首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 445 毫秒
1.
The plant cell wall has a somewhat paradoxical mechanical role in the plant: it must be strong enough to resist the high turgor of the cell contents, but at the right moment it must yield to that pressure to allow cell growth. The control of the cell wall's mechanical properties underlies its ability to regulate growth correctly. Recently, we have reported on changes in cell wall elasticity associated with organ formation at the shoot apical meristem in Arabidopsis thaliana. These changes in cell wall elasticity were strongly correlated with changes in pectin matrix chemistry, and we have previously shown that changes in pectin chemistry can dramatically effect organ formation. These findings point to a important role of the cell wall pectin matrix in cell growth control of higher plants. In this addendum we will discuss the biological significance of these new observations, and will place the scientific advances made possible through Atomic Force Microscopy-based nano-indentations in a relatable context with past experiments on cell wall mechanics.  相似文献   

2.
The composition of the cell wall of the cotton fiber (Gossypium hirsutum L. Acala SJ-1) has been studied from the early stages of elongation (5 days postanthesis) through the period of secondary wall formation, using cell walls derived both from fibers developing on the plant and from fibers obtained from excised, cultured ovules. The cell wall of the elongating cotton fiber was shown to be a dynamic structure. Expressed as a weight per cent of the total cell wall, cellulose, neutral sugars (rhamnose, fucose, arabinose, mannose, galactose, and noncellulosic glucose), uronic acids, and total protein undergo marked changes in content during the elongation period. As a way of analyzing absolute changes in the walls with time, data have also been expressed as grams component per millimeter of fiber length. Expressed in this way for plant-grown fibers, the data show that the thickness of the cell wall is relatively constant until about 12 days postanthesis; after this time it markedly increases until secondary wall cellulose deposition is completed. Between 12 and 16 days postanthesis increases in all components contribute to total wall increase per millimeter fiber length. The deposition of secondary wall cellulose begins at about 16 days postanthesis (at least 5 days prior to the cessation of elongation) and continues until about 32 days postanthesis. At the time of the onset of secondary wall cellulose deposition, a sharp decline in protein and uronic acid content occurs. The content of some of the individual neutral sugars changes during development, the most prominent change being a large increase in noncellulosic glucose which occurs just prior to the onset of secondary wall cellulose deposition. Methylation analyses indicate that this glucose, at least in part, is 3-linked. In contrast to the neutral sugars, no significant changes in cell wall amino acid composition are observed during fiber development.  相似文献   

3.
Summary An antibody to the inner wall layer ofGloeomonas kupfferi was isolated and used in a developmental analysis of cell wall processing, secretion and extracellular assembly. The focus of the processing of this matrix layer is the endomembrane system, in particular the Golgi apparatus (GA) and contractile vacuole (CV). During interphase, inner wall materials are processed in the GA, packaged in trans face vesicles and transported to the CV, the final internal depository of wall precursors until release to the cell surface. During cell division, significant changes occur in the inner wall layer processing. Early on in cytokinesis, the GA does not label with our antibody, suggesting that other wall layers are being processed. In later stages of cytokinesis, the GA changes in morphology and begins to produce inner wall layer materials. These wall precursors are shuttled to the CV where they are released around the daughter cell protoplasts. The first wall layer that is formed around daughter cells is the crystalline median wall layer. Once assembled, the inner wall layer condenses upon the crystalline layer and grows in size.  相似文献   

4.
An experimental system which allows the selective reisolation and structural analysis of a newly made (nascent) segment of pneumococcal peptidoglycan at various times after its incorporation into the preexisting old cell wall was developed. Age-related changes were observed in each one of the major nine wall peptide components resolvable by a high-performance liquid chromatography method. The nascent wall segment (made in 1.7% of a generation time) contained 60% of its peptides as the alanyl-isoglutamyl-lysine tripeptide monomer, 12% as the directly cross-linked peptide dimer (tri-tetra peptide), and a total of 2% as the two major peptide trimers. In the mature wall segment reisolated 1 h later (1 generation time), the proportion of the tripeptide monomer dropped to 40%, while the major dimer and trimers increased to 23% and 8%, respectively. The age-related structural changes were completely inhibited by cefotaxime. The observations indicate that covalent bonds in the structure of pneumococcal peptidoglycan undergo substantial secondary rearrangements after incorporation into the preexisting wall. These changes are likely to be related to the movement of the conserved cell wall segments within the cell surface during cell division.  相似文献   

5.
The choice of a procedure for measurements of blood vessels (b.v.) should depend on the type of b.v. investigated: For vessels defined anatomically and in respect to their function of organ supply the method of SUWA et al. (1961) is the most adequate one, provided that b.v. dilatations developing during lifetime and persisting after death as a result of special methods of fixation or shock-freezing or being generated by postmortal perfusion can be excluded. Changes in wall thickness of defined b.v. sectioned transversally can also be determined by measurement of the wall area and/or the maximal chord length. At undefined vessels procedures which measure the wall-to-lumen ratio are useless, because lumen changes are not quantifiable. Thus lumen changes can mask of mimick changes in wall thickness. The especially interesting b.v. either with a pathologically changed or without an elastic membrane are not measurable. The unsable method to detect changes in wall thickness at undefined b.v. is founded on the determination of the vessel wall area and/or the number of all the b.v. classified according to their diameter of a certain organ region. But the investigation of the smallest precapillary vessels presupposes their visualization by a special modification of the ATPase reaction.  相似文献   

6.
A single exposure to the greatest endurable gravitation stress causes such changes in the wall of the vertebral artery as division into layers, oedema, vacuolization of smooth muscle cells. Repeated exposure according to a training schedule resulted in reconstruction of the vascular wall (division of the medial sheath of the artery into several muscular layers). Concentration of smooth muscle cells in "layers" increased when training was after a "cumulative" schedule. Under conditions of increasing cumulative effect the collagenization of the media and dystrophy of the muscular and elastic tissue began. The greatest changes in the arterial wall took place in the upper parts of the vertebral artery at the level of the 2nd and 3d cervical vertebra.  相似文献   

7.
The ability of cells to perceive changes in the composition and mechanical properties of their cell wall is crucial for plants to achieve coordinated growth and development. Evidence is accumulating to show that the plant cell wall, like its yeast counterpart, is capable of triggering multiple signalling pathways. The components of the cell wall that are responsible for initiating these signal responses remain unknown; however, recent technological advances in cell wall analysis may now facilitate the identification of these components and accelerate the characterisation of changes that occur in cell wall mutants.  相似文献   

8.
The graviresponse of the leaf-sheath pulvinus of oat (Avena sativa) involves an asymmetric growth response accompanied by several asymmetric processes, including degradation of starch and cell wall synthesis. To understand further the cellular and biochemical events associated with the graviresponse, changes in cell walls and their constituents and the activities of related enzymes were investigated in excised pulvini. Asymmetric increases in dry weight with relatively symmetric increases in wall weight accompanied the graviresponse. Starch degradation could not account for increases in wall weight. However, a strong asymmetry in invertase activity indicated that hydrolysis of exogenous sucrose could contribute significantly to the increases in wall and dry weights. Most cell wall components increased proportionately during the graviresponse. However, beta-D-glucan did not increase symmetrically, but rather increased in proportion in lower halves of gravistimulated pulvini. This change resulted from an increase in glucan synthase activity in lower halves. The asymmetry of beta-D-glucan content arose too slowly to account for initiation of the graviresponse. A similar pattern in change in wall extensibility was also observed. Since beta-D-glucan was the only wall component to change, it is hypothesized that this change is the basis for the change in wall extensibility. Since wall extensibility changed too slowly to account for growth initiation, it is postulated that asymmetric changes in osmotic solutes act as the driving factor for growth promotion in the graviresponse, while wall extensibility acts as a limiting factor during growth.  相似文献   

9.
Electron microscopic radioautography was performed in skin biopsies obtained from six surgical patients without skin lesions. It has been discovered that besides typical vessels--arterioles and venules--there are vessels with damaged structure in connective tissue of skin basis. On serial electron microscopic sections vascular wall thinning and gradual disconnection of wall-forming cells can be visualized. The authors suggest that structural changes in connective tissue vessels of skin basis are the physiological phenomenon. As a result of such changes pericytes may separate from the vascular wall and initiate new populations of fibroblasts.  相似文献   

10.
Electron Microscopy of the Cell Wall of Rickettsia prowazeki   总被引:11,自引:2,他引:9       下载免费PDF全文
Purified Rickettsia prowazeki were found to undergo morphological changes resembling plasmolysis when stained with uranyl acetate, resulting in rod-like forms. Sequential electron micrographs of disintegrating organisms provide evidence for the cell wall origin of these rod-like forms. The substructure of the cell wall was discerned by using negative-contrast electron microscopy. The wall was found to be composed of repetitive subunits with a periodicity of 13 nm and was surrounded by a thin membrane.  相似文献   

11.
Roy  S.  Conway  W. S.  Watada  A. E.  Sams  C. E.  Pooley  C. D.  Wergin  W. P. 《Protoplasma》1994,178(3-4):156-167
Summary The ripening and softening of fleshy fruits involves biochemical changes in the cell wall. These changes reduce cell wall strength and lead to cell separation and the formation of intercellular spaces. Calcium, a constituent of the cell wall, plays an important role in interacting with pectic acid polymers to form cross-bridges that influence cell wall strength. In the present study, cationic colloidal gold was used for light and electron microscopic examinations to determine whether the frequency and distribution of anionic binding sites in the walls of parenchyma cells in the apple were influenced by calcium, which was pressure infiltrated into mature fruits. Controls were designed to determine the specificity of this method for in muro labelling of the anionic sites on the pectin polymers. The results indicate that two areas of the cell wall were transformed by the calcium treatment: the primary cell walls on either side of the middle lamella and the middle lamella intersects that delineate the intercellular spaces. The data suggest that calcium ions reduce fruit softening by strengthening the cell walls, thereby preventing cell separation that results in formation of intercellular spaces.Abbreviations EDTA ethylenediaminotetraacetic acid - PATAg periodic acid-thiocarbohydrazide-silver proteinate  相似文献   

12.
The use of the Quantimet for measurements of structural wall reactions of blood vessels (b.v.), visualized selectively by a modification of the ATPase reaction, requires that changes in wall thickness are not mimicked by differences in deposition of the reaction product, by changes of the b.v. lumen, and/or by b.v. elongations, especially meanderings occurring independently of thickenings of vessel walls and caused solely by increase of the intravascular pressure or by vasoconstriction. The article has substantiated the conclusion that these requirements are fulfilled.  相似文献   

13.
14.
Auxin-induced changes of wall-rheological properties during different growth rates of rye coleoptile segments (Secale cereale L.) were investigated. In addition, changes of osmotic concentration and turgor pressure were measured. Decrease of turgor and of osmotic concentration followed a synchronous time course. Auxin-incubated segments exhibited a faster decrease and eventually lower values of both parameters. Creep test extensibility measurements demonstrate that apparent plastic as well as elastic extensibility of distilled-water-incubated segments strongly decreased during 24 h. In auxin-incubated segments apparent plastic as well as elastic extensibilities were strongly increased, even in the absence of growth due to insufficient turgor pressure. The increasing effect of auxin on elastic wall properties is also reflected by an increase in relative reversible length (part of segment length by which segments shrink after freezing/thawing as referred to total length) and a complementary decrease of relative irreversible length (remaining length after turgor elimination as referred to turgid length); again the effects were independent of growth rate and turgor pressure. Cellulose synthesis inhibition of approx. 80% by dichlorobenzonitrile (DCB) had no significant effect either on growth or on wall-rheological properties. Independent of whether the changed rheological wall behaviour of auxin-incubated segments is causally related to the mechanism of auxin-induced wall loosening, it indicates changes of wall polymer properties and/or interactions which are conserved when no actual length increase occurs due to insufficient turgor pressure. The results suggest that IAA-induced wall loosening may be primarily mediated by cell wall changes other than cleavage of covalent, load-bearing bonds as hypothesized in various wall loosening models.  相似文献   

15.
An inositol deficiency in the inositol-requiring (inl) mutant of Neurospora crassa led to changes in the composition of the inositol-containing lipids and the cell wall. On deficient levels of inositol, phosphatidyl inositol decreased by 23-fold, di(inositolphosphoryl) ceramide decreased by 4-fold, and monoinositolphosphoryl ceramide increased slightly. The inositol deficiency also led to an aberrant hyphal morphology and changes in both the amount of cell wall and the amino sugar content of the cell wall. The glucosamine content of the cell wall decreased by 50%, the galactosamine increased by 50%, but no significant changes were found in the content of the cell wall amino sugar precursors, or in the amino acid, glucose, or total hexose content of the cell wall. Inositol-containing compounds were found associated with purified cell wall material. These compounds were bound tightly to the cell wall but could be removed by treatment with alkali, a treatment which disrupts the cell wall integrity. Possible mechanisms of how changes in lipid composition can affect cell wall biosynthesis are discussed.  相似文献   

16.
Some pathological conditions may affect osmolarity, which can impact cell, tissue, and organ volume. The hypothesis of this study is that changes in osmolarity affect the zero-stress state and mechanical properties of the aorta. To test this hypothesis, a segment of mouse abdominal aorta was cannulated in vivo and mechanically distended by perfusion of physiological salt (NaCl) solutions with graded osmolarities from 145 to 562 mosM. The mechanical (circumferential stress, strain, and elastic modulus) and morphological (wall thickness and wall area) parameters in the loaded state were determined. To determine the osmolarity-induced changes of zero-stress state, the opening angle was observed by immersion of the sectors of mouse, rat, and pig thoracic aorta in NaCl solution with different osmolarities. Wall volume and tissue water content of the rings were also recorded at different osmolarities. Our results show that acute aortic swelling due to low osmolarity leads to an increase in wall thickness and area, a change in the stress-strain relationship, and an increase in the elastic modulus (stiffness) in mouse aorta. The opening angle, wall volume, and water content decreased significantly with increase in osmolarity. These findings suggest that acute aortic swelling and shrinking result in immediate mechanical changes in the aorta. Osmotic pressure-induced changes in the zero-stress state may serve to regulate mechanical homeostasis.  相似文献   

17.
Abstract Two nisin-resistant variants of a strain of Listeria innocua were isolated after growth in the presence of 500 and 4000 IU ml−1 of nisin A showed increased cell wall hydrophobicity, resistance to phage attack and three different cell wall-acting antibiotics, as well as to the peptidoglycan hydrolytic enzymes lysozyme and mutanolysin, as compared to the parental strain. Transmission electron microscopy revealed marked thickening of the wall of nisin-resistant cells with an irregular surface. Differences in thickness were lost after cell wall purification and no significant difference in gross wall composition was observed between the parental and resistant variants. Cell wall changes in nisin-resistant listeriae are attributed to abnormal cell wall synthesis and autolysin inhibition, the latter possibly associated with subtle changes in cell wall structures and function.  相似文献   

18.
The variations of tension on the wall of the isolated right verticle have been observed on 18 dogs. The Tension/Volume curve we got can be superimposed to that obtained by pressures. The wall of the right ventricle itself (the radius of the curve in the cavity and the wall-thickness) seems to vary only with the changes in its tension in a rather small part of the curve.  相似文献   

19.
Alterations in wall ultrastructure accompanying resistant sporangium maturation and meiospore liberation in Allomyces arbuscula were examined by scanning electron microscopy. Three discrete wall layers were identified, each of which underwent marked changes during processes leading to zoospore release. The outermost wall layer, the hyphal sheath continuous with the hypha, was physically altered during the maturation process preparatory to induction and release of meiospores. The integrity of this wall layer was broken, and it was no longer closely juxtaposed to the heavy pitted wall layer that lay beneath it. A fibrillar matrix seemed to cement the two layers to one another before this desiccation. A single, raised, longitudinal dehiscence ridge on each meiosporangium appeared to be a structurally differentiated region of the pitted wall layer at which sporangium rupture occurred to permit emergence of the protoplast. By its thickness the pitted wall layer was likely to provide mechanical rigidity to the meiosporangium. Beneath the pitted wall layer, another thin, flexible wall layer surrounded the protoplast. From this structure, a single exit papilla was cleaved at the apical region to effect the release of meiospores from the protruding protoplast. Thus a sequence of structural changes in well-differentiated multiple wall layers is implicated in the sporulation process in this organism.  相似文献   

20.
The polysaccharide components (mannan and glucan) in the cell wall ofCandida boidinii M 363 grown on methanol and glucose as control were investigated using electron microscopy, cytochemical and biochemical methods. An ultrastructural rearrangement of the polymers in the cell wall of yeasts cultivated on methanol in comparison to those cultivated on glucose was established. The morphological changes correlate to the quantitative changes in the polysaccharide constituents of the cell wall. The forming and the role of thiosemihydrocarbazide (TSHC) — negative zones in theCandida boidinii cell wall cultivated on methanol media are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号