首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusarium solani degraded methyl tert-butyl ether (MTBE) and other oxygenated compounds from gasoline including tert-butyl alcohol (TBA). The maximum degradation rate of MTBE was 16 mg protein h and 46 mg/g protein h for TBA. The culture transformed 77% of the total carbon to 14CO2. The estimated yield for MTBE was 0.18 g dry wt/g MTBE.  相似文献   

2.
Methyl tertiary butyl ether (MTBE), an important gasoline additive, is a recalcitrant compound posing serious environmental health problems. In this study, MTBE-degrading bacteria were enriched from five environmental samples. Enrichments from Stewart Lake sediments and an MTBE contaminated soil displayed the highest rate of MTBE removal; 29.6 and 27.8% respectively, in 28 days. A total of 12 bacterial monocultures isolated from enrichment cultures were screened for MTBE degradation in liquid cultures. In a nutrient-limited medium containing MTBE as the sole source of carbon and energy, the highest rate of MTBE elimination was achieved with IsoSL1, which degraded 30.6 and 50.2% in 14 and 28 days, respectively. In a nutrient-rich medium containing ethanol and yeast extract, the bacterium (Iso2A) substantially removed MTBE (20.3 and 28.1% removal in 14 and 28 days, respectively). Based upon analysis of the 16s rRNA gene sequence and data base comparison, IsoSL1 and Iso2A were identified as a Streptomyces sp. and Sphingomonas sp., respectively. The Streptomyces sp. is a new genera of bacteria degrading MTBE and could be useful for MTBE bioremediation.  相似文献   

3.
The fuel oxygenate, methyl tert-butyl ether (MTBE), although now widely banned or substituted, remains a persistent groundwater contaminant. Multidimensional compound-specific isotope analysis (CSIA) of carbon and hydrogen is being developed for determining the extent of MTBE loss due to biodegradation and can also potentially distinguish between different biodegradation pathways. Carbon and hydrogen isotopic fractionation factors were determined for MTBE degradation in aerobic and anaerobic laboratory cultures. The carbon isotopic enrichment factor (εC) for aerobic MTBE degradation by a bacterial consortium containing the aerobic MTBE-degrading bacterium, Variovorax paradoxus, was −1.1 ± 0.2‰ and the hydrogen isotope enrichment factor (εH) was −15 ± 2‰. This corresponds to an approximated lambda value (Λ = εH/εC) of 14. Carbon isotope enrichment factors for anaerobic MTBE-degrading enrichment cultures were −7.0 ± 0.2‰ and did not vary based on the original inoculum source, redox condition of the enrichment, or supplementation with syringic acid as a co-substrate. The hydrogen enrichment factors of cultures without syringic acid were insignificant, however a strong hydrogen enrichment factor of −41 ± 3‰ was observed for cultures which were fed syringic acid during MTBE degradation. The Λ = 6 obtained for NYsyr cultures might be diagnostic for the stimulation of anaerobic MTBE degradation by methoxylated compounds by an as yet unknown pathway and mechanism. The stable-isotope enrichment factors determined in this study will enhance the use of CSIA for monitoring anaerobic and aerobic MTBE biodegradation in situ.  相似文献   

4.
Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.  相似文献   

5.
Methyl tert-butyl ether (MTBE) is a prevalent groundwater contaminant. In this study, three distinct MTBE-degrading, anaerobic cultures were derived from MTBE-contaminated aquifer material: cultures NW1, NW2 and NW3. The electron acceptors used are anthraquinone-2,6-disulfonate (AQDS; NW1), sulfate (NW2) and fumarate (NW3), respectively. About 1–2 mM MTBE is consistently degraded within 20–30 days in each culture. The 16S rDNA-based amplified ribosomal DNA restriction analysis (ARDRA) was used to analyze the microbial community in each culture. Results indicate novel microorganisms (i.e. no closely related known genera or species) catalyze anaerobic MTBE biodegradation, and microbial diversity varied with different electron acceptors. Tert-butyl alcohol (TBA) accumulated to nearly stoichiometric levels, and these cultures will be critical to understanding the factors that influence TBA accumulation versus degradation. The cultures presented here are the first stable anaerobic MTBE-degrading cultures that have been characterized with respect to taxonomy.  相似文献   

6.
Degradation of methyl tert-butyl ether (MTBE) as a sole carbon and energy source was investigated utilizing an enriched bacterial consortium derived from an old environmental MTBE spill. This enriched culture grew on MTBE with concentration up to 500 mg/l, reducing the MTBE in medium to undetectable concentrations in 23 days. Traces of tert-butyl alcohol were detected during MTBE degradation. The degradation was not affected by additional cobalt ions, whereas low concentration of glucose enhanced the rate of degradation. The bacterial community consisted of numerous bacterial genera, the majority being members of the phylum Acidobacteria and genus Terrimonas. The alkane 1-monooxygenase (alk) gene was detected in this consortium. Our findings suggest that environmental degradation of MTBE proceeds along the previously proposed pathway.  相似文献   

7.
Aerobic granules efficient at degrading methyl tert-butyl ether (MTBE) with ethanol as a cosubstrate were successfully developed in a well-mixed sequencing batch reactor (SBR). Aerobic granules were first observed about 100 days after reactor startup. Treatment efficiency of MTBE in the reactor during stable operation exceeded 99.9%, and effluent MTBE was in the range of 15–50 μg/L. The specific MTBE degradation rate was observed to increase with increasing MTBE initial concentration from 25 to 500 mg/L, which peaked at 22.7 mg MTBE/g (volatile suspended solids)·h and declined with further increases in MTBE concentration as substrate inhibition effects became significant. Microbial-community deoxyribonucleic acid profiling was carried out using denaturing gradient gel electrophoresis of polymerase chain reaction-amplified 16S ribosomal ribonucleic acid. The reactor was found to be inhabited by several diverse bacterial species, most notably microorganisms related to the genera Sphingomonas, Methylobacterium, and Hyphomicrobium vulgare. These organisms were previously reported to be associated with MTBE biodegradation. A majority of the bands in the reactor represented a group of organisms belonging to the FlavobacteriaProteobacteria–Actinobacteridae class of bacteria. This study demonstrates that MTBE can be effectively degraded by aerobic granules under a cosubstrate condition and gives insight into the microorganisms potentially involved in the process.  相似文献   

8.
Methyl tert-butyl ether (MTBE) is a widely used fuel ether, which has become a soil and water contaminant. In this study, 12 microbial strains were isolated from gasoline-contaminated soils and selected because of their capacity to grow in MTBE. The strains were identified by 16S/ITS rDNA gene sequencing and screened for their ability to consume MTBE aerobically in a simple mineral solution. Solid phase microoextraction and gas chromatography were used to detect MTBE degradation. High levels of MTBE biodegradation were obtained using resting cells of the bacteria Achromobacter xylosoxidans MCM1/1 (78%), Enterobacter cloacae MCM2/1 (50%), and Ochrobactrum anthropi MCM5/1 (52%) and the fungus Exophiala dermatitidis MCM3/4 (14%). Our phylogenetic analysis clearly shows that bacterial MTBE biodegraders belong to the clade of Proteobacteria. For further insight, MTBE-degrader strains were profiled by denaturing gel gradient electrophoresis (DGGE) of PCR-amplified 16S rRNA gene sequences. This approach could be used to analyse microbial community dynamics in bioremediation processes.  相似文献   

9.
Anaerobic methyl tert-butyl ether (MTBE) degradation potential was investigated in samples from a range of sources. From these 22 experimental variations, only one source (from wastewater treatment plant samples) exhibited MTBE degradation. These microcosms were methanogenic and were subjected to DNA-based stable isotope probing (SIP) targeted to both bacteria and archaea to identify the putative MTBE degraders. For this purpose, DNA was extracted at two time points, subjected to ultracentrifugation, fractioning, and terminal restriction fragment length polymorphism (TRFLP). In addition, bacterial and archaeal 16S rRNA gene clone libraries were constructed. The SIP experiments indicated bacteria in the phyla Firmicutes (family Ruminococcaceae) and Alphaproteobacteria (genus Sphingopyxis) were the dominant MTBE degraders. Previous studies have suggested a role for Firmicutes in anaerobic MTBE degradation; however, the putative MTBE-degrading microorganism in the current study is a novel MTBE-degrading phylotype within this phylum. Two archaeal phylotypes (genera Methanosarcina and Methanocorpusculum) were also enriched in the heavy fractions, and these organisms may be responsible for minor amounts of MTBE degradation or for the uptake of metabolites released from the primary MTBE degraders. Currently, limited information exists on the microorganisms able to degrade MTBE under anaerobic conditions. This work represents the first application of DNA-based SIP to identify anaerobic MTBE-degrading microorganisms in laboratory microcosms and therefore provides a valuable set of data to definitively link identity with anaerobic MTBE degradation.  相似文献   

10.
Methyl tert-butyl ether (MTBE) is a widespread groundwater contaminant that does not respond well to conventional treatment technologies. Growing evidence indicates that microbial communities indigenous to groundwater can degrade MTBE under aerobic and anaerobic conditions. Although pure cultures of microorganisms able to degrade or cometabolize MTBE have been reported, to date the specific organisms responsible for MTBE degradation in various field studies have not be identified. We report that DNA sequences almost identical (99% homology) to those of strain PM1, originally isolated from a biofilter in southern California, are naturally occurring in an MTBE-polluted aquifer in Vandenberg Air Force Base (VAFB), Lompoc, California. Cell densities of native PM1 (measured by TaqMan quantitative PCR) in VAFB groundwater samples ranged from below the detection limit (in anaerobic sites) to 103 to 104 cells/ml (in oxygen-amended sites). In groundwater from anaerobic or aerobic sites incubated in microcosms spiked with 10 μg of MTBE/liter, densities of native PM1 increased to approximately 105 cells/ml. Native PM1 densities also increased during incubation of VAFB sediments during MTBE degradation. In controlled field plots amended with oxygen, artificially increasing the MTBE concentration was followed by an increase in the in situ native PM1 cell density. This is the first reported relationship between in situ MTBE biodegradation and densities of MTBE-degrading bacteria by quantitative molecular methods.  相似文献   

11.
The anaerobic bioconversion of raw and mechanically lysed waste-activated sludge was kinetically investigated. The hydrolysis of the biopolymers, such as protein, which leaked out from the biological sludge with ultrasonic lysis, was a first-order reaction in anaerobic digestion and the rate constant was much higher that the decay rate constant of the raw waste activated sludge. An anaerobic digestion model that is capable of evaluating the effect of the mechanical sludge lysis on digestive performance was developed. The present model includes four major biological processes-the release of intracellular matter with sludge lysis; hydrolysis of biopolymers to volatile acids; the degradation of various volatile acids to acetate; and the conversion of acetate and hydrogen to methane. Each process was assumed to follow first order kinetics. The model suggested that when the lysed waste-activated sludge was fed, the overall digestive performance remarkably increased in the two-phase system consisting of an acid forming process and a methanogenic process, which ensured the symbiotic growth of acetogenic and methanogenic bacteria. (c) 1993 Wiley & Sons, Inc.  相似文献   

12.
The filamentous fungus Graphium sp. (ATCC 58400) co-metabolically oxidizes the gasoline oxygenate methyl tertiary butyl ether (MTBE) after growth on gaseous n-alkanes. In this study, the enzymology and regulation of MTBE oxidation by propane-grown mycelia of Graphium sp. were further investigated and defined. The trends observed during MTBE oxidation closely resembled those described for propane-grown cells of the bacterium Mycobacterium vaccae JOB5. Propane-grown mycelia initially oxidized the majority (∼95%) of MTBE to tertiary butyl formate (TBF), and this ester was biotically hydrolyzed to tertiary butyl alcohol (TBA). However, unlike M. vaccae JOB5, our results collectively suggest that propane-grown mycelia only have a limited capacity to degrade TBA. None of the products of MTBE exerted a physiologically relevant regulatory effect on the rate of MTBE or propane oxidation, and no significant effect of TBA was observed on the rate of TBF hydrolysis. Together, these results suggest that the regulatory effects of MTBE oxidation intermediates proposed for MTBE-degrading organisms such as Mycobacterium austroafricanum are not universally relevant mechanisms for MTBE-degrading organisms. The results of this study are discussed in terms of their impact on our understanding of the diversity of aerobic MTBE-degrading organisms and pathways and enzymes involved in these processes.  相似文献   

13.
Metabolic interactions between anaerobic bacteria in methanogenic environments   总被引:29,自引:0,他引:29  
In methanogenic environments organic matter is degraded by associations of fermenting, acetogenic and methanogenic bacteria. Hydrogen and formate consumption, and to some extent also acetate consumption, by methanogens affects the metabolism of the other bacteria. Product formation of fermenting bacteria is shifted to more oxidized products, while acetogenic bacteria are only able to metabolize compounds when methanogens consume hydrogen and formate efficiently. These types of metabolic interaction between anaerobic bacteria is due to the fact that the oxidation of NADH and FADH2 coupled to proton or bicarbonate reduction is thermodynamically only feasible at low hydrogen and formate concentrations. Syntrophic relationships which depend on interspecies hydrogen or formate transfer were described for the degradation of e.g. fatty acids, amino acids and aromatic compounds.  相似文献   

14.
Methyl tert-butyl ether (MTBE) is a widespread groundwater contaminant that does not respond well to conventional treatment technologies. Growing evidence indicates that microbial communities indigenous to groundwater can degrade MTBE under aerobic and anaerobic conditions. Although pure cultures of microorganisms able to degrade or cometabolize MTBE have been reported, to date the specific organisms responsible for MTBE degradation in various field studies have not be identified. We report that DNA sequences almost identical (99% homology) to those of strain PM1, originally isolated from a biofilter in southern California, are naturally occurring in an MTBE-polluted aquifer in Vandenberg Air Force Base (VAFB), Lompoc, California. Cell densities of native PM1 (measured by TaqMan quantitative PCR) in VAFB groundwater samples ranged from below the detection limit (in anaerobic sites) to 10(3) to 10(4) cells/ml (in oxygen-amended sites). In groundwater from anaerobic or aerobic sites incubated in microcosms spiked with 10 microg of MTBE/liter, densities of native PM1 increased to approximately 10(5) cells/ml. Native PM1 densities also increased during incubation of VAFB sediments during MTBE degradation. In controlled field plots amended with oxygen, artificially increasing the MTBE concentration was followed by an increase in the in situ native PM1 cell density. This is the first reported relationship between in situ MTBE biodegradation and densities of MTBE-degrading bacteria by quantitative molecular methods.  相似文献   

15.
A mixed culture was utilized to evaluate methyl tert-butyl ether (MTBE) removal under various conditions and to isolate a MTBE-degrading pure culture. The results showed that high MTBE removal efficiencies can be reached even in the presence of other substrates. The biodegradation sequence of the target compounds by the mixed culture, in order of removal rate, was toluene, ethyl benzene, p-xylene, benzene, MTBE, ethyl ether, tert-amyl methyl ether, and ethyl tert-butyl ether. In addition, preincubation of the mixed cultures with benzene and toluene showed no negative effect on MTBE removal; on the contrary, it could even increase the degradation rate of MTBE. The kinetic behavior showed that the maximum specific growth rate and the saturation constant of the mixed culture degrading MTBE are 0.000778 h−1 and 0.029 mg l−1, respectively. However, a high MTBE concentration (60 mg l−1) was slightly inhibiting to the growth of the mixed culture. The pure culture isolated from the enrichments in the bubble-air bioreactor showed better efficiency in MTBE removal than the mixed culture; whereas, tert-butyl alcohol was formed as a metabolic intermediate during the breakdown of MTBE.  相似文献   

16.
We used sequencing and phylogenetic analysis of PCR-amplified 16S rRNA genes from bacteria that are associated with the esophagus/pharynx, stomach and intestine of two marine sympatric invertebrates but with different feeding mechanisms, namely the sea urchin Paracentrotus lividus (grazer) and the ascidian Microcomus sp. (suspension feeder). Amplifiable DNA was retrieved from all sections except the pharynx of the ascidian. Based on the inferred phylogeny of the retrieved sequences, the sea urchin’s esophagus is mainly characterized mostly by bacteria belonging to α-, γ-Proteobacteria and Bacteriodetes, most probably originating from the surrounding environment. The stomach revealed phylotypes that belonged to γ- and δ-Proteobacteria, Verrucomicrobia and Fusobacteria. Since the majority of their closest relatives are anaerobic species and they could be putative symbionts of the P. lividus stomach, in which anaerobic conditions also prevail. Seven out of eight phylotypes found in the sea urchin’s intestine belonged to sulfate reducing δ-Proteobacteria, and one to γ-Proteobacteria, with possible nutritional activities, i.e. degradation of complex organic compounds which is beneficial for the animal. The bacterial phylotypes of the ascidian digestive tract belonged only to the phyla of Actinobacteria and Proteobacteria. The stomach phylotypes of the ascidian were related to pathogenic bacteria possibly originating from the water column, while the intestine seemed to harbour putative symbiotic bacteria that are involved in the degradation of nitrogenous and other organic compounds, thus assisting ascidian nutrition. The text was submitted by the authors in English.  相似文献   

17.
 An enrichment culture obtained from anaerobic granular sludge of a bench-scale anaerobic reactor degraded methanol at 65°C via sulfate reduction and acetogenesis. Sulfate reduction was the dominant process (S2-/acetate=2.5). No methane formation was observed. Approximately 30% of the methanol was converted by acetogenic bacteria to acetate, while the remainder was degraded by these bacteria to H2 and CO2 in syntrophy with hydrogen-consuming sulfate-reducing bacteria. Pure cultures of sulfate-reducing and acetogenic bacteria were isolated and characterized. Received: 4 December 1995 / Received revision: 15 April 1996 / Accepted: 22 April 1996  相似文献   

18.
选取东祁连山不同退化程度的高寒草地为研究对象,调查研究其植物种类、植被盖度、高度、地上生物量等植物指标以及土壤好气性自生固氮菌和嫌气性自生固氮菌数量,在此基础上,采用real-time PCR的方法扩增nifH基因,测定不同退化程度草地土壤中固氮菌相对于土壤总细菌的量,以探讨草地退化过程中植被及土壤固氮菌群的变化规律,结果发现:随着退化程度的加深,草地植物种类逐渐减少,并且优势植物发生变化,毒杂草逐渐增多,植被的高度、盖度、地上生物量都逐渐降低。对土壤固氮菌的研究则表明,土壤好气性自生固氮菌和嫌气性自生固氮菌的数量在不同退化草地随草地退化程度的加重而减少,在同一退化程度草地土壤则是随土层深度加深而下降。对土壤固氮菌nifH基因扩增的结果也表明随着退化加剧,土壤固氮菌相对于土壤总细菌的比例在降低,进一步说明草地退化过程中土壤固氮菌不仅是数量上的下降,更是群落结构层面的变化。对植被特性和土壤固氮菌含量的相关分析表明,植被特性和土壤中固氮菌含量呈显著相关。研究从土壤固氮菌群的角度研究了草地退化的过程,说明了二者具有协同性,研究和治理草地退化必须重视土壤功能菌群尤其是固氮菌群的作用。  相似文献   

19.
An aerobic mixed bacterial culture (CL-EMC-1) capable of utilizing methyl tert-butyl ether (MTBE) as the sole source of carbon and energy with a growth temperature range of 3 to 30°C and optimum of 18 to 22°C was enriched from activated sludge. Transient accumulation of tert-butanol (TBA) occurred during utilization of MTBE at temperatures from 3°C to 14°C, but TBA did not accumulate above 18°C. The culture utilized MTBE at a concentration of up to 1.5 g l−1 and TBA of up to 7 g l−1. The culture grew on MTBE at a pH range of 5 to 9, with an optimum pH of 6.5 to 7.1. The specific growth rate of the CL-EMC-1 culture on 0.1 g l−1 of MTBE at 22°C and pH 7.1 was 0.012 h−1, and the growth yield was 0.64 g (dry weight) g−1. A new MTBE-utilizing bacterium, Variovorax paradoxus strain CL-8, isolated from the mixed culture utilized MTBE, TBA, 2-hydroxy isobutyrate, lactate, methacrylate, and acetate as sole sources of carbon and energy but not 2-propanol, acetone, methanol, formaldehyde, or formate. Two other isolates, Hyphomicrobium facilis strain CL-2 and Methylobacterium extorquens strain CL-4, isolated from the mixed culture were able to grow on C1 compounds. The combined consortium could thus utilize all of the carbon of MTBE.  相似文献   

20.
Methane production via anaerobic degradation of organic-contaminated wastewater, semiliquid, or solid municipal waste of complex composition by methanogenic microbial communities is a multistage process involving at least four groups of microorganisms. These are hydrolytic bacteria (polysaccharolytic, proteolytic, and lipolytic), fermentative bacteria, acetogenic bacteria (syntrophic, proton-reducing), and methanogenic archaea; complex trophic interactions exist between these groups. The review provides information concerning the diversity of the major microbial groups identified in the systems for wastewater and concentrated waste treatment, solid-phase anaerobic fermentation, and landfills for disposal of municipal solid waste, and also specifies the sources of isolation of the type strains. The research demonstrates that both new microorganisms and those previously isolated from natural habitats may be found in waste treatment systems. High microbial diversity in the systems for organic waste treatment provides for stable methanogenesis under fluctuating environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号