首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Animal models are increasingly gaining values by cross-comparisons of response or resistance to clinical agents used for patients.However,many disease mechanisms and drug effects generated from animal models are not transferable to human.To address these issues,we developed SysFinder(http://lifecenter.sgst.cn/SysFinder),a platform for scientists to find appropriate animal models for translational research.SysFinder offers a "topic-centered" approach for systematic comparisons of human genes,whose functions are involved in a specific scientific topic,to the corresponding homologous genes of animal models.Scientific topic can be a certain disease,drug,gene function or biological pathway.SysFinder calculates multi-level similarity indexes to evaluate the similarities between human and animal models in specified scientific topics.Meanwhile,SysFinder offers species-specific information to investigate the differences in molecular mechanisms between humans and animal models.Furthermore,SysFinder provides a userfriendly platform for determination of short guide RNAs(sgRNAs) and homology arms to design a new animal model.Case studies illustrate the ability of SysFinder in helping experimental scientists.SysFinder is a useful platform for experimental scientists to carry out their research in the human molecular mechanisms.  相似文献   

2.
Spontaneous atherosclerosis is largely an occlusive disease of medium-size arteries whose progression in a hyperlipidemic environment reflects chronic interactions among injury stimuli to the vessel wall and "responses to injury" by vascular tissue and certain blood components. Development of vessel lesions in animal models of spontaneous atherosclerosis and (at least in principle) in man largely reflects responses of three major cell types (vascular endothelial cells, vascular smooth muscle cells, monocytes-macrophages) as well as the content and distribution of lipids among various lipoprotein subclasses and the increased atherogenicity of modified (e.g., oxidized) lipoproteins. The severe clinical complications associated with spontaneous atherosclerosis, along with its rather common incidence in man, have focused attention on the prevention and therapy of this vascular disease state. Some pharmacological studies in animal models of spontaneous atherosclerosis and some retrospective epidemiological studies in man suggest that vitamin E, the principal (if not sole) lipid-soluble chain-breaking tissue antioxidant, might have therapeutic benefit as an antiatherosclerotic agent. This suggestion gains support from a variety of compelling in vitro evidence demonstrating direct influences of vitamin E on cells and lipoproteins likely involved in the pathogenesis of spontaneous atherosclerosis. Biochemical and cellular data indicate that the potential antiatherogenic activity of vitamin E could reflect its activities as a regulator of endothelial, smooth muscle, or monocyte-macrophage function, an inhibitor of endothelial membrane lipid peroxidation, a modulator of plasma lipid levels and lipid distribution among circulating lipoproteins, and a preventor of lipoprotein oxidative modification. On the other hand, there is a comparative lack of conclusive evidence from animal models regarding: (a) the importance to atherogenesis of vascular and cellular processes modulated by vitamin E; (b) the influence of vitamin E on these processes in vivo and, consequently, on the initiation/progression of spontaneous atherosclerosis. Therefore, pharmacologic investigation of vitamin E (and synthetic, vitamin E-like antioxidants) in nutritional and hyperlipidemic animal models of spontaneous atherosclerosis is required to establish whether any atherosclerotic impact is associated with vitamin E and, if so, what the mechanistic basis of the therapeutic benefit is. Such a line of experimental inquiry should also increase our understanding of the pathogenesis of atherosclerotic vessel disease per se.  相似文献   

3.
The human species is perhaps unique for its high incidence of spontaneous, chronic ulcer of the glandular mucosa of the stomach and duodenum. Nevertheless, spontaneous ulcers, usually of the stomach, commonly occur in many domestic animals. Some of these lesions are chronic and they may occur in either the glandular or squamous-lined regions of the stomach. As with the human disease(s) the pathogenesis in domestic animals is multifactorial, poorly understood, and variable between and within species. Some parallelisms exist in aggressive and defensive factors, but parasitic factors, via gastrinemia, and a histaminic factor via diet may occur in some animal ulcers. Underlying environmental stresses, of debated importance with the human disease but of proven importance in several rat ulcer models, may play a key role in some spontaneous gastric ulcer situations in swine and cattle. This is manifest in crowding and transporting situations. Seasonal, age, and weaning factors also alter the incidence of ulcer in cattle. Psychologic/environmental stress-related factors, as well as drug and physiologic stress factors appear to upset the balance in the horse between resistance and aggressive mucosal factors. Dietary factors which are highly important in ulcer disease in swine and chickens, have not yet been incriminated in spontaneous, equine ulcer disease. More investigation of the pathogenesis of domestic animal ulcers will prove useful for both human and veterinary medicine in terms of a) elucidating pathogenetic mechanisms for all species, b) may provide new animal models for study, and c) may enhance prevention of such lesions in domestic animals for economic and humanitarian reasons.  相似文献   

4.
At the 2010 Keystone Symposium on "Malaria: new approaches to understanding Host-Parasite interactions", an extra scientific session to discuss animal models in malaria research was convened at the request of participants. This was prompted by the concern of investigators that skepticism in the malaria community about the use and relevance of animal models, particularly rodent models of severe malaria, has impacted on funding decisions and publication of research using animal models. Several speakers took the opportunity to demonstrate the similarities between findings in rodent models and human severe disease, as well as points of difference. The variety of malaria presentations in the different experimental models parallels the wide diversity of human malaria disease and, therefore, might be viewed as a strength. Many of the key features of human malaria can be replicated in a variety of nonhuman primate models, which are very under-utilized. The importance of animal models in the discovery of new anti-malarial drugs was emphasized. The major conclusions of the session were that experimental and human studies should be more closely linked so that they inform each other, and that there should be wider access to relevant clinical material.  相似文献   

5.
In the translational process of developing innovative therapies for DMD (Duchenne muscular dystrophy), the last preclinical validation step is often carried out in the most relevant animal model of this human disease, namely the GRMD (Golden Retriever muscular dystrophy) dog. The disease in GRMD dogs mimics human DMD in many aspects, including the inter-individual heterogeneity. This last point can be seen as a drawback for an animal model but is inherently related to the disease in GRMD dogs closely resembling that of individuals with DMD. In order to improve the management of this inter-individual heterogeneity, we have screened a combination of biomarkers in sixty-one 2-month-old GRMD dogs at the onset of the disease and a posteriori we addressed their predictive value on the severity of the disease. Three non-invasive biomarkers obtained at early stages of the disease were found to be highly predictive for the loss of ambulation before 6 months of age. An elevation in the number of circulating CD4+CD49dhi T cells and a decreased stride frequency resulting in a reduced spontaneous speed were found to be strongly associated with the severe clinical form of the disease. These factors can be used as predictive tests to screen dogs to separate them into groups with slow or fast disease progression before their inclusion into a therapeutic preclinical trial, and therefore improve the reliability and translational value of the trials carried out on this invaluable large animal model. These same biomarkers have also been described to be predictive for the time to loss of ambulation in boys with DMD, strengthening the relevance of GRMD dogs as preclinical models of this devastating muscle disease.KEY WORDS: GRMD, DMD, Dystrophin, Dog, Predictive biomarker, Lymphocyte, CD49d, Gait analysis, Accelerometry  相似文献   

6.
Animal models of spontaneous diabetic kidney disease   总被引:10,自引:0,他引:10  
Kidney disease, characterized by proteinuria and glomerular lesions, is a common complication of spontaneous diabetes mellitus in many animal species. It occurs in animals with hypoinsulinemia, hyperinsulinemia, or impaired glucose tolerance. The renal functional and structural abnormalities in spontaneously diabetic animals resemble human diabetic nephropathy in many respects. Mesangial expansion and glomerular basement membrane thickening, two structural hallmarks of diabetic glomerulopathy in humans, are the most frequently encountered lesions in animals. In addition, a nodular form of mesangial expansion that resembles but is not identical with human nodular glomerulosclerosis or the Kimmelstiel-Wilson lesion has been observed in some animal models. Other abnormalities, such as exudative hyaline lesions and arteriolar hyalinosis, have also been noted occasionally in other models. Although diabetic animals may develop kidney disease that resembles human diabetic nephropathy, no single animal model develops renal changes identical to those seen in humans. Nonetheless, animal models with spontaneous diabetic kidney disease may be useful for investigating the mechanisms of development of diabetic nephropathy and the effects of various treatment modalities on the progression of renal disease.  相似文献   

7.
Dog models of naturally occurring cancer   总被引:2,自引:0,他引:2  
Studies using dogs provide an ideal solution to the gap in animal models for natural disease and translational medicine. This is evidenced by approximately 400 inherited disorders being characterized in domesticated dogs, most of which are relevant to humans. There are several hundred isolated populations of dogs (breeds) and each has a vastly reduced genetic variation compared with humans; this simplifies disease mapping and pharmacogenomics.?Dogs age five- to eight-fold faster than do humans, share environments with their owners, are usually kept until old age and receive a high level of health care. Farseeing investigators recognized this potential and, over the past decade, have developed the necessary tools and infrastructure to utilize this powerful model of human disease, including the sequencing of the dog genome in 2005. Here, we review the nascent convergence of genetic and translational canine models of spontaneous disease, focusing on cancer.  相似文献   

8.
Antidepressants are used since 40 years. All presently used antidepressants have a slow onset of action and do not improve all patients; thus, there is an absolute need for new antidepressants. A variety of animal models, often based upon the monoaminergic theory of depressive disorders, has been used to screen the current antidepressants. In fact, the main focus of most of these animal models has been to predict the antidepressant potential i.e. to establish predictive validity. However, the evaluation of such animal models should also consider face validity, i.e. how closely the model resembles the human condition, and this should help to identify innovating medicines. Antidepressants, when taken by a healthy person, induce nothing more than side effects, unrelated to an action on mood, whereas they alleviate depressive symptomatology in depressed patients. We have speculated that genetically selected animal models would be closer to the human clinical situation than models based on standard laboratory strains. We have depicted here that marked differences exist between strains of mice in the amount of immobility i.e. "spontaneous helplessness" observed in the tail suspension test, a method used to screen potential antidepressants. We have studied the behavioural characteristics of mice selectively bred for spontaneous high or low immobility scores in the tail suspension test. Hopefully, these selectively bred lines will provide a novel approach to investigate behavioural, neurochemical and neuroendocrine correlates of antidepressant action.  相似文献   

9.
Mammalian cloning by nuclear transfer from somatic cells has created new opportunities to generate animal models of genetic diseases in species other than mice. Although genetic mouse models play a critical role in basic and applied research for numerous diseases, often mouse models do not adequately reproduce the human disease phenotype. Cystic fibrosis (CF) is one such disease. Targeted ablation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in mice does not adequately replicate spontaneous bacterial infections observed in the human CF lung. Hence, several laboratories are pursuing alternative animal models of CF in larger species such as the pig, sheep, rabbits, and ferrets. Our laboratory has focused on developing the ferret as a CF animal model. Over the past few years, we have investigated several experimental parameters required for gene targeting and nuclear transfer (NT) cloning in the ferret using somatic cells. In this review, we will discuss our progress and the hurdles to NT cloning and gene-targeting that accompany efforts to generate animal models of genetic diseases in species such as the ferret.  相似文献   

10.
BACKGROUND: Gastroesophageal reflux disease (GERD) is increasingly prevalent in the human population. Current animal models require surgical or other manipulation to produce symptoms. An animal model that exhibits spontaneous GERD would provide the opportunity for much-needed research examining the susceptibility, diagnosis, and treatment of GERD. METHODS: Eight baboons (Papio hamadryas sp.) were diagnosed with GERD histopathologically using biopsies or postmortem tissues. RESULTS: The disease was characterized by a spectrum of symptoms comparable with that found in the human population. Some subjects had no gross signs of clinical disease, but were diagnosed by histopathological examination. Almost all subjects presented with at least one clinical sign of the disease. Regurgitation was the most common. CONCLUSIONS: The baboon may be a superior animal model for GERD research because it is a naturally occurring model and is anatomically and physiologically similar to humans.  相似文献   

11.
The path to induced pluripotency Discovery of a pan-species pluripotency network Animal iPSCs and disease modelling Issues with large animal iPSCs Conclusions The derivation of human embryonic stem cells and subsequently human induced pluripotent stem cells (iPSCs) has energized regenerative medicine research and enabled seemingly limitless applications. Although small animal models, such as mouse models, have played an important role in the progression of the field, typically, they are poor representations of the human disease phenotype. As an alternative, large animal models should be explored as a potentially better approach for clinical translation of cellular therapies. However, only fragmented information regarding the derivation, characterization and clinical usefulness of pluripotent large animal cells is currently available. Here, we briefly review the latest advances regarding the derivation and use of large animal iPSCs.  相似文献   

12.
Hepatocellular carcinoma (HCC) represents ~90% of all cases of primary liver cancer and occurs predominantly in patients with underlying chronic liver disease and cirrhosis. Establishing appropriate animal models for HCC is required for basic and translational studies, especially the models that can recapitulate one of the human disease settings. Current animal models can be categorized as chemically-induced, genetically-engineered, xenograft, or a combination of these with each other or with a metabolic insult. A single approach to resemble human HCC in animals is not sufficient. Combining pathogenic insults in animal models may more realistically recapitulate the multiple etiologic agents occurring in humans. Combining chemical injury with metabolic disorder or alcohol consumption in mice reduces the time taken to hepatocarcinogenesis. Genetically-engineering weak activation of HCC-promoting pathways combined with disease-specific injury models will possibly mimic the pathophysiology of human HCC in distinct clinical settings.  相似文献   

13.
Liver disease is a severe complication in patients with Cystic Fibrosis (CF), a genetic disease caused by mutations in the gene encoding for cystic fibrosis transmembrane conductance regulator (CFTR) channel. The sequence of events leading to CFLD is still unclear and has limited the development of more specific treatments other than the bile acid UDCA. However, in the last twenty years, several gaps have been filled, which have mainly been possible due to the availability of different animal models that mimic CF. CF mice, although they lack a spontaneous liver manifestation, have been essential to better understand the multiple functions of CFTR expression on the apical membrane of cholangiocytes, from chloride channel to regulator of epithelial innate immunity. Additionally, we have learned that the gut microbiota might be a pathogenetic factor for the development of liver disease. The recent creation of novel CF animal models (i.e. pig and ferret) that better reproduce the human disease, will allow for comparative studies with species that spontaneously develop the liver disease and will hopefully lead to novel therapeutic treatments. In this review, we have compared and summarized the main features of the current available CF animal models and their applicability for the study of the liver phenotype.  相似文献   

14.
15.
Animal models have received particular attention as key examples of material models. In this paper, we argue that the specificities of establishing animal models—acknowledging their status as living beings and as epistemological tools—necessitate a more complex account of animal models as materialised models. This becomes particularly evident in animal-based models of diseases that only occur in humans: in these cases, the representational relation between animal model and human patient needs to be generated and validated. The first part of this paper presents an account of how disease-specific animal models are established by drawing on the example of transgenic mice models for Alzheimer’s disease. We will introduce an account of validation that involves a three-fold process including (1) from human being to experimental organism; (2) from experimental organism to animal model; and (3) from animal model to human patient. This process draws upon clinical relevance as much as scientific practices and results in disease-specific, yet incomplete, animal models. The second part of this paper argues that the incompleteness of models can be described in terms of multi-level abstractions. We qualify this notion by pointing to different experimental techniques and targets of modelling, which give rise to a plurality of models for a specific disease.  相似文献   

16.
17.
The pig: a model for human infectious diseases   总被引:1,自引:0,他引:1  
An animal model to study human infectious diseases should accurately reproduce the various aspects of disease. Domestic pigs (Sus scrofa domesticus) are closely related to humans in terms of anatomy, genetics and physiology, and represent an excellent animal model to study various microbial infectious diseases. Indeed, experiments in pigs are much more likely to be predictive of therapeutic treatments in humans than experiments in rodents. In this review, we highlight the numerous advantages of the pig model for infectious disease research and vaccine development and document a few examples of human microbial infectious diseases for which the use of pigs as animal models has contributed to the acquisition of new knowledge to improve both animal and human health.  相似文献   

18.
The lysosomal storage disorders (LSD) represent a heterogeneous group of inherited diseases characterized by the accumulation of non-metabolized macromolecules (by-products of cellular turnover) in different tissues and organs. LSDs primarily develop as a consequence of a deficiency in a lysosomal hydrolase or its co-factor. The majority of these enzymes are glycosidases and sulfatases, which in normal conditions participate in degradation of glycoconjugates: glycoproteins, glycosaminoproteoglycans, and glycolipids. Significant insights have been gained from studies of animal models, both in understanding mechanisms of disease and in establishing proof of therapeutic concept. These studies have led to the introduction of therapy for certain LSD subtypes, primarily by enzyme replacement or substrate reduction therapy. Animal models have been useful in elucidating molecular changes, particularly prior to onset of symptoms. On the other hand, it should be noted certain animal (mouse) models may have the underlying biochemical defect, but not show the course of disease observed in human patients. There is interest in examining therapeutic options in the larger spontaneous animal models that may more closely mimic the brain size and pathology of humans. This review will highlight lessons learned from studies of animal models of disease, drawing primarily from publications in 2011–2012.  相似文献   

19.
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive impairment. It is caused by synaptic failure and excessive accumulation of misfolded proteins. To date, almost all advanced clinical trials on specific AD-related pathways have failed mostly due to a large number of neurons lost in the brain of patients with AD. Also, currently available drug candidates intervene too late. Stem cells have improved characteristics of self-renewal, proliferation, differentiation, and recombination with the advent of stem cell technology and the transformation of these cells into different types of central nervous system neurons and glial cells. Stem cell treatment has been successful in AD animal models. Recent preclinical studies on stem cell therapy for AD have proved to be promising. Cell replacement therapies, such as human embryonic stem cells or induced pluripotent stem cell–derived neural cells, have the potential to treat patients with AD, and human clinical trials are ongoing in this regard. However, many steps still need to be taken before stem cell therapy becomes a clinically feasible treatment for human AD and related diseases. This paper reviews the pathophysiology of AD and the application prospects of related stem cells based on cell type.  相似文献   

20.
Osteoarthritis (OA) and osteochondrosis (OC) are two of the main challenges in orthopedics, whose definitive diagnosis is usually based on radiographic/arthroscopic evidences. Their early diagnosis should allow preventive or timely therapeutic actions, which are generally precluded from the poor relationships occurring between symptomatologic and radiographic evidences. These limitations should be overcome by improving the knowledge on articular tissue metabolism and on molecular factors regulating its normal homeostasis, also identifying novel OA and OC biomarkers suitable for their earlier diagnoses, whenever clinical/pathological inflammatory scenarios between these joint diseases seem somewhat related. To identify proteins involved in their aetiology and progression, we undertook a differential proteomic analysis of equine synovial fluid (SF), which compared the protein pattern of OA or OC patients with that of healthy individuals. Deregulated proteins in OA and OC included components related to inflammatory state, coagulation pathways, oxidative stress and matrix damage, which were suggestive of pathological alterations in articular homeostasis, plasma-SF exchange, joint nutritional status and vessel permeability. Some proteins seemed commonly deregulated in both pathologies indicating that, regardless of the stimulus, common pathways are affected and/or the animal joint uses the same molecular mechanisms to restore its homeostasis. On the other hand, the increased number of deregulated proteins observed in OA with respect to OC, together with their nature, confirmed the high inflammatory character of this disease. Some deregulated proteins in OA found a verification by analyzing the SF of injured arthritic joints following autologous conditioned serum treatment, an emergent therapy that provides positive results for both human and equine OA. Being the horse involved in occupational/sporting activities and considered as an excellent animal model for human joint diseases, our data provide suggestive information for tentative biomedical extrapolations, allowing to overcome the limitations in joint size and workload that are typical of other small animal models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号