), as a result of an increase in venous resistance. Arteriolar resistance in this compartment was also increased in the hypertensive animals, as was the mean circulatory filling pressure and overall resistance to venous return. Nifedipine (0.025-0.05 mg/kg) reduced MAP by 15% in the nephrectomy alone group and by 22% in the hypertensive group, with reduction in arteriolar resistance only in the fast time constant compartment. In the slow time constant compartment, arteriolar resistance was increased by more than 100% and flow decreased by more than 50% after nifedipine. Unilateral nephrectomy, DOCA, plus NaCl resulted in hypertension by increasing arteriolar resistance in a vascular compartment with a fast time constant for venous return. Nifedipine countered this effect by inducing arteriolar vasodilation in this compartment. In addition, nifedipine reduced the mean circulatory filling pressure and overall resistance to venous return.  相似文献   

7.
The reflex adjustments of the peripheral circulation in response to acute coronary occlusion were studied in anesthetized dogs with isolated vascular beds perfused at constant flow. Coronary occlusion caused significant increases in perfusion pressure which averaged 27 +/- 4 mmHg in the hindlimb, 19 +/- 8 mmHg in skeletal muscle, and 13 + 5 mmHg in the mesenteric artery. These responses were less than half those caused by a similar decrease in aortic pressure obtained with hemorrhage. Coronary occlusion caused no significant changes in renal and paw circulations, while marked vasoconstriction resulted from hemorrhage. When aortic pressure was maintained constant throughout the duration of coronary occlusion, there was a significant vasodilatation in all beds studied. After vagotomy, coronary occlusion caused a constrictor response similar in magnitude to that caused by hemorrhage in each vascular bed and the dilator responses to occlusion at constant aortic pressure were abolished. Both constrictor and dilator changes were prevented by alpha-adrenergic blockade. Mechanical distension of the left ventricle in four dogs with carotid sinus nerves cut caused a significant reflexdilatation in the hindlimb. Thus, coronary occlusion initiates an inhibitory reflex mediated by vagal afferents which opposes peripheral vasoconstriction most effectively in the renal and paw circulations.  相似文献   

8.
We tested the hypothesis that the changes in venous tone induced by changes in arterial blood oxygen or carbon dioxide require intact cardiovascular reflexes. Mongrel dogs were anesthetized with sodium pentobarbital and paralyzed with veruronium bromide. Cardiac output and central blood volume were measured by indocyanine green dilution. Mean circulatory filling pressure, an index of venous tone at constant blood volume, was estimated from the central venous pressure during transient electrical fibrillation of the heart. With intact reflexes, hypoxia (arterial PaO2 = 38 mmHg), hypercapnia (PaCO2 = 72 mmHg), or hypoxic hypercapnia (PaO2 = 41; PaCO2 = 69 mmHg) (1 mmHg = 133.32 Pa) significantly increased the mean circulatory filling pressure and cardiac output. Hypoxia, but not normoxic hypercapnia, increased the mean systemic arterial pressure and maintained the control level of total peripheral resistance. With reflexes blocked with hexamethonium and atropine, systemic arterial pressure supported with a constant infusion of norepinephrine, and the mean circulatory filling pressure restored toward control with 5 mL/kg blood, each experimental gas mixture caused a decrease in total peripheral resistance and arterial pressure, while the mean circulatory filling pressure and cardiac output were unchanged or increased slightly. We conclude that hypoxia, hypercapnia, and hypoxic hypercapnia have little direct influence on vascular capacitance, but with reflexes intact, there is a significant reflex increase in mean circulatory filling pressure.  相似文献   

9.
A stretch of the walls of the thoracic aorta, performed in vagotomized cats without obstructing aortic flow, induces increases in heart rate, myocardial contractility, and arterial pressure. These reflex responses are still present after high spinal section. Cats under chloralose-urethane anesthesia were vagotomized and one carotid sinus was isolated and perfused with arterial blood at constant flow. The contralateral carotid sinus nerve and both aortic nerves were sectioned. A stretch of the walls of the thoracic aorta between the 7th and 10th intercostal arteries induced a reflex increase in mean arterial pressure 29 +/- 2 mmHg (mean +/- SE). Stepwise increases of carotid sinus pressure (CSP) or electrical stimulation of the carotid sinus nerve induced stepwise decreases of this reflex response. At maximal baroreceptor stimulation (CSP 212 +/- 9 mmHg) the reflex response to aortic stretch was reduced by 42%. These experiments show that this spinal cardiovascular reflex is at least partially under the inhibitory control of the baroreceptor input.  相似文献   

10.
Adrenalin solution (1:1000) administered at the carotid sinus, through excitation of the depressoric C-fibre system of the carotid nerve, induces a strong, lasting reflectoric decrease of arterial pressure with slowing heart rate, associated with an almost complete inhibition of the efferent sympathetic activity of the renal nerve. The efferent sympathetic activity, arterial blood pressure and heart rate, both at the onset and at the height of adrenalin action, show corresponding activity changes: the relative inhibition of the sympathetic nerve is strongest correlated with the depressoric blood-pressure effect, while the decrease of heart rate, related to the initial activity, is least pronounced.  相似文献   

11.
Intrahepatic pressure (9.4 +/- 0.3 mmHg; 1 mmHg = 133.32 Pa), measured proximal to a hepatic venous resistance site, was insignificantly different from portal venous pressure (9.6 +/- 0.4 mmHg). This lobar venous pressure is not wedged hepatic venous pressure as it is measured from side holes in a catheter with a sealed tip. Validation of the lobar venous pressure measurement was done in a variety of ways and using different sizes and configurations of catheters. The site of hepatic venous resistance in the dog is localized to a narrow sphincterlike region about 0.5 cm in length and within 1-2 cm (usually within 1 cm) of the junction of the vena cava and hepatic veins. Sinusoidal and portal venous resistance appears insignificant in the basal state and large increases in liver blood volume (histamine infusion or passive vena caval occlusion) or large decreases in liver blood volume (passive vascular occlusion) do not alter the insignificant pressure gradient between portal and lobar venous pressures. Norepinephrine infusion (1.25 microgram X kg-1 X min-1 intraportal) and hepatic sympathetic nerve stimulation (10 Hz) led to a significantly greater rise in portal venous pressure than in lobar venous pressure, indicating some presinusoidal (and (or) sinusoidal) constriction and this indicates that lobar venous pressure cannot be assumed under all conditions to accurately reflect portal pressure. However, most of the rise in portal venous pressure induced by intraportal infusion of norepinephrine or nerve stimulation and virtually all of the pressure rise induced by histamine could be attributed to the postsinusoidal resistance site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effect of acute hypoxaemia on right and left ventricular function was investigated in 8 fetal sheep (137-140 days gestation). Fetuses were instrumented with electromagnetic flow sensors on the ascending aorta and the main pulmonary artery. After 8 days recovery, hypoxaemia was achieved by reducing the maternal ewe's inspired O2 concentration to 13.1 +/- 1.5%. Control and hypoxaemic arterial blood values were pH 7.37 +/- 0.04 (SD) and 7.35 +/- 0.06, PCO2 48.0 +/- 2.8 and 47.6 +/- 5.1 mmHg, PO2 19.9 +/- 2.2 and 11.4 +/- 1.5 mmHg, haematocrit 37.5 +/- 1.2 and 39.5 +/- 2.2, respectively. Arterial pressure increased insignificantly with acute hypoxaemia (50.2 +/- 3.9 to 53.6 +/- 8.1 mmHg). Left and right ventricular performance was assessed by generating biventricular function curves relating stroke volume to mean atrial pressure. All function curves were composed of steep ascending and plateau limbs that intersected at a breakpoint. Comparing control and hypoxaemia function curves, the left ventricular stroke volume breakpoints were 0.79 +/- 0.20 and 0.78 +/- 0.21 ml/kg, respectively, while the right ventricular stroke volume breakpoints were 0.99 +/- 0.11 and 0.88 +/- 0.21 ml/kg (n.s.). In 4 fetuses, acute hypoxaemia was associated with significant increases in arterial blood pressure (P less than 0.05). In these fetuses, the right ventricular function curve was shifted significantly downward compared to the control right ventricular curve. When nitroprusside was given to these hypertensive fetuses to return blood pressure to control levels, the right ventricular function curve returned to baseline. We conclude that even under conditions of extreme hypoxaemia, ventricular function is well preserved in the normotensive fetal sheep. However, when increases in arterial pressure also accompany hypoxaemia, detectable changes in right ventricular function can be accounted for by changes in arterial pressure.  相似文献   

13.
L Qu  S L Stuesse 《Peptides》1990,11(5):955-961
Substance P (SP) is abundant in the carotid sinus nerve (CSN) and has been implicated in baro- and chemoreceptor reflexes. We examined the effect of SP on blood pressure, heart rate, phrenic nerve activity, hindlimb perfusion pressure, and cardiac contractile strength in urethane-anesthetized rabbits with bilaterally cut cervical sympathetic, vagus, and aortic depressor nerves. Retrograde simultaneous injection of SP (0.5-2.7 micrograms/kg in 0.2-0.3 ml saline) into both carotid sinus areas via the internal carotid arteries decreased blood pressure (by 56%), heart rate (by 13%), cardiac contractility (by 25%) and phrenic nerve activity (by 77%). The effect on hindlimb perfusion pressure was variable. There was both a reflex effect and direct hindlimb vasodilation. In another group of rabbits, the carotid sinus areas were vascularly isolated and perfused with SP (0.19 micrograms/min dissolved in Locke's solution) or Locke's solution alone for 5 min. While carotid sinus perfusion pressure was maintained in the range of 80-120 mmHg, mean arterial blood pressure, heart rate, and unit activity from the CSN were recorded. SP increased the activity of 11 of 18 baroreceptor fibers and inhibited all of 20 chemoreceptor fibers. SP decreased mean arterial blood pressure and heart rate, but the changes were less than those obtained with injection of SP into nonisolated carotid sinus arteries because systemic effects of SP, which in some cases counteracted the reflex effects, were eliminated.  相似文献   

14.
P W Armstrong 《CMAJ》1979,121(7):913-918
Optimal therapy for congestive cardiac failure requires identification of correctable factors that aggravate it as well as an understanding of its etiology. Increased sympathetic nervous system activity, reduced renal blood flow, and cardiac hypertrophy and dilation are the main compensatory processes that occur in response to cardiac failure. Although they may be of initial benefit in supporting a reduced stroke volume, they may ultimately prove self-defeating. New drugs for the treatment of severe congestive heart failure include dopamine, which has a selective nonadrenergic dilator effect on the renal vascular bed, and dobutamine, which has potent inotropic effects, lowers the left ventricular filling pressure and does not increase the heart rate or the systemic vascular resistance. By reducing both the resistance to left ventricular ejection and the venous return to the right heart, vasodilators result in improved peripheral perfusion and reduced pulmonary congestion. Optimal therapy for refractory cardiac failure can be rationally determined by characterizing the hemodynamic profile through measurement of the mean arterial pressure, the left ventricular filling pressure, the cardiac output and the systemic vascular resistance. The specific therapy can then be effectively and safely delivered by a careful analysis of the dose-response relation as identified by hemodynamic monitoring.  相似文献   

15.
Based on a dynamic computational model of the circulation, Burkhoff and Tyberg (Am J Physiol Heart Circ Physiol 265: H1819-H1828, 1993) concluded that the rise in pulmonary venous pressure (Pvp) with left ventricular (LV) dysfunction requires a decrease in vascular capacitance and transfer of unstressed volume to stressed volume (nu). We argue that the values they used for venous resistance (Rvs), venous compliance (Cvs), and nu were too low, and changing these values significantly changes the conclusion. We used a computational model of the circulation that was similar to theirs, but we made Rvs four times higher (0.06 versus 0.015 mmHg.s.ml(-1)), Cvs larger (110 versus 70 ml/mmHg), and nu larger (1,400 versus 750 ml); all other parameters, including those for the heart, were essentially the same. We simulated left ventricular dysfunction by decreasing end-systolic elastance (Eeslv) as they did and examined changes in cardiac output, arterial blood pressure, and Pvp. We then examined the effect of changes in Rvs, heart rate, and nu when Eeslv was depressed with and without pericardial constraint. In contrast to their findings, with our parameters the model predicts that decreasing Eeslv substantially increases Pvp. Furthermore, increasing systemic vascular resistance or decreasing Rvs or heart rate produces large increases in Pvp when Eeslv is reduced. Pericardial constraint limits the changes in Pvp. In conclusion, when Rvs and Cvs are increased, baseline nu must be higher to maintain normal cardiac output. This increased volume can shift between compartments under flow conditions and account for the increase in Pvp with decreased left ventricular function even without recruitment of unstressed volume.  相似文献   

16.
Effective vascular compliance was measured repeatedly in dogs without circulatory arrest utilizing a closed-circuit venous bypass system and constant cardiac output. Compliance, determined by the delta V/delta P relationship at the end of a 1-min infusion of 5% of the circulating volume into the inferior vena cava, was independent of the initial venous pressure, total circulating volume and systemic arterial pressure. It remained constant over a 3 h experimental period at 1.55 plus or minus 0.05 ml (mm Hg)-1-kb-1 body weight. Elevation of mean left atrial pressure and mean pulmonary arterial pressure by gradual aortic constriction was associated with a large and significant reduction in vascular compliance to a value of 1.14 plus or minus 0.06 ml (mm Hg)-1-kg-1 after 2 h. This reduction was independent of the initial venous pressure and total circulating volume but was associated with the changes in left atrial and pulmonary artery pressures and an increase in plasma catecholamine concentrations. The mechanism responsible for the reduction in effective compliance is not clear from the present experiments. Increased circulating catecholamines and sympathetic nerve traffic resulting from baro- and volume receptor stimulation in the vascular tree may be the causative mechanism.  相似文献   

17.
In 11 healthy subjects (8 males and 3 females, age 21-59 yr) left ventricular end-diastolic (LVEDV) and end-systolic (LVESV) volumes were measured in the supine position by isotope cardiography at rest and during two submaximal one-legged exercise loads before and 1 h after acute plasma expansion (PE) by use of a 6% dextran solution (500-750 ml). After PE, blood volume increased from 5.22 +/- 0.92 to 5.71 +/- 1.02 (SD) liters (P < 0.01). At rest, cardiac output increased 30% (5.3 +/- 1.0 to 6.9 +/- 1.6 l/min; P < 0.01), stroke volume increased from 90 +/- 20 to 100 +/- 28 ml (P < 0.05), and LVEDV increased from 134 +/- 29 to 142 +/- 40 ml (NS). LVESV was unchanged (44 +/- 11 and 42 +/- 14 ml). Heart rate rose from 60 +/- 7 to 71 +/- 10 beats/min (P < 0.01). The cardiac preload [central venous pressure (CVP)] was insignificantly elevated (4.9 +/- 2.1 and 5.3 +/- 3.0 mmHg); systemic vascular resistance and arterial pressures were significantly reduced (mean pressure fell from 91 +/- 11 to 85 +/- 11 mmHg, P < 0.01). Left ventricular peak filling and peak ejection rates both increased (19 and 14%, respectively; P < 0.05). During exercise, cardiac output remained elevated after PE compared with the control situation, predominantly due to a 10- to 14-ml rise in stroke volume caused by an increased LVEDV, whereas LVESV was unchanged. CVP increased after PE by 2.1 and 3.0 mmHg, respectively (P < 0.05).2+ remained unchanged during exercise compared with rest after PE in  相似文献   

18.
We tested the hypothesis that the decline in muscle sympathetic activity during and after 8 h of poikilocapnic hypoxia (Hx) was associated with a greater sympathetic baroreflex-mediated responsiveness. In 10 healthy men and women (n=2), we measured beat-to-beat blood pressure (Portapres), carotid artery distension (ultrasonography), heart period, and muscle sympathetic nerve activity (SNA; microneurography) during two baroreflex perturbations using the modified Oxford technique before, during, and after 8 h of hypoxia (84% arterial oxygen saturation). The integrated baroreflex response [change of SNA (DeltaSNA)/change of diastolic blood pressure (DeltaDBP)], mechanical (Deltadiastolic diameter/DeltaDBP), and neural (DeltaSNA/Deltadiastolic diameter) components were estimated at each time point. Sympathetic baroreflex responsiveness declined throughout the hypoxic exposure and further declined upon return to normoxia [pre-Hx, -8.3+/-1.2; 1-h Hx, -7.2+/-1.0; 7-h Hx, -4.9+/-1.0; and post-Hx: -4.1+/-0.9 arbitrary integrated units (AIU) x min(-1) x mmHg(-1); P<0.05 vs. previous time point for 1-h, 7-h, and post-Hx values]. This blunting of baroreflex-mediated efferent outflow was not due to a change in the mechanical transduction of arterial pressure into barosensory stretch. Rather, the neural component declined in a similar pattern to that of the integrated reflex response (pre-Hx, -2.70+/-0.53; 1-h Hx, -2.59+/-0.53; 7-h Hx, -1.60+/-0.34; and post-Hx, -1.34+/-0.27 AIU x min(-1) x microm(-1); P < 0.05 vs. pre-Hx for 7-h and post-Hx values). Thus it does not appear as if enhanced baroreflex function is primarily responsible for the reduced muscle SNA observed during intermediate duration hypoxia. However, the central transduction of baroreceptor afferent neural activity into efferent neural activity appears to be reduced during the initial stages of peripheral chemoreceptor acclimatization.  相似文献   

19.
To characterize the baroreflex in central nervous system-intact neuromuscular-blocked rats, we measured the vascular and cardiac responses and compared direct stimulation of the aortic depressor nerve (ADN) with a capacitance electrode (differentially activating either A or A + C fibers) to carotid sinus pressure with a micro-balloon (SINUS). One-thousand-two-hundred-ninety-seven open-loop measurements of systolic blood pressure (SBP), heart rate, venous pressure (VBP), and mesenteric (msBF), femoral (fmBF), and skin (skBF) blood flow were completed; the linear range of the effects was determined for each response and stimulus mode. The rats were sinoaortic denervated (SAD). The open-loop stimulation effect was very stable; e.g., the mean effect of 790 ADN stimulations during >7 days was -9.8 mmHg, with an average drift of +0.001 mmHg/h. In contrast, there was large variability of the SBP baseline (e.g., SD = +/-10.9), which was due to SAD (+/-6.3 to +/-16.3 mmHg, t = -13. 9, df = 4, P < 0.0002) and was reversed by ganglionic block (+/-10.8 to +/- 2.9 mmHg, t = -12.9, df = 3, P < 0.001). The ADN stimuli produced larger depressor responses than sinus stimuli (-66 vs. -45 mmHg); all component responses paralleled the magnitude of the SBP effect, except interbeat interval (IBI), for which the ADN DeltaIBI was approximately 10 times that of SINUS. For all stimuli, fmBF increased and msBF did not. Mesenteric and femoral vascular conductance both increased, whereas VBP decreased and skBF followed SBP. We found that for all baroreflex response components, with the exception of SINUS-elicited DeltaIBI, there was an orderly, substantially linear, relationship between stimulus strength and response magnitude.  相似文献   

20.
It is well known that cardiac sympathetic afferent reflexes contribute to increases in sympathetic outflow and that sympathetic activity can antagonize arterial baroreflex function. In this study, we tested the hypothesis that in normal rats, chemical and electrical stimulation of cardiac sympathetic afferents results in a decrease in the arterial baroreflex function by increasing sympathetic nerve activity. Under alpha-chloralose (40 mg/kg) and urethane (800 mg/kg i.p.) anesthesia, renal sympathetic nerve activity, mean arterial pressure, and heart rate were recorded. The arterial baroreceptor reflex was evaluated by infusion of nitroglycerin (25 microg i.v.) and phenylephrine (10 microg i.v.). Left ventricular epicardial application of capsaicin (0.4 microg in 2 microl) blunted arterial baroreflex function by 46% (maximum slope 3.5 +/- 0.3 to 1.9 +/- 0.2%/mmHg, P < 0.01). When the central end of the left cardiac sympathetic nerve was electrically stimulated (7 V, 1 ms, 20 Hz), the sensitivity of the arterial baroreflex was similarly decreased by 42% (maximum slope 3.2 +/- 0.3 to 1.9 +/- 0.4%/mmHg; P < 0.05). Pretreatment with intracerebroventricular injection of losartan (500 nmol in 1 microl of artificial cerebrospinal fluid) completely prevented the impairment of arterial baroreflex function induced by electrical stimulation of the central end of the left cardiac sympathetic nerve (maximum slope 3.6 +/- 0.4 to 3.1 +/- 0.5%/mmHg). These results suggest that the both chemical and electrical stimulation of the cardiac sympathetic afferents reduces arterial baroreflex sensitivity and the impairment of arterial baroreflex function induced by cardiac sympathetic afferent stimulation is mediated by central angiotensin type 1 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号