首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The purpose of this study was to examine the effects of inspiratory airway obstruction on lung fluid balance in newborn lambs. We studied seven 2- to 4-wk-old lambs that were sedated with chloral hydrate and allowed to breathe 30-40% O2 spontaneously through an endotracheal tube. We measured lung lymph flow, lymph and plasma protein concentrations, pulmonary arterial and left atrial pressures, mean and phasic pleural pressures and airway pressures, and cardiac output during a 2-h base-line period and then during a 2- to 3-h period of inspiratory airway obstruction produced by partially occluding the inspiratory limb of a nonrebreathing valve attached to the endotracheal tube. During inspiratory airway obstruction, both pleural and airway pressures decreased 5 Torr, whereas pulmonary arterial and left atrial pressures each decreased 4 Torr. As a result, calculated filtration pressure remained unchanged. Inspiratory airway obstruction had no effect on steady-state lung lymph flow or the lymph protein concentration relative to that of plasma. We conclude that in the spontaneously breathing lamb, any decrease in interstitial pressure resulting from inspiratory airway obstruction is offset by a decrease in microvascular hydrostatic pressure so that net fluid filtration remains unchanged.  相似文献   

2.
Both nasal obstruction and nasal anesthesia result in disordered breathing during sleep in humans, and bypassing the nasal route during tidal breathing in experimental animals produces decreased electromyographic activity of upper airway (UA) dilating muscles. To investigate UA responses to breathing route in normal awake humans, we studied eight healthy males (ages 21-38 yr) during successive trials of voluntary nose breathing (N), voluntary mouth breathing (M), and mouth breathing with nose occluded (MO). We measured genioglossus electromyographic activity (EMGgg) with perorally inserted bipolar electrodes, alae nasi (EMGan) and diaphragm EMG activity (EMGdi) with surface electrodes, and minute ventilation (VE) with a pneumotachograph. Mean phasic inspiratory EMG activity of both UA muscles was significantly greater during N than during M or MO, even when a 2.5-cmH2O.l-1.s inspiratory resistance was added to MO (P less than 0.01). In contrast, neither EMGdi nor VE was consistently affected by breathing route. EMGgg during N was significantly decreased after selective topical nasal anesthesia (P less than 0.002); a decrease in EMGan did not achieve statistical significance. These data suggest that peak UA dilating muscle activity may be modulated by superficial receptors in the nasal mucosa sensitive to airflow.  相似文献   

3.
Minute ventilation (VE) and breathing pattern during an abrupt increase in fractional CO2 were compared in 10 normal subjects before and after airway anesthesia. Subjects breathed 7% CO2-93% O2 for 5 min before and after inhaling aerosolized lidocaine. As a result of airway anesthesia, VE and tidal volume (VT) were greater during hypercapnia, but there was no effect on inspiratory time (TI). Therefore, airway anesthesia produced an increase in mean inspiratory flow (VT/TI) during hypercapnia. The increase in VT/TI was compatible with an increase in neuromuscular output. There was no effect of airway anesthesia on the inspiratory timing ratio or the shape and position of the curve relating VT and TI. We also compared airway resistance (Raw), thoracic gas volume, forced vital capacity, forced expired volume at 1s, and maximum midexpiratory flow rate before and after airway anesthesia. A small (0.18 cmH2O X l-1 X s) decrease in Raw occurred after airway anesthesia that did not correlate with the effect of airway anesthesia on VT/TI. We conclude that airway receptors accessible to airway anesthesia play a role in hypercapnic VE.  相似文献   

4.
Airway obstruction during periodic breathing in premature infants   总被引:1,自引:0,他引:1  
To characterize changes in pulmonary resistance, timing, and respiratory drive during periodic breathing, we studied 10 healthy preterm infants (body wt 1,340 +/- 240 g, postconceptional age 35 +/- 2 wk). Periodic breathing in these infants was defined by characteristic cycles of ventilation with intervening respiratory pauses greater than or equal to 2 s. Nasal airflow was recorded with a pneumotachometer, and esophageal or pharyngeal pressure was recorded with a fluid-filled catheter. Pulmonary resistance at half-maximal tidal volume, inspiratory time (TI), expiratory time (TE), and mean inspiratory flow (VT/TI) were derived from computer analysis of five cycles of periodic breathing per infant. In 80% of infants periodic breathing was accompanied by completely obstructed breaths at the onset of ventilatory cycles; the site of airway obstruction occurred within the pharynx. The first one-third of the ventilatory phase of each cycle was accompanied by the highest airway resistance of the entire cycle (168 +/- 98 cmH2O.l-1.s). In all infants TI was greatest at the onset of the ventilatory cycle, VT/TI was maximal at the midpoint of the cycle, and TE was longest in the latter two-thirds of each cycle. A characteristic increase and subsequent decrease of 4.5 +/- 1.9 ml in end-expiratory volume also occurred within each cycle. These results demonstrate that partial or complete airway obstruction occurs during periodic breathing. Both apnea and periodic breathing share the element of upper airway instability common to premature infants.  相似文献   

5.
Airway responsiveness to inhaled cholinergic agonist during the early stage of pulmonary O2 toxicity was examined to determine whether normobaric hyperoxia alters airway function. Eight healthy nonsmoking males with moderate base-line methacholine responsiveness breathed normobaric O2 (greater than or equal to 95%) over 12 h and on another occasion breathed air in an identical protocol. Vital capacity, expiratory flow, airway responsiveness to methacholine, and respiratory symptoms were measured at 0, 4, 8, and 12 h while subjects breathed O2 and 12 h afterwards. After 12 h, forced vital capacity was significantly decreased with O2 breathing but not with air breathing. At 4, 8, or 12 h of exposure and 12 h after exposure, there was no difference in methacholine sensitivity or reactivity between O2 and air-exposure trials. The earliest manifestations of pulmonary normobaric O2 toxicity in normal adults include diminished vital capacity and the onset of respiratory symptoms, but early O2 toxicity does not produce altered responsiveness to inhaled methacholine.  相似文献   

6.
The genioglossus (GG) muscle activity of four infants with micrognathia and obstructive sleep apnea was recorded to assess the role of this tongue muscle in upper airway maintenance. Respiratory air flow, esophageal pressure, and intramuscular GG electromyograms (EMG) were recorded during wakefulness and sleep. Both tonic and phasic inspiratory GG-EMG activity was recorded in each of the infants. On occasion, no phasic GG activity could be recorded; these silent periods were unassociated with respiratory embarrassment. GG activity increased during sigh breaths. GG activity also increased when the infants spontaneously changed from oral to nasal breathing and, in two infants, with neck flexion associated with complete upper airway obstruction, suggesting that GG-EMG activity is influenced by sudden changes in upper airway resistance. During sleep, the GG-EMG activity significantly increased with 5% CO2 breathing (P less than or equal to 0.001). With nasal airway occlusion during sleep, the GG-EMG activity increased with the first occluded breath and progressively increased during the subsequent occluded breaths, indicating mechanoreceptor and suggesting chemoreceptor modulation. During nasal occlusion trials, there was a progressive increase in phasic inspiratory activity of the GG-EMG that was greater than that of the diaphragm activity (as reflected by esophageal pressure excursions). When pharyngeal airway closure occurred during a nasal occlusion trial, the negative pressure at which the pharyngeal airway closed (upper airway closing pressure) correlated with the GG-EMG activity at the time of closure, suggesting that the GG muscle contributes to maintaining pharyngeal airway patency in the micrognathic infant.  相似文献   

7.
The interaction between CO2 and negative pressure pulses on breathing pattern was investigated in 10 anesthetized, spontaneously breathing rabbits. The upper airway was functionally isolated into a closed system. A servo-respirator triggered by the inspiratory activity of the diaphragm was used to apply pressure pulses of -15 cmH2O to the isolated upper airway in early inspiration while the animal was breathing room air, 100% O2, 6% CO2 in O2, or 9% CO2 in O2. The negative pressure pulses produced a reversible inhibition of inspiration in most trials with resultant increase in inspiratory duration (TI); no change was observed in peak diaphragmatic electromyogram (Dia EMG) or expiratory duration, whereas a decrease was seen in mean inspiratory drive (peak Dia EMG/TI). This prolongation of inspiratory duration and decrease in mean inspiratory drive with negative pressure pulses persisted at higher levels of CO2; the slopes of the test breaths were not significantly different from that of control breaths. These results suggest that upper airway negative pressure pulses are equally effective in altering the breathing pattern at all levels of CO2.  相似文献   

8.
Extrathoracic and intrathoracic removal of O3 in tidal-breathing humans   总被引:1,自引:0,他引:1  
We measured the efficiency of O3 removal from inspired air by the extrathoracic and intrathoracic airways in 18 healthy, nonsmoking, young male volunteers. Removal efficiencies were measured as a function of O3 concentration (0.1, 0.2, and 0.4 ppm), mode of breathing (nose only, mouth only, and oronasal), and respiration frequency (12 and 24 breaths/min). Subjects were placed in a controlled environmental chamber into which O3 was introduced. A small polyethylene tube was then inserted into the nose of each subject, with the tip positioned in the posterior pharynx. Samples of air were collected from the posterior pharynx through the tube and into a rapidly responding O3 analyzer yielding inspiratory and expiratory O3 concentrations in the posterior pharynx. The O3 removal efficiency of the extrathoracic airways was computed with the use of the inspiratory concentration and the chamber concentration, and intrathoracic removal efficiency was computed with the use of the inspiratory and expiratory concentrations. The mean extrathoracic removal efficiency for all measurements was 39.6 +/- 0.7% (SE), and the mean intrathoracic removal efficiency was 91.0 +/- 0.5%. Significantly less O3 was removed both extrathoracically and intrathoracically when subjects breathed at 24 breaths/min compared with 12 breaths/min (P less than 0.001). O3 concentration had no effect on extrathoracic removal efficiency, but there was a significantly greater intrathoracic removal efficiency at 0.4 ppm than at 0.1 ppm (P less than 0.05). Mode of breathing significantly affected extrathoracic removal efficiency, with less O3 removed during nasal breathing than during either mouth breathing or oronasal breathing (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Patterns of intercostal muscle activity in humans   总被引:3,自引:0,他引:3  
Coordination of activity of inspiratory intercostal muscles in conscious human subjects was studied by means of an array of electromyograph (EMG) electrodes. Bipolar fine wire electrodes were placed in the second and fourth parasternal intercostal muscles and in two or three external intercostal muscles in the midaxillary line from the fourth to eighth intercostal spaces. Subjects breathed quietly or rebreathed from a bag containing 8% CO2 in O2 in both supine and upright postures. Respiration was monitored by means of flow, volume, and separate rib cage and abdominal volumes. Onset of EMG activity in each breath was found near the beginning of inspiration in the uppermost intercostal spaces but progressively later in inspiration in lower spaces, indicating that activity spreads downward across the rib cage through inspiration. At higher ventilation stimulated by CO2, activity spread further and faster downward. In voluntary deep breathing, external intercostal muscles tended to be recruited earlier in inspiration than in CO2-stimulated breathing. The change from supine to sitting resulted in small and inconsistent changes. There was no lung volume or rib cage volume threshold for appearance of EMG activity in any of the spaces.  相似文献   

10.
For respiratory system impedance (Zrs), the six-element model of DuBois et al. (J. Appl. Physiol. 8: 587-594, 1956) suggests three resonant frequencies (f1,f2,f3), where f1 is the result of the sum of tissue and airway inertances and tissue compliance and f2 is the result of alveolar gas compression compliance (Cg) and tissue inertance (Iti). Three such resonant frequencies have been reported in humans. However, the parameter estimates resulting from fitting this model to the data suggested that f2 and f3 were not associated with Cg and Iti but with airway acoustic properties. In the present study, we measured Zrs between 5 and 320 Hz in 10 healthy adult humans breathing room air or 80% He-20% O2 (HeO2) to gain insight as to whether airway or tissue properties are responsible for the f2 and f3. When the subjects breathed room air, f2 occurred at 170 +/- 16 (SD) Hz, and when they breathed HeO2 it occurred at 240 +/- 24 Hz. If this resonance were due to Cg and Iti it should not have been affected to this extent by the breathing of HeO2. We thus conclude that f2 is not due to tissue elements but that it is an airway acoustic resonance. Furthermore, application of the six-element model to analyze Zrs data at these frequencies is inappropriate, and models incorporating the airway acoustic properties should be used. One such model is based on the concept of equivalent length, which is defined as the length of an open-ended, cylindrical tube that has the same fundamental acoustic resonant frequency.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Negative pressure applied to the upper airway has an excitatory effect on the activity of upper airway muscles and an inhibitory effect on thoracic inspiratory muscles. The role of lung volume feedback in this response was investigated in 10 anesthetized spontaneously breathing adult rabbits. To alter lung volume feedback, the lower airway was exposed to SO2 (250 ppm for 15 min), thereby blocking slowly adapting receptors (SARs). Negative pressure pulses (5, 10, and 20 cmH2O, 300-ms duration) were applied to the functionally isolated upper airway before and after SAR blockade. Tracheal airflow and electromyogram (EMG) of the genioglossus and alae nasi were recorded. Peak EMG, peak inspiratory flow, tidal volume, and respiratory timing of control breaths (3 breaths immediately preceding test) and test breaths were determined. Analysis of variance was used to determine the significance of the effects. Negative pressure pulses increased peak EMG of genioglossus and alae nasi and inspiratory duration and decreased peak inspiratory flow. These effects were larger after SAR blockade. We conclude that a decrease in volume feedback from the lung augments the response to upper airway pressure change.  相似文献   

12.
The influence of nasal airflow, temperature, and pressure on upper airway muscle electromyogram (EMG) was studied during steady-state exercise in five normal subjects. Alae nasi (AN) and genioglossus EMG activity was recorded together with nasal and oral airflows and pressures measured simultaneously by use of a partitioned face mask. At constant ventilations between 30 and 50 l/min, peak inspiratory AN activity during nasal breathing (7.2 +/- 1.4 arbitrary units) was greater than that during oral breathing (1.0 +/- 0.3 arbitrary units; P less than 0.005). In addition, the onset of AN EMG activity preceded inspiratory flow by 0.38 +/- 0.03 s during nasal breathing but by only 0.17 +/- 0.04 s during oral breathing (P less than 0.04). When the subject changed from nasal to oral breathing, both these differences were apparent on the first breath. However, peak AN activity during nasal breathing was uninfluenced by inspiration of hot saturated air (greater than 40 degrees C), by external inspiratory nasal resistance, or by changes in the expiratory route. The genioglossus activity did not differ between nasal and oral breathing (n = 2). Our findings do not support reflex control of AN activity sensitive to nasal flow, temperature, or surface pressure. We propose a centrally controlled feedforward modulation of phasic inspiratory AN activity linked with the tonic drive to the muscles determining upper airway breathing route.  相似文献   

13.
Respiratory muscle dysfunction limits exercise endurance in severe chronic airflow obstruction (CAO). To investigate whether inspiring O2 alters ventilatory muscle recruitment and improves exercise endurance, we recorded pleural (Ppl) and gastric (Pga) pressures while breathing air or 30% O2 during leg cycling in six patients with severe CAO, mild hypoxemia, and minimal arterial O2 desaturation with exercise. At rest, mean (+/- SD) transdiaphragmatic pressure (Pdi) was lower inspiring 30% O2 compared with air (23 +/- 4 vs. 26 +/- 7 cmH2O, P less than 0.05), but the pattern of Ppl and Pga contraction was identical while breathing either gas mixture. Maximal transdiaphragmatic pressure was similar breathing air or 30% O2 (84 +/- 30 vs. 77 +/- 30 cmH2O). During exercise, Pdi increased similarly while breathing air or 30% O2, but the latter was associated with a significant increase in peak inspiratory Pga and decreases in peak inspiratory Ppl and expiratory Pga. In five out of six patients, exercise endurance increased with O2 (671 +/- 365 vs. 362 +/- 227 s, P less than 0.05). We conclude that exercise with O2 alters ventilatory muscle recruitment and increases exercise endurance. During exercise inspiring O2, the diaphragm performs more ventilatory work which may prevent overloading the accessory muscles of respiration.  相似文献   

14.
Relationship among cardiac output, shunt, and inspired O2 concentration.   总被引:1,自引:0,他引:1  
In comparing gas exchange responses of the methacholine- (MCh) challenged mongrel dog with leukotriene receptor blockers and placebo at different inspiratory O2 fractions (FIO2), we previously noted systematically different values of cardiac output as a function of drug administration and/or FIO2. This confounds identification of the effects of FIO2 and/or drugs on gas exchange, because shunt is well known to vary directly with cardiac output when other factors are equal. Accordingly, in six dogs we examined the dependence of combined shunt and low ventilation-perfusion (VA/Q) blood flow ("shunt") on cardiac output in the MCh-challenged mongrel dog. Two dogs breathed 100% O2, another two breathed room air, and the final pair breathed 12% O2 while cardiac output was altered several times by sequentially opening and closing arteriovenous fistulas every 10 min for approximately 90 min after a standard MCh challenge. On 100% O2, shunt increased by 11.0% of the cardiac output per 1-l/min increase in cardiac output. On room air, the value was 7.4%. With 12% O2 breathing shunt rose by only 2.2% per 1-l/min rise in blood flow. This FIO2 -dependent behavior of the shunt-cardiac output relationship was highly reproducible, both within and between animals. It suggests that the increase in shunt with cardiac output depends more on vascular tone of noninjured areas than on tone of the low VA/Q regions (which are hypoxic at all FIO2 values).  相似文献   

15.
The effects of diaphragm paralysis on respiratory activity were assessed in 13 anesthetized, spontaneously breathing dogs studied in the supine position. Transient diaphragmatic paralysis was induced by bilateral phrenic nerve cooling. Respiratory activity was assessed from measurements of ventilation and from the moving time averages of electrical activity recorded from the intercostal muscles and the central end of the fifth cervical root of the phrenic nerve. The degree of diaphragm paralysis was evaluated from changes in transdiaphragmatic pressure and reflected in rib cage and abdominal displacements. Animals were studied both before and after vagotomy breathing O2, 3.5% CO2 in O2, or 7% CO2 in O2. In dogs with intact vagi, both peak and rate of rise of phrenic and inspiratory intercostal electrical activity increased progressively as transdiaphragmatic pressure fell. Tidal volume decreased and breathing frequency increased as a result of a shortening in expiratory time. Inspiratory time and ventilation were unchanged by diaphragm paralysis. These findings were the same whether O2 or CO2 in O2 was breathed. After vagotomy, no significant change in phrenic or inspiratory intercostal activity occurred with diaphragm paralysis in spite of increased arterial CO2 partial pressure. Ventilation and tidal volume decreased significantly, and respiratory timing was unchanged. These results suggest that mechanisms mediated by the vagus nerves account for the compensatory increase in respiratory electrical activity during transient diaphragm paralysis. That inspiratory time is unchanged by diaphragm paralysis whereas the rate or rise of phrenic nerve activity increases suggest that reflexes other than the Hering-Breuer reflex contribute to the increased respiratory response.  相似文献   

16.
Thyroarytenoid muscle activity during hypoxia in awake lambs   总被引:1,自引:0,他引:1  
It is generally accepted that hypoxia in early life results in active laryngeal braking of expiratory airflow via the recruitment of glottic adductor muscles. We examined the electromyogram expiratory activity of the thyroarytenoid muscle in seven 11- to 18-day-old awake nonsedated lambs exposed to an inspired O2 fraction of 0.08 for 18 min. The lambs breathed through a face mask and a pneumotachograph. During baseline prehypoxic breathing, the thyroarytenoid muscle was largely inactive in each awake lamb. Unexpectedly, no recruitment of the thyroarytenoid muscle was recorded during hypoxia in any of the seven lambs; simultaneous examination of the flow-volume curves revealed an absence of expiratory airflow braking. Also unexpectedly, marked expiratory activity of the thyroarytenoid muscle was recorded, with each expiration occurring within less than 10 s after the return to room air. The resulting delay of expiration was apparent in the flow-volume loops. Thus, in awake 11- to 18-day-old lambs, 1) active expiratory glottic adduction is absent during hypoxia and 2) a return from hypoxia to room air results in prolonged expiration as well as active glottic adduction that controls end-expiratory lung volume.  相似文献   

17.
Influence of airway resistance on hypoxia-induced periodic breathing.   总被引:2,自引:0,他引:2  
We studied the effects of changing upper airway pressure on the variability of the dynamic response of ventilation to a hypoxic disturbance in 11 spontaneously breathing dogs. Supralaryngeal pressure, instantaneous inspiratory flow, end-expiratory lung volume, and the inspiratory and expiratory O2 and CO2 concentrations were continuously recorded at baseline and after a 1.5-min hypoxic stimulus (abrupt normoxic recovery). Arterial blood gases were obtained at baseline, at the end of the hypoxic period, and after 1 min of recovery. Airway resistances were modified during the recovery by changing the composition of the inspired gas (all with an inspiratory O2 fraction of 20.9%) among four different trials: two trials were realized with air (density 1.12 g/l), and the other two were with He or SF6 (respective density 0.42 and 4.20) in random order. There was no difference between baseline minute ventilation, arterial blood gases, and supralaryngeal resistance values preceding the trials. The hypoxemic and hypocapnic levels and the hypoxia-induced hyperventilation reached during the hypoxic tests were identical for the different hypoxic stimuli. The supralaryngeal resistance measured at peak flow was dramatically influenced by the composition of the inspired gas: 8.8 +/- 1.8 and 6.9 +/- 1.7 (SE) cmH2O.l-1.s with air, 7.2 +/- 2.2 with He, 21.9 +/- 5.5 with SF6 (P less than 0.05). Ventilatory fluctuations were consistently seen during the posthypoxic period. They were characterized by a strength index value (M) (Waggener et al. J. Appl. Physiol. 56: 576-581, 1984).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Carbon dioxide concentrations were increased during expiration in the upper one-half of the trachea, pharynx, and nasal sinuses to determine if elevation of upper airway CO2 would alter breathing or arterial blood gases in the awake pony. Carbon dioxide (100%) was injected into the midcervical trachea via a chronically implanted transcutaneous cannula during the first part of the animal's expiration. This maneuver elevated upper airway expiratory CO2 concentrations but prevented any exogenous CO2 from entering the lung and being absorbed into the arterial blood. Twelve experiments were performed on six ponies in which upper airway CO2 was elevated 2, 4, and 6% above the normal expired CO2 concentrations. Tidal volume increased in a dose dependent manner during upper airway CO2 exposure, but total ventilation was unchanged from base-line measurements made while the animal breathed room air. Arterial Po2 also increased during upper airway CO2 administration, reaching a mean value 6 Torr (1 Torr = 133.322 Pa) greater than the base-line values at the +6% CO2 exposure. We conclude that upper airway CO2 exposure alters breathing pattern slightly (increases tidal volume) and increases arterial PO2 in the awake pony.  相似文献   

19.
We have examined the effects of exposure to chronic maternal anemia, throughout the final one-third of gestation, on postnatal ventilatory and arousal responses to hypoxia, hypercapnia, and combined hypoxia-hypercapnia in sleeping lambs. While resting quietly awake, lambs from anemic ewes had higher arterial PCO(2) levels than control animals during the first 2-3 postnatal wk, but pH, arterial PO(2), and arterial O(2) saturation were not different. During active and quiet sleep lambs from anemic ewes had higher end-tidal CO(2) levels than control animals when breathing room air and at the time of spontaneous arousal or when aroused by progressive hypercapnia or by combined hypoxia-hypercapnia. Ventilation and arterial O(2) saturation during uninterrupted sleep and ventilatory responsiveness to hypoxia (inspiratory O(2) fraction, 10%), progressive hypercapnia, and combined hypoxia/hypercapnia were not significantly affected by exposure to maternal anemia. Our findings show that maternal anemia results in elevated PCO(2) levels in the offspring. This effect may be due, at least in part, to altered pulmonary function.  相似文献   

20.
Mechanical function of hyoid muscles during spontaneous breathing in cats   总被引:1,自引:0,他引:1  
We assessed the mechanical behavior of the geniohyoid and sternohyoid muscles during spontaneous breathing using sonomicrometry in anesthetized cats. When the animals breathed O2, the hyoid muscles either became longer or did not change length (but never shortened) during inspiration. During progressive hyperoxic hypercapnia, transient increases in geniohyoid muscle inspiratory lengthening occurred in many animals; however, at high PCO2 the geniohyoid invariably shortened during inspiration (mean 4.9% of resting length at the end of CO2 rebreathing; P less than 0.001). The PCO2 at which geniohyoid inspiratory lengthening changed to inspiratory shortening was significantly higher than the CO2 threshold for the onset of geniohyoid electrical activity (P less than 0.01). For the sternohyoid muscle, hypercapnia caused inspiratory lengthening in 13 of 17 cats and inspiratory shortening in 4 of 17 cats; on average the sternohyoid lengthened by 1.6% of resting length at the end of CO2 rebreathing (P less than 0.01). Sternohyoid lengthening occurred in spite of this muscle being electrically active. These results suggest that the relationship between hyoid muscle electrical activity and respiratory changes in length is very complex, so that the presence of hyoid muscle electrical activity does not necessarily indicate muscle shortening, and among the geniohyoid and sternohyoid muscles, the geniohyoid has a primary role as a hypopharyngeal dilator in the spontaneously breathing cat, with the sternohyoid muscle acting in an accessory capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号