首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The periodic sways of a group of ten Pinus contorta var. latifolia (lodgepole pine) trees with slender stems from the Two Creeks site (TW) and ten stout trees from the Chickadee site (CH) both in Alberta, Canada were quantified. Tree displacement at TW was measured during periods of consistent wind direction with three mean wind speeds (1.9, 4.6, and 5.4 m/s) and for two mean wind speeds at CH (5.0 and 7.9 m/s). Spectral analysis of sway displacement data showed a decrease in the frequency with wind speed for trees at TW, but remained unchanged for trees at CH. Significant correlations between tree sway frequency and amplitude during high winds at TW indicate a loss of sway energy concomitant with the occurrence of high collision intensity. These observations support the hypothesis that inter-crown collisions have an important influence on the sway frequency of trees and should be incorporated into efforts to model their sway dynamics. We also present a theoretical collision-damped sway model which supports our empirical findings.  相似文献   

2.
A field experiment with a 2 x2 factorial block design (WxSx)was conducted in northern Sweden where the mechanical loadsin the crowns of sixteen 2.5m high Scots pine (Pinus sylvestrisL.)trees were increased during one winter (W1, dormant period)and (or) summer (S1, growth period). Trees treated were loadedwith five 2kg bags hung over mid-crown branches close to thestem, i.e. 10kg per tree. After treatment, all trees were leftto grow untreated for one additional year. Trees were then cutat ground level and annual ring widths for the last 5 yearswere measured on stem discs taken at 1, 5, 10, 15, 20, 30 and50% of tree height. Differences between treatments were analysedwith two-way factorial ANOVA. Accumulated treatment responsewas positive for winter loading (W1Sx) at all levels, and statisticallysignificant at 1, 15 and 20% of tree height. Summer loading(WxS1) had positive effects at the lowest and middle parts ofthe stem, and negative in between. No statistically significanttwo-way interaction (W xS) was observed. Results support thehypothesis that Scots pine trees can retain information aboutmechanical forces acting on their stems during winter, and respondto this during the following growth period. The results alsosuggest that stem form of trees in boreal forests may be stronglyaffected by winter conditions. Stem form; mechanical perturbation; Scots pine; Pinus sylvestris; dendrometer; diameter; growth; dormancy; thigmomorphogenesis; wind; sway  相似文献   

3.
Mechanical stability of trees under dynamic loads   总被引:3,自引:0,他引:3  
Tree stability in windstorms and tree failure are important issues in urban areas where there can be risks of damage to people and property and in forests where wind damage causes economic loss. Current methods of managing trees, including pruning and assessment of mechanical strength, are mainly based on visual assessment or the experience of people such as trained arborists. Only limited data are available to assess tree strength and stability in winds, and most recent methods have used a static approach to estimate loads. Recent research on the measurement of dynamic wind loads and the effect on tree stability is giving a better understanding of how different trees cope with winds. Dynamic loads have been measured on trees with different canopy shapes and branch structures including a palm (Washingtonia robusta), a slender Italian cypress (Cupressus sempervirens) and trees with many branches and broad canopies including hoop pine (Araucaria cunninghamii) and two species of eucalypt (Eucalyptus grandis, E. teretecornus). Results indicate that sway is not a harmonic, but is very complex due to the dynamic interaction of branches. A new dynamic model of a tree is described, incorporating the dynamic structural properties of the trunk and branches. The branch mass contributes a dynamic damping, termed mass damping, which acts to reduce dangerous harmonic sway motion of the trunk and so minimizes loads and increases the mechanical stability of the tree. The results from 12 months of monitoring sway motion and wind loading forces are presented and discussed.  相似文献   

4.
This paper presents an empirical model for the distribution of diameter growth along the stem in Scots pine (Pinus sylvestris L.) and for the consequent stem form over time. First, the distribution of annual mass growth in the stem is determined as a function of the total annual growth in stem mass, current stem mass and the distribution of the latter along the stem. Second, the distribution of diameter growth is obtained by converting the fraction of annual growth in the stem mass at a given height in the stem into the thickness of the annual ring at the same height. Application of the model to Scots pine data sets including both young and mature trees not used in parameter estimation showed that the model was capable of reconstructing the distribution of diameter growth from the stem butt to the apex and from the pith to the stem surface at any height in the stem in both young and mature trees. The resulting empirical model was also linked to a physiological, process-based model in order to study its performance in a simulated stand. Simulations representing trees grown in unthinned and thinned Scots pine stands with trees of different status (from dominant to suppressed) showed that the response in tree growth to thinning in terms of the distribution of diameter growth along the stem was quite realistic relative to measured data.  相似文献   

5.
We present a technique to measure the simultaneous sway of a group of trees and reconstruct the frequency of crown collisions and sway dynamics of individual or groups of trees. We placed a biaxial clinometer (tiltmeter) at the live crown base in each of ten neighboring 15-m-tall lodgepole pine trees in Alberta, Canada. Tree bole rotation at tiltmeter mount height was recorded during windy conditions at a rate of 10 times/s for the cluster of trees. Rotation angles were used in a bole curve calculation to estimate tree displacement in 2-dimensional (x, y) space. Collision reconstruction was done in Arc/Info by assigning asymmetrical crown area dimensions (polygons) to calculated bole displacement for each tree. Reconstruction of each time step measured any overlaps between crown polygon areas. Crown polygon overlaps estimated in this manner allowed assessment of collision frequencies, area of crown overlap during collisions, and identification of the tree(s) that a subject tree contacted. Collision statistics are only given for trees interior to the sensored cluster (n=3). For 15.0 min of data with an average wind speed of 4.5 m/s and a maximum of 10.0 m/s there was an average of 65 collisions/min for each tree, and an average collision overlap area of 24%. This frequency and depth of collisions supports the notion that wind-induced crown interaction inhibits lateral shoot extension and is an important mechanism for the development of crown asymmetry and crown shyness. Insight into dynamic tree sway behavior and crown interactions will allow estimation and cultivation of a forest stand structure that is more resistant to damage from wind. The techniques of recording multiple simultaneous bole sway and their reconstruction are applicable to a broad range of wind-forest interaction research.  相似文献   

6.
Tree functional traits together with processes such as forest regeneration, growth, and mortality affect forest and tree structure. Forest management inherently impacts these processes. Moreover, forest structure, biodiversity, resilience, and carbon uptake can be sustained and enhanced with forest management activities. To assess structural complexity of individual trees, comprehensive and quantitative measures are needed, and they are often lacking for current forest management practices. Here, we utilized 3D information from individual Scots pine (Pinus sylvestris L.) trees obtained with terrestrial laser scanning to, first, assess effects of forest management on structural complexity of individual trees and, second, understand relationship between several tree attributes and structural complexity. We studied structural complexity of individual trees represented by a single scale‐independent metric called “box dimension.” This study aimed at identifying drivers affecting structural complexity of individual Scots pine trees in boreal forest conditions. The results showed that thinning increased structural complexity of individual Scots pine trees. Furthermore, we found a relationship between structural complexity and stem and crown size and shape as well as tree growth. Thus, it can be concluded that forest management affected structural complexity of individual Scots pine trees in managed boreal forests, and stem, crown, and growth attributes were identified as drivers of it.  相似文献   

7.
Preconditions of phloem transport in conifers are relatively unknown. We studied the variation of needle and inner bark axial osmotic gradients and xylem water potential in Scots pine and Norway spruce by measuring needle and inner bark osmolality in saplings and mature trees over several periods within a growing season. The needle and inner bark osmolality was strongly related to xylem water potential in all studied trees. Sugar concentrations were measured in Scots pine, and they had similar dynamics to inner bark osmolality. The sucrose quantity remained fairly constant over time and position, whereas the other sugars exhibited a larger change with time and position. A small osmotic gradient existed from branch to stem base under pre‐dawn conditions, and the osmotic gradient between upper stem and stem base was close to zero. The turgor in branches was significantly driven by xylem water potential, and the turgor loss point in branches was relatively close to daily minimum needle water potentials typically reported for Scots pine. Our results imply that xylem water potential considerably impacts the turgor pressure gradient driving phloem transport and that gravitation has a relatively large role in phloem transport in the stems of mature Scots pine trees.  相似文献   

8.

Key message

The retrospective analysis of wood anatomical features evidences how a long-term deterioration of hydraulic performance and carbon use portend drought-induced mortality in Scots pine.

Abstract

Widespread episodes of drought-induced tree mortality are predicted to become more frequent as climate becomes warmer and drier. Nevertheless, growth trends and their links to changes in wood anatomy before tree dies are still poorly understood. Wood anatomical features provide valuable information that can be extracted to infer the mechanisms leading to tree death. In this study, we characterize drought-induced mortality affecting two Scots pine (Pinus sylvestris) sites (Prades and Arcalís) located in the North Eastern Iberian Peninsula. Co-occurring now-dead and living Scots pine trees were sampled and their wood anatomical features were measured and compared. We aimed to detect differences in anatomical features between living and dead trees, and to infer past physiological performances that might have determined their subsequent death or survival. Now-dead trees showed lower tracheid and resin duct production, and smaller radial lumen diameters than co-occurring living trees. At the more xeric Prades site, these anatomical differences were larger and chronic, i.e. were observed over the three studied decades, whilst they were less pronounced at the other, more mesic Arcalís site, where tree mortality episodes were more recent. This indicates that dead trees’ hydraulic conductivity was severely affected and that carbon investment in xylem formation and resin duct production was constrained prior to tree death. Our findings show that both hydraulic deterioration and low carbon allocation to xylem formation were associated to drought-induced mortality in Scots pine. Nevertheless, the temporal dynamics of these processes differed between populations as a function of site climatic conditions.  相似文献   

9.
Climate condtions constitute some of the main factors affecting variation in annual tree-ring growth. However other exogenous processes including geomorphic activity can affect substantially the rate of tree growth. Currently little is known on how human activity such as trampling affects tree growth along hiking trails.We analyzed annual growth variation in 42 Scots pine trees (Pinus sylvestris L.) subjected to what is known as tourist pressure on a heavily used hiking trail in the Brodnica Lakeland located in Northeastern Poland and compared them with 45 pin. trees growing under natural conditions. Specifically, we compared the climate sensitivity of pine trees growing under trampling pressure with a pine reference site using climate variables such as mean, minimum and maximum monthly air temperature and monthly precipitation. Positive and negative pointer years for two sites were designated using the Becker algorithm and compared.Results revealed that Scots pine annual growth at both sites was highly correlated with winter (January, February) and spring (March) air temperatures and February precipitation. However, both the response function analysis and pointer year analysis revealed higher climatic sensitivity of trees subjected to trampling. It was revealed that thermal and pluvial conditions play an important role for Scots pine growth at the trampling site (PRES), especially in June and July when cambium is probably most active. At the same time, these are the months during which tourist activity is the most intense. Tree growth on a hiking trail was positively correlated with higher precipitation and lower maximum air temperature in June and July. This may indicate that pine trees subjected to trampling are threatened by a potential moisture limitation that occurs within and around the studied hiking trail due to an increase in soil compaction. Additionally, the study revealed growth reduction in pine trees subjected to trampling pressure starting from the late 1970s, i.e., right at a time when a strong increase in tourist traffic was noted across the Brodnica Lakeland.The study shows that human impact associated with trampling on hiking trails significantlly affects the growth of Scots pine and should be taken into account in future dendroecological studies.  相似文献   

10.
 In order to determine if different types of wood were being laid down in the root system of Maritime pine (Pinus pinaster Ait), in response to wind loading, longitudinal residual maturation strains (LRMS), indicating the existence of mechanical stress in developing wood cells, were measured in the trunk and lateral roots. Two age groups of trees (5- and 13-year- old) were compared. LRMS were greater in the trunk and roots of 13-year-old trees than in 5-year-old trees. This phenomenon may be due to increased competition between older trees. LRMS in leeward roots of both age-groups were positive i.e. the wood cells had developed under compression, as also occurs in reaction wood of gymnosperms. As leeward roots are placed under compression during tree sway, an abnormal type of wood may form in the roots in order to counteract the increased stress. In other roots, the strains were negative i.e. the cells had developed under tension, as occurs in normal wood. In the roots of younger trees, LRMS were also positive nearer the stem, thus indicating that wood formation may also be influenced by bending stresses experienced in this zone. In addition to LRMS measurements, radial growth in roots was examined in order to determine the influence of mechanical loading on secondary growth. In older trees, there was a significant increase of 34% in woody growth below the biological centre, compared to that above. This eccentricity is unlike that found in most other tree species, where secondary growth is usually greater on the upper side of the root. However, Maritime pine has a tap root, which will alter the pattern of stress within the root system. Under wind loading, a concentration of mechanical stress will develop at the bases of the stem, lateral roots and tap root. Received: 7 July 1997 / Accepted: 11 December 1997  相似文献   

11.
Results of a long-term (1997-2002) study of the Scots pine populations growing in the vicinity of the radioactive waste storage facility ('Radon' LWPE) are presented. Cytogenetic disturbances in reproductive (seeds) and vegetative (needles) tissues sampled from Scots pine populations were studied to examine whether Scots pine trees have experienced environmental stress in areas with relatively low levels of pollution. The data clearly indicate the presence of mutagenic contaminants in the environment of the pine trees. An increased number of mitotic abnormalities, especially multipolar mitoses was found in the pine tree populations submitted to man-made exposure, which suggests that the cytogenetic damage is mainly caused by chemical contamination. A higher radioresistance of the Scots pine seeds from the impacted populations was shown by use of acute gamma-irradiation. During the observation period 1997-2002, pine trees exposed to anthropogenic pollution showed a steady increase of cytogenetic alterations in the root meristem cells.  相似文献   

12.
Branch water exchange and total tree water uptake were measured in a mixed Norway spruce and Scots pine stand in central Sweden during the 1995 and 1996 growing seasons. Branch transpiration was scaled to canopy level on the basis of a branch conductance model, using vertical needle-area distributions obtained by destructive sampling. Comparison with total tree water uptake scaled to canopy level showed agreement within 10%, for periods when the canopy was not affected by climatically induced stress. Comparison of scaled fluxes on individual trees showed that measurements of transpiration at branch level provide information on the direct response of transpiration to variations in weather, and furthermore that the time-lag between transpiration and tree water uptake was as much as 3 h. The vertical needle-area distribution of Scots pine was similar to that found by other authors. Needle-area distribution on Norway spruce, which has not been described before, showed that it has its largest needle area at the top of the crown. Specific needle area varied considerably both within trees and between trees. For spruce, mean specific needle area (±SD) varied from 2.4±0.5 mm2 mg–1 at the top of the crown to 7.1±1.9 mm2 mg–1 at the base. Corresponding figures for Scots pine were 3.4±2.0 and 9.1±2.1. Received: 5 March 1999 / Accepted: 17 March 2000  相似文献   

13.
The influence of wind on spiral grain formation in conifer trees   总被引:1,自引:0,他引:1  
The correlation between spiral grain formation and crown asymmetry was investigated in 18 Scots pine (Pinus sylvestris L.) and 17 Norway spruce [Picea abies (L.) Karst.] trees selected from clones of each species growing in the south of Sweden. The angle between the longitudinal direction of the tracheids in the outermost year ring compared to the longitudinal direction of the stem was measured by scribing lines which followed the direction of the tracheids. The crown asymmetry was measured by taking photographs of the trees followed by a simple picture analysis of the tree. Wind data for the growing seasons of 1997 and 1998 were obtained from the Swedish Meteorological and Hydrological Institute. The results showed a significant correlation between the angle of the tracheids compared to the stem longitudinal direction going from a left-handed angle if the trees had a crown projected to the north towards a right-handed angle the more the crown projects to the south. Received: 6 September 1999 / Accepted: 20 January 2000  相似文献   

14.
1 In 1996, 7000 ha of pine forests were defoliated by the pine looper Bupalus piniaria in south‐western Sweden. 2 The susceptibility of trees of different defoliation classes (0, 30, 60, 90 and 100% defoliation) to beetle‐vectored blue‐stain fungi was tested in inoculation experiments. Forty and 120‐year‐old Scots pine trees were inoculated with ‘single’, i.e. a few inoculations of Leptographium wingfieldii and Ophiostoma minus, two blue‐stain fungi associated with the pine shoot beetle Tomicus piniperda. The young trees were also ‘mass’ inoculated with L. wingfieldii at a density of 400 inoculation points per m2 over a 60 cm stem belt. 3 Host tree symptoms indicated that only trees with 90–100% defoliation were susceptible to the mass inoculation. 4 Single inoculations did not result in any consistent differences in fungal performance between trees of different defoliation classes, regardless of inoculated species or tree age class. 5 Leptographium wingfieldii produced larger reaction zones than O. minus, and both species produced larger lesions in old than in young trees. 6 As beetle‐induced tree mortality in the study area occurred only in totally defoliated stands, mass inoculations seem to mimic beetle‐attacks fairly well, and thus seem to be a useful tool for assessing host resistance. 7 As even severely defoliated pine trees were quite resistant, host defence reactions in Scots pine seem to be less dependent on carbon allocation than predicted by carbon‐based defence hypotheses.  相似文献   

15.
Kurka  Anne-Marie  Starr  Michael 《Plant and Soil》1997,195(2):273-281
The relationship between the decomposition of cellulose placed on and buried in the forest floor and various tree stand characteristics was studied at sites with minimal anthropogenic influence. The 22 study sites, including both forested upland and peatland plots, were clustered in 4 catchments between 61°–69° N in Finland. The stands were 60 to 320 years old and composed of varying proportions of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies Karst.) and deciduous species (mainly t Betula spp.). Cellulose strips (softwood pulp) were placed on the forest floor surface and buried at four depths down to 5 cm for two 1-year periods and the weight loss measured. Decomposition did not significantly correlate with stand age, but was strongly and positively correlated with stand basal area, mean tree height and stem volume. This was valid at all depths, and even after differences due to climate between catchments had been taken into account. The stem volume of Scots pine dominated plots had the highest correlation. Our results showed that decomposition of organic matter on and in the forest floor is related to the stand characteristics. This relationship should be considered when comparing soil processes different stands, even when comparing stands of the same tree species composition.  相似文献   

16.
MethodsCO2 efflux measurements were conducted during freezing experiments for saplings of three Scots pine (Pinus sylvestris) and three Norway spruce (Picea abies) trees under laboratory conditions, and the magnitudes of the freezing-related bursts of CO2 released from the stems were analysed using a previously published mechanistic model of CO2 production, storage, diffusion and efflux from a tree stem. The freezing-related bursts of CO2 released from a mature Scots pine tree growing in field conditions were also measured and analysed.ConclusionsAll gases dissolved in the xylem sap are not trapped within the ice in the stem during freezing, as has previously been assumed, thus adding a new dimension to the understanding of winter embolism formation. The conduit water volume not only determines the volume of bubbles formed during freezing, but also the efficiency of gas efflux out of the conduit during the freezing process.  相似文献   

17.
The induced defence reaction of Scots pine Pinus sylvestris to stem attacks by the common pine shoot beetle, Tomicus piniperda (Col, Scolytidae), was studied by inducing natural attacks on young Scots pine trees of different vigour Pruned trees were more heavily attacked by T piniperda than unpruned ones Vigorous trees successfully contained the attacking beetles within resinous lesions, whereas less vigorous trees failed to defend themselves The content of resin acids increased dramatically in the lesions on all trees, and the resin acid composition differed somewhat between some treatments Starch accumulation in the inner bark of the main stem was lower in pruned trees than in unpruned ones, and starch reserves were depleted in the most heavily attacked trees All but one of the unpruned trees survived the attack, whereas most of the severely pruned ones died following attack by beetles at densities exceeding c 300 egg galleries m−2  相似文献   

18.
The acclimation capacity of leading edge tree populations is crucially important in a warming climate. Theoretical considerations suggest that adaptation through genetic change is needed, but this may be a slow process. Both positive and catastrophic outcomes have been predicted, while empirical studies have lagged behind theory development. Here we present results of a 30‐year study of 55,000 Scots pine (Pinus sylvestris) trees, planted in 15 common gardens in three consecutive years near and beyond the present Scots pine tree line. Our results show that, contrary to earlier predictions, even long‐distance transfers to the North can be successful when soil fertility is high. This suggests that present northern populations have a very high acclimation capacity. We also found that while temperature largely controls Scots pine growth, soil nutrient availability plays an important role—in concert with interpopulation genetic variation—in Scots pine survival and fitness in tree line conditions. These results suggest that rapid range expansions and substantial growth enhancements of Scots pine are possible in fertile sites as seed production and soil nutrient mineralization are both known to increase under a warming climate. Finally, as the ontogenetic pattern of tree mortality was highly site specific and unpredictable, our results emphasize the need for long‐term field trials when searching for the factors that control fitness of trees in the variable edaphic and climatic conditions of the far North.  相似文献   

19.
This study aimed to explore if changes in stem increment of Scots pines (Pinus sylvestris L.) could be related to changes in ambient ozone concentration when the impact of tree dendrometric parameters (age, diameter) and crown defoliation are accounted for. More than 200 dominant and codominant trees from 12 pine stands, for which crown defoliation had been assessed since 1994, were chosen for increment boring and basal area increment computing. Stands are located in Lithuanian national parks, where since 1994-95 Integrated Monitoring Stations have been operating. Findings of the study provide statistical evidence that peak concentrations of ambient ozone (O3) can have a negative impact on pine tree stem growth under field conditions where O3 exposure is below phytotoxic levels.  相似文献   

20.
The relationships between climatic variables and Scots pine (Pinus sylvestris L.) growth and needle dynamics were studied in three stands in Estonia and in four stands located near the northern timberline in Lapland. The trees sampled in Estonia had low correlations with the analysed climatic variables (air temperature, precipitation and indices of atmospheric circulation). Moreover, the weak cross-correlation of the time-series of the Estonian sample trees indicated that Scots pine is affected mainly by local factors in that region. In Lapland, however, height increment and needle production correlated strongly among trees within a stand (mean r=0.45 and 0.46, respectively) and between stands (r=0.32 and 0.37). Radial increment also showed a high inter-correlation among the trees within a stand in Lapland (r=0.45). Both height increment and needle production were strongly influenced by the temperature regime of the previous summer in Lapland (mean r=0.64 and 0.64, respectively). Radial increment was correlated with the mean July temperature of the current year (mean r=0.29). The correlations between the indices of atmospheric circulation and tree attributes were weak, while the strongest correlation was between the Ponta Delgada NAO index (PD–NAO) and height increment and needle production in Lapland. Height increment, needle production and radial increment have increased since the 1990s in the trees growing in Lapland. This may indicate a positive effect of climate warming on tree growth in Lapland. In Estonia, where climatic conditions do not limit tree growth, the climate warming seems not to directly influence the growth and needle dynamics of Scots pine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号