首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The purity of horseradish peroxidase isoenzyme C was demonstrated using isoelectric focusing, polyacrylamide gel electrophoresis at two pH values and cellulose acetate electrophoresis at two pH values. The glycopeptides obtained upon trypsin digestion were isolated using the plant lectin, concanavalin A, and were resolved using paper electrophoresis. The carbohydrate content of the native peroxidase was 86% accounted for by the carbohydrate content of the glycopeptides thus suggesting little loss of carbohydrate during glycopeptide isolation and purification. In each of the seven glycopeptides isolated glucosamine was associated with asparagine, thus suggesting the carbohydrate chains are covalently bound to the peptide chain through N-glycosidic linkages. The purity of each glycopeptide was demonstrated by the sequential release of single amino acid residues by Edman degradation. As six glycopeptides had unique amino acid sequences, it was concluded that the carbohydrate prosthetic group was distributed in at least six units along the protein backbone. Five glycopeptides possessed the amino acid sequence about the point of carbohydrate attachment of Asn-X-(Ser, Thr) where X is any amino acid. The size of the carbohydrate units ranged from 1600 to 3000 daltons. The predominant carbohydrate residues in each glycopeptide were mannose and glucosamine with lesser and varying amounts of fucose, xylose, and arabinose. There was no apparent correlation of the carbohydrate composition with the amino acid sequence.  相似文献   

2.
Three extremely acidic proteins were isolated from human brain and purified to apparent homogeneity. One of them, Glu-50 protein, contained much glutamic acid (about 50% of the total amino acids). Its purification involved ammonium sulfate fractionation, DEAE-Sephadex A-50 chromatography, and gel filtration on Sephadex G-100 and G-75. Its molecular weight was determined to be 11,000 by SDS polyacrylamide gel electrophoresis and 34,000-36,000 by gel filtration on Sephadex G-75, suggesting that it consists of three identical polypeptide chains. Its isoelectric point was pH 3.9. Its N-terminal amino acid sequence was NH2-Asp-Glu-Pro-Pro-Asp-Glu and its C-terminal amino acid was Lys. It contained no detectable carbohydrate.  相似文献   

3.
Isolated cell envelopes of Pseudomonas aeruginosa were treated with N,N'-dimethylformamide (DMF) or with ethylenediaminetetraacetate (EDTA). DMF solubilized 73% of the dry weight of the cell envelope, 76% of the protein, 78% of the carbohydrate, and 76% of the phosphorus. Electron microscopy showed that DMF caused extensive alterations in the appearance of the cell envelope with blebs and bleblike vesicles predominating. After incubation with EDTA, the cell envelopes appeared to have lost material, but still retained the cell-like morphology. Analysis of DMF-solubilized proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed 16 protein bands. There were three major proteins that predominated, however, with molecular masses of 43,000 (protein A), 16,500 (protein B), and 72,000 daltons (protein C). Evidence is presented that protein A and protein B are glycoproteins. Gel electrophoresis of EDTA-solubilized material revealed that a number of proteins were released from the cell envelope. However, electrophoresis of an isolated protein-lipopolysaccharide complex released by EDTA showed that protein A and protein B were the major protein components of this complex. These data suggest that protein A and protein B are components of the outer cell wall membrane of P. aeruginosa. There is suggestive evidence that these proteins may play a role in maintaining the structural integrity of the cell envelope. Whether these proteins also have enzymatic activity could not be discerned from the present study, although it is possible that they may be associated with the terminal stages of lipopolysaccharide synthesis.  相似文献   

4.
Cell envelopes (cell wall and cell membrane) from aerobically grown cells of Rhodopseudomonas spheroides were isolated and purified by a combination of differential centrifugation and centrifugation through 40% sucrose. Cell envelope protein from aerobically grown cells was resolved by dodecyl sulphate-polyacrylamide gel electrophoresis. Biochemical characterization of selected envelope membrane proteins demonstrated heterogeneity between different protein species. Amino acid analyses of individual proteins revealed between 50–60 mole% nonpolar residues.Envelope membranes derived from anaerobically grown cells were also isolated and purified by a combination of differential centrifugation, column chromatography on Sepharose 2B, and centrifugation in 40% sucrose. The dodecyl sulphate-polyacrylamide gel patterns of anaerobic and aerobic envelope membrane proteins were very similar and the results suggest a common protein structure.  相似文献   

5.
A glycoprotein capable of binding simple carbohydrates and causing hemagglutination has been isolated from seeds of the legume plant sainfoin (Onobrychis viciifolia, Scop. var Eski). The phytolectin was prepared by affinity chromatography of pH 7.0 sodium phosphate extracts on columns of Sepharose-4B containing covalently attached D-mannose. Molecular weight determinations showed the lectin to be a dimer consisting of 26 000 dalton, non-covalently associated monomers. Amino acid analyses indicated high amounts of aspartate, glutamate, threonine and serine which accounted for 41% of all amino acids. One residue of cysteine was present and methionine was totally absent. The lectin contained 2.6% (w/w) neutral carbohydrate and two residues of N-acetylglucosamine/monomer. Carbohydrate-binding specificity was directed toward D-mannose and D-glucose and their alpha-glycosidic derivatives. The purified protein agglutinated cat erythrocytes at 5 micrograms/ml. Antiserum to seed lectin showed a single common immunoprecipitation line in Ouchterlony double diffusion against both the seed and root antigen. Lectin isolated from sainfoin seedling roots showed molecular weight, amino acid and carbohydrate values similar to that of the seed lectin.  相似文献   

6.
The protoplast-secreted acid phosphatase of yeast Saccharomycescerevisiae was purified about 60 fold by ultrafiltration, gel filtration and chromatography on DEAE-Sephadex A-25. It was established that the enzyme is free of inactive proteins as well as polysaccharides and contains 48% of neutral sugars. The failure to separate the protein from the carbohydrates by several procedures indicates that the carbohydrate part is covalently linked to the protein. A pronounced heterogeneity of the enzyme with respect to charge as well as to molecular weight was found. The data obtained by gel filtration indicated enzyme heterogeneity in respect to carbohydrate content.  相似文献   

7.
The cell envelope of Neisseria gonorrhoeae strain 2686, colonial type 4, was isolated from spheroplasts formed by the action of ethylenediaminetetraacetic acid and lysozyme. Isopycnic centrifugation of osmotically ruptured spheroplasts resolved the cell envelope into two main membrane fractions. Chemical and enzymatic analyses were used to characterize these isolated membranes. Succinic dehydrogenase, reduced nicotinamide adenine dinucleotide oxidase, and d-lactate dehydrogenase were localized in the membrane fraction of buoyant density, rho degrees = 1.141 g/cm(3). Lipopolysaccharide and over half of the cell envelope protein were associated with the membrane that banded in sucrose at rho degrees = 1.219 g/cm(3). These fractions were consequently designated cytoplasmic and outer or L-membrane, respectively. Sodium dodecyl sulfate-polyacrylamide electrophoresis of isolated membranes demonstrated the relative simplicity of the protein spectrum of the outer membrane. The majority of the protein in this membrane could be accounted for by proteins of molecular weights 34,500, 22,000, and 11,500. The protein of molecular weight 34,500 accounted for 66% of the total protein of the L-membrane. Isoelectric precipitation at pH 4.6 with 10% acetic acid selectively removed this protein from a 150 mM NaCl in 10 mM tris(hydroxymethyl)aminomethane-hydrochloride, pH 7.4, extract of purified outer membrane. At pH 4.0, the other proteins of the L-membrane were precipitated. It was concluded that the membrane components of the cell envelope of N. gonorrhoeae were similar to those of other gram-negative bacteria. The cell envelope fractions described here, in particular the outer membrane, are sufficiently well defined to provide a valuable tool for future biochemical and immunological studies on N. gonorrhoeae.  相似文献   

8.
A larval-specific very high density lipoprotein (VHDL) has been isolated from the hemolymph of the honeybee Apis mellifera. VHDL was isolated by a combination of density gradient ultracentrifugation and gel filtration. The purified protein is a dimer of Mr 160,000 apoproteins as shown by chemical cross-linking with dimethyl suberimidate. N-Terminal sequence analysis indicates that the two polypeptide chains are identical. The holoprotein contains 10% lipid by weight and 2.6% covalently bound carbohydrate. A native Mr 330,000 species was obtained by gel permeation chromatography. Antiserum directed against VHDL was used to show that VHDL is distinct from other hemolymph proteins and appears to constitute a novel lipoprotein of unknown function. However, the lipoprotein is present in high amounts in hemolymph only at the end of larval life, suggesting a potential role in lipid transport and/or storage protein metabolism during metamorphosis.  相似文献   

9.
Exposure of isolated cell envelopes from purified infectious elementary (EB) of Chlamydia psittaci to sodium carbonate-bicarbonate buffer at pH 10 plus ethylenediaminetetraacetate (EDTA) results in partial solubilization of the total protein. The released materials represent 20% of the dry weight, 16% of the total protein, 40% of the total carbohydrate, and 9% of the total lipid of the cell envelopes. Sucrose density gradient centrifugation, and Sephadex G-200, Sepharose 4B, or diethylaminoethyl-cellulose column chromatography, reveal a protein-carbohydrate-lipid complex of several hundred thousand molecular weight that contains 50% protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the isolated EB cell envelopes reveals two major protein bands, A and B, with estimated molecular masses of approximately 85,000 and 53,000, respectively, both of which also stain for the presence of carbohydrate and lipid. Gel electrophoresis of the protein-carbohydrate-lipid complex reveals two protein bands, C and D, with estimated molecular weights of approximately 17,000 and 13,000, respectively, which contain lipid and a small amount of carbohydrate; bands A and B are not present in the complex. Gel electrophoresis of the cell envelope residues after extraction of the complex with alkali and EDTA shows a single main band, corresponding to the position of band B, which contains protein, carbohydrate, and lipid; band A is completely missing. B and A is believed to be a component of the complex, which is split into two subunits on alkali solubilization.  相似文献   

10.
Alpha 1-Microglobulin (alpha 1-m), or protein HC, a low molecular weight plasma protein with immunoregulatory properties, was isolated from rat serum by affinity chromatography using Sepharose-coupled monoclonal anti-alpha 1-m antibodies. High molecular weight forms of alpha 1-m were then separated from the low molecular weight alpha 1-m by gel chromatography of the eluted proteins. The apparent Mr (28,000), the charge heterogeneity, the N-linked carbohydrate, and yellow-brown chromophore suggest that the low molecular weight alpha 1-m is the serum counterpart to urinary alpha 1-m, which was purified previously. A high molecular weight complex of alpha 1-m was also isolated by the gel chromatography. It was homogeneous as judged by nondenaturing polyacrylamide gel electrophoresis. The molecule was bound by antibodies against human alpha 2-macroglobulin, and experiments with antisera against the three alpha-macroglobulin variants in rat serum, alpha 1-macroglobulin, alpha 2-macroglobulin, and alpha 1-inhibitor-3 (alpha 1I3) suggested that alpha 1I3 was the complex-partner of alpha 1-m. An antiserum raised against high molecular weight alpha 1-m was then used to isolate the complex-partner of alpha 1-m from rat serum with affinity chromatography, and this molecule was positively identified as alpha 1I3 by its physicochemical properties. Gel chromatography of the alpha 1I3.alpha 1-m complex suggested a molecule with an Mr of 266,000. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, however, it migrated as three major molecular species with apparent molecular weights of 224,000, 205,000, and 194,000 and several minor species of both higher and lower molecular weights, suggesting a complex subunit structure. alpha 1-m and alpha 1I3 could be detected in all three major species by Western blotting, and NH2-terminal amino acid sequencing suggested a molar ratio of 1:1 of alpha 1-m and alpha 1I3 in all three species. alpha 1I3.alpha 1-m was colorless, did not show light absorbance beyond 300 nm which is typical of low molecular weight alpha 1-m and was electrophoretically homogeneous, suggesting that it lacks the chromophore. Finally, the serum concentrations of the alpha 1I3.alpha 1-m complex and free alpha 1-m were determined as 0.16 and 0.010 g/liter, respectively. Thus, alpha 1I3.alpha 1-m constitutes 1-3% of the total alpha 1I3 in rat serum (w/w) and approximately 60% of the total alpha 1-m.  相似文献   

11.
The nicotinic acetylcholine receptor and a receptor-associated protein of 43 kDa are the major proteins present in postsynaptic membranes isolated from Torpedo electric organ. Immunochemical analyses indicated that a protein sharing antigenic determinants with the receptor-associated protein is also present at receptor clusters of muscle cell lines and postsynaptic membranes of vertebrate neuromuscular junctions. We now provide definitive proof that a homolog of the 43-kDa protein exists in mammals. Complimentary DNA clones encoding the complete protein sequence have been isolated from the mouse muscle cell line, BC3H1. We heretofore refer to these proteins as nicotinic receptor-associated proteins at synapses or N-RAP-syns. The deduced sequence of mouse RAPsyn has 412 amino acids and a molecular mass of 46,392 daltons. The overall identity with Torpedo RAPsyn is 70%; some regions are extremely well conserved and are therefore postulated to be functionally important. Important domains, including the amino terminus and a cAMP-dependent protein kinase phosphorylation site, are conserved between species. Several structural features are consistent with the proposal that RAPsyn is a peripheral membrane protein that associates with membranes by virtue of covalently bound myristate. Although multiple mRNAs were previously identified in Torpedo electric organ, RNA blot analysis reveals a single polyadenylated RAPsyn mRNA of approximately equal to 2.0 kilobases in newborn and 4-week-old mouse muscle. Finally, genomic DNA blot analysis indicates that a single N-RAPsyn gene is present in the mouse genome.  相似文献   

12.
Polyacrylamide gel electrophoresis of purified Junin virus revealed six distinct structural polypeptides, two major and four minor ones. Four of these polypeptides appeared to be covalently linked with carbohydrate. The molecular weights of the six proteins, estimated by coelectrophoresis with marker proteins, ranged from 25,000 to 91,000. One of the two major components (number 3) was identified as a nucleoprotein and had a molecular weight of 64,000. It was the most prominent protein and was nonglycosylated. The other major protein (number 5), with a molecular weight of 38,000, was a glucoprotein and a component of the viral envelope. The location on the virion of three additional glycopeptides with molecular weights of 91,000, 72,000, and 52,000, together with a protein with a molecular weight of 25,000, was not well defined.  相似文献   

13.
The ability of human keratinocytes and squamous carcinoma cell lines to attach lipid covalently to cell proteins has been examined using both palmitic and myristic acids. SDS-polyacrylamide gel analyses of the proteins labelled with these lipids demonstrated that each labelled a different set of proteins. Covalently protein bound palmitic acid could be removed from the proteins by mild alkali hydrolysis but the bound myristic acid required prolonged acid hydrolysis to release it from the associated proteins. H.p.l.c. analyses of the released lipid confirmed that both lipids were attached to proteins directly and that the labelling was not due to the lipids being catabolised. Cycloheximide could prevent the attachment of myristic acid to cell proteins, but only reduced the levels of palmitic acid incorporation. Pulse chase experiments indicated that there was little turnover of the attached myristic acid whereas this was significant for covalently bound palmitic acid. These observations show for the first time that two different protein populations are labelled by different lipids in eukaryotic cells, and that there appear to be two separate pathways for the acylation of proteins in such cells.  相似文献   

14.
An envelope preparation containing the cell wall and cytoplasmic membrane of Escherichia coli was obtained by breaking the cells with a French pressure cell and sedimentating the envelope fraction by ultracentrifugation. This fraction was prepared for polyacrylamide gel electrophoresis by dissolving the protein in an acidified N,N'-dimethylformamide, removing lipids by gel filtration in the same organic solvent and removing the solvent by dialysis against aqueous urea solutions. More than 80% of the total protein of the envelope fraction was recovered in soluble form. Electrophoresis on sodium dodecyl sulfate-containing gels yielded from 20 to 30 well-resolved bands of protein. One major protein band was observed on the gels. This protein had a molecular weight of 44,000 and accounted for as much as 40% of the total protein of the envelope fraction. A double-labeling technique was used to examine the protein composition of the envelope fraction from cells grown under different sets of conditions which result in large changes in the levels of membrane-bound oxidative enzymes. These changes in growth conditions resulted in only minor alterations in the protein profiles observed on the gels, suggesting that this organism is able to adapt to changes in growth environment with only minor modifications of the major proteins of the cell envelope.  相似文献   

15.
A new acidic glycoprotein containing deaminated neuraminic acid (KDN = 3-deoxy-D-glycero-D-galacto-nonulosonic acid; greater than 50%, w/w) was isolated from vitelline envelope of the unfertilized eggs of rainbow trout (Salmo gairdneri). This glycoprotein is designated as "KDN-glycoprotein" because it contains only KDN but no sialic acid as the acidic carbohydrate moieties. Other major carbohydrate components of KDN-glycoprotein were Gal and GalNAc. Thr and Ala accounted for 71% (mol/mol) of amino acid composition. A possible occurrence of KDN-KDN linkages, i.e. oligoKDN groups has been suggested in the carbohydrate chains presumably linked O-glycosidically to the core protein.  相似文献   

16.
The effect of prolonged administration of an antiulcer drug, sofalcone, on the physicochemical properties of gastric mucus was investigated. The experiments were conducted with groups of rats receiving twice daily for three consecutive days a dose of 100 mg/kg sofalcone, while the control group received daily doses of vehicle. The rats were sacrificed 16 h after the last dose and gastric mucosa subjected to physicochemical measurements. The results revealed that sofalcone evoked a 23% increase in mucus gel dimension, while sulfo- and sialomucins content of the gel increased by 54 and 25%, respectively. These changes were accompanied by a 16% increase in mucus H+ retardation capacity, 2-fold increase in viscosity, and a 39% increase in the gel hydrophobicity. The mucus elaborated in the presence of sofalcone contained 67% more covalently bound fatty acids, exhibited 10% lower content of protein, 30% higher content of carbohydrate, and 18% higher content of lipids. The mucus of the sofalcone group also showed an increase in the proportion of the high molecular weight mucus glycoprotein form, which in the control group accounted for about 30% of gel mucin, while its content in mucus gel of animals receiving sofalcone reached the value of 50%. The results indicate that sofalcone enhances the protective qualities of mucus component of gastric mucosal barrier.  相似文献   

17.
Apoproteins of hen's egg yolk very low density lipoprotein has been separated by Sephadex G-200 gel filtration in 0.5% sodium dodecyl sulfate into three categories of proteins termed apoprotein A, apoprotein B and apoprotein C. Apoprotein A fraction consists of several aggregated proteins (linked possibly by -S-S- bridges) as shown by acrylamide gel electrophoresis in the presence of 2-mercaptoethanol. Apoprotein B contains two major protein components, B1 and B2, with molecular weights of 78 000 and 64 000, respectively, and two minor proteins components. Apoprotein C was obtained in a pure form as a low molecular weight, -S-S- linked dimer protein and accounted for about 30% of the total protein. In the monomeric form, apoprotein C has a molecular weight of 9400. Apoprotein A and apoprotein B have similar amino acid composition, except in isoleucine content which is over two times in apoprotein B as compared to apoprotein A. Apoprotein C lacks histidine and is richer in arginine than apoproteins A or B. Apoprotein C has lysine as N-terminal, while apoproteins A and B have predominantly arginine as the N-terminal amino acid. All the three fractions contain carbohydrate residues, apoprotein B being the richest in carbohydrate content. Cold-stored apoproteins A forms a clear gel when dispersed in 0.5% sodium dodecyl sulfate at concentration of above 2 mg/ml, while apoprotein B forms a gel only above 10 mg/ml. Apoprotein C, even at 35 mg/ml, forms a clear solution with no tendency to gel.  相似文献   

18.
Less than 5% of the protein isolated from Rhodopseudomonas spheroides chromatophores (designated Fraction P1) is insoluble in 2-chloroethanol. Electrophoresis of these proteins on dodecyl sulphate-polyacrylamide gels reveals a gel pattern similar to those obtained from anaerobic and aerobic cell envelope proteins. Chromatophore P1 is shown to be part of the chromatophore structure and its presence in the chromatophore is not due to contamination from the cytoplasmic membrane.Preparative dodecyl sulphate-polyacrylamide gel electrophoresis was performed to purify chromatophore Pll proteins, which comprise 95% of the total chromatophore protein. These proteins contain approximately 60–65 mole% non-polar amino acids. Comparison studies of the amino acid compositions, tryptic and chymotryptic maps, molecular weights, and antigenic reactivity of chromatophore proteins demonstrate the existence of protein heterogeneity in chromatophores. These investigations lead us to suggest that chromatophore-specific proteins do not appear in other particulate or soluble fractions derived from either aerobic or anaerobic-grown cells.  相似文献   

19.
The obligate, thermophilic, acidophilic mycoplasma, Thermoplasma acidophilum, grows optimally at 56° C and pH 2.0. Its plasma membrane possessed 21–22 protein bands that were resolved by polyacrylamide gel electrophoresis. One major membrane protein, molecular weight 152 000, which stained for carbohydrate with periodic acid-Schiff reagent, accounted for 32% (w/w) of the total membrane proteins. It was isolated and further purified by concanavalin A affinity chromatography. The carbohydrate content amounted to less than 10% (w/w) compared to that of the entire glycoprotein. The carbohydrate moiety consisted mainly of mannose residues with branched α 1 → 2 linkages at the non-reducing ends of the glycopeptide as determined by permethylation followed by gas chromatography-mass spectrometry analysis. The reducing end was an N-glycosidic linkage between asparagine and N-acetylglucosamine. The amino acid composition of this glycoprotein showed 62 mol% hydrophobic residues, while the acidic amino acid content contributed 9 mol% more than that of the basic amino acids. The existence of membrane glycoproteins in the procaryotic, wall-less T. acidophilum may provide a protective coat for the plasma membrane. The stereochemistry and the conformation of the carbohydrate chains, in conjunction with water turgor, may contribute to the rigidity of the membrane and the cation binding.  相似文献   

20.
Rare earth element-binding protein was isolated from maize, which was grown under greenhouse conditions and characterized in terms of molecular weight, amino acid composition, and ultraviolet absorption. The molecular weight of the maize protein was determined to be 183,000, with two distinct subunits of approximately molecular weights of 22,000 and 69,000, respectively. The protein is particularly rich in asparagine/aspartic acid, glutamine/glutamic acid, glycine, alanine, and leucine and contains 8.0% of covalently bound carbohydrate. The ultraviolet absorption of the protein is low at 280 nm and no change in the adsorption was observed with a change in pH. Compared to the unique features of the metallothioneins with a molecular weight of approximately 10,000, a high cysteine content of 30%, high absorption at 254 nm and a low absorption at 280 nm, and absorption change with pH, the REE-binding protein is unlikely to be plant metallothionein in nature. It was found that an almost twofold greater concentration was found for most of the REEs in the protein isolated from the maize with REE fertilizer use than that without REE fertilizer. This study suggests that the REE-binding protein is a glycoprotein and REEs can be firmly bound with the protein of maize roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号