首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How regulated protein translocation can produce switch-like responses   总被引:6,自引:0,他引:6  
It is widely appreciated that the regulated translocation of signaling proteins can increase the specificity and speed of signal transduction. It is less obvious that regulated translocation can also, in principle, turn a graded response into a more switch-like one. For example, if two or more signaling proteins are induced to translocate, the result can be a switch-like, ultrasensitive response. A switch-like response will also occur if translocation raises the local concentration of a signaling protein sufficiently to partially saturate the enzyme that inactivates it. These mechanisms are likely to make the mitotic activation of CDC2 (which is accompanied by the nuclear translocation of both CDC2–cyclin-B1 and its activator, CDC25C) and the growth-factor-induced activation of MAP kinase (which, upon sustained activation, concentrates in the nucleus and might thereby partially saturate the relevant MAP-kinase phosphatases) more switch-like.  相似文献   

2.
3.
Protein kinases and phosphatases are organized into complex intracellular signaling networks designed to coordinate their activities in both space and time. In order to better understand the molecular mechanisms underlying the regulation of signal transduction networks, it is important to define the spatiotemporal dynamics of both protein kinases and phosphatases within their endogenous environment. Herein, we report the development of a genetically-encoded protein biosensor designed to specifically probe the activity of the Ca2+/calmodulin-dependent protein phosphatase, calcineurin. Our reporter design utilizes a phosphatase activity-dependent molecular switch based on the N-terminal regulatory domain of the nuclear factor of activated T-cells as a specific substrate of calcineurin, sandwiched between cyan fluorescent protein and yellow fluorescent protein. Using this reporter, calcineurin activity can be monitored as dephosphorylation-induced increases in fluorescence resonance energy transfer and can be simultaneously imaged with intracellular calcium dynamics. The successful design of a prototype phosphatase activity sensor lays a foundation for studying targeting and compartmentation of phosphatases.  相似文献   

4.
Homeostasis of Smad phosphorylation at its C-terminal SXS motif is essential for transforming growth factor β (TGFβ) signaling. Whereas it is known that TGFβ signaling can be terminated by phosphatases, which dephosphorylate R-Smads in the nucleus, it is unclear whether there are any cytoplasmic phosphatase(s) that can attenuate R-Smad phosphorylation and nuclear translocation. Here we demonstrate that myotubularin-related protein 4 (MTMR4), a FYVE domain-containing dual-specificity protein phosphatase (DSP), attenuates TGFβ signaling by reducing the phosphorylation level of R-Smads in early endosomes. Co-immunoprecipitation experiments showed that endogenous MTMR4 interacts with phosphorylated R-Smads, and that this interaction is correlated with dephosphorylation of R-Smads. Further analysis showed that overexpression of MTMR4 resulted in the sequestration of activated Smad3 in the early endosomes, thus reducing its nuclear translocation. However, both point mutations at the conserved catalytic site of the phosphatase (MTMR4-C407S) and small interference RNA of endogenous Mtmr4 expression led to sustained Smad3 activation. This work therefore suggests that MTMR4 plays an important role in preventing the overactivation of TGFβ signaling by dephosphorylating activated R-Smads that have been trafficked to early endosomes.  相似文献   

5.
Akt is an important oncoprotein, and data suggest a critical role for nuclear Akt in cancer development. We have previously described a rapid (3–5 min) and P2X7-dependent depletion of nuclear phosphorylated Akt (pAkt) and effects on downstream targets, and here we studied mechanisms behind the pAkt depletion. We show that cholesterol-lowering drugs, statins, or extracellular ATP, induced a complex and coordinated response in insulin-stimulated A549 cells leading to depletion of nuclear pAkt. It involved protein/lipid phosphatases PTEN, pleckstrin homology domain leucine-rich repeat phosphatase (PHLPP1 and -2), protein phosphatase 2A (PP2A), and calcineurin. We employed immunocytology, immunoprecipitation, and proximity ligation assay techniques and show that PHLPP and calcineurin translocated to the nucleus and formed complexes with Akt within 3 min. Also PTEN translocated to the nucleus and then co-localized with pAkt close to the nuclear membrane. An inhibitor of the scaffolding immunophilin FK506-binding protein 51 (FKBP51) and calcineurin, FK506, prevented depletion of nuclear pAkt. Furthermore, okadaic acid, an inhibitor of PP2A, prevented the nuclear pAkt depletion. Chemical inhibition and siRNA indicated that PHLPP, PP2A, and PTEN were required for a robust depletion of nuclear pAkt, and in prostate cancer cells lacking PTEN, transfection of PTEN restored the statin-induced pAkt depletion. The activation of protein and lipid phosphatases was paralleled by a rapid proliferating cell nuclear antigen (PCNA) translocation to the nucleus, a PCNA-p21cip1 complex formation, and cyclin D1 degradation. We conclude that these effects reflect a signaling pathway for rapid depletion of pAkt that may stop the cell cycle.  相似文献   

6.
The Src homology 2 domain-containing protein tyrosine phosphatases SHP-1 and SHP-2 play an important role in many intracellular signaling pathways. Both SHP-1 and SHP-2 have been shown to interact with a diverse range of cytosolic and membrane-bound signaling proteins. Generally, SHP-1 and SHP-2 perform opposing roles in signaling processes; SHP-1 acts as a negative regulator of transduction in hemopoietic cells, whereas SHP-2 acts as a positive regulator. Intriguingly, SHP-1 has been proposed to play a positive regulating role in nonhemopoietic cells, although the mechanisms for this are not understood. Here we show that green fluorescent protein-tagged SHP-1 is unexpectedly localized within the nucleus of transfected HEK293 cells. In contrast, the highly related SHP-2 protein is more abundant within the cytoplasm of transfected cells. In accordance with this, endogenous SHP-1 is localized within the nucleus of several other nonhemopoietic cell types, whereas SHP-2 is distributed throughout the cytoplasm. In contrast, SHP-1 is confined to the cytoplasm of hemopoietic cells, with very little nuclear SHP-1 evident. Using chimeric SHP proteins and mutagenesis studies, the nuclear localization signal of SHP-1 was identified within the C-terminal domain of SHP-1 and found to consist of a short cluster of basic amino acids (KRK). Although the KRK motif resembles half of a bipartite nuclear localization signal, it appears to function independently and is absolutely required for nuclear import. Our findings show that SHP-1 and SHP-2 are distinctly localized within nonhemopoietic cells, with the localization of SHP-1 differing dramatically between nonhemopoietic and hemopoietic cell lineages. This implies that SHP-1 nuclear import is a tightly regulated process and indicates that SHP-1 may possess novel nuclear targets.  相似文献   

7.
8.
9.
The Cdc25 phosphatases play crucial roles in cell cycle progression by removing inhibitory phosphates from tyrosine and threonine residues of cyclin-dependent kinases. Cdc25A is an important regulator of the G1/S transition but functions also in the mitotic phase of the human cell cycle. In this paper, we investigate the sub-cellular localisation of exogenously expressed Cdc25A. We show that YFP-Cdc25A is localised both in the nucleus and the cytoplasm of HeLa cells and untransformed fibroblasts. Cell fusion assays and fluorescence loss in photobleaching (FLIP) assays reveal that the localisation is dynamic and the protein shuttles between the nucleus and the cytoplasm. We demonstrate that nuclear export of Cdc25A is partly mediated by an N-terminal nuclear export sequence (NES), in a manner not sensitive to the Exportin 1-inhibitor leptomycin B. A nuclear localisation signal (NLS) is also characterised, mutation of which leads to cytoplasmic localisation of Cdc25A. Our results imply that the Cdc25A phosphatase may interact with substrates and regulators both in the nucleus and the cytoplasm.  相似文献   

10.
Qu CK 《Cell research》2000,10(4):279-288
Cellular biological avtivities are tightly controlled by intracellular signaling processes initiated by extracellular signals.Protein tyrosine phosphatases,which remove phosphate groups from phosphorylated signaling molecules,play equally important tyrosine roles as protein tyrosine kinases in signal transduction.SHP-2 a cytoplasmic SH2 domain containing protein tyrosine phosphatase,is involved in the signaling pathways of a variety of growth factors and cytokines.Recent studies have clearly demonstrated that this phosphatase plays an important role in transducing signal relay from the cell surface to the nucleus,and is a critical intracellular regulator in mediating cell proliferation and differentiation.  相似文献   

11.
12.
Recently, the control of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3)-dependant signaling by phosphatases has emerged, but there is a shortage of information on intranuclear PtdIns(3,4,5)P3 phosphatases. Therefore, we investigated the dephosphorylation of [32P]PtdIns(3,4,5)P3 specifically labeled on the D-3 position of the inositol ring in membrane-free nuclei isolated from pig aorta vascular smooth muscle cells (VSMCs). In vitro PtdIns(3,4,5)P3 phosphatase assays revealed the production of both [32P]PtdIns(3,4)P2 and inorganic phosphate, demonstrating the presence of PtdIns(3,4,5)P3 5- and 3-phosphatase activities inside the VSMC nucleus, respectively. Both activities presented the same potency in cellular lysates, whereas the nuclear PtdIns(3,4,5)P3 5-phosphatase activity appeared to be the most efficient. Immunoblot experiments showed for the first time the expression of the 5-phosphatase SHIP-2 (src homology 2 domain-containing inositol phosphatase) as well as the 3-phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10) in VSMC nuclei. In addition, immunoprecipitations from nuclear fractions indicated a [32P]PtdIns(3,4,5)P3 dephosphorylation by both SHIP-2 and PTEN. Moreover, confocal microscopy analyses demonstrated that SHIP-2 but not PTEN colocalized with a speckle-specific component, the SC35 splicing factor. These results suggest that SHIP-2 may be the primary enzyme for metabolizing PtdIns(3,4,5)P3 into PtdIns(3,4)P2 within the nucleus, thus producing another second messenger, whereas PTEN could down-regulate nuclear phosphoinositide 3-kinase signaling. Finally, intranuclear PtdIns(3,4,5)P3 phosphatases might be involved in the control of VSMC proliferation and the pathogenesis of vascular proliferative disorders.  相似文献   

13.
Our knowledge of the serine/threonine protein phosphatases of the mammalian nucleus is limited compared with their cytosolic counterparts. Microcystin-Sepharose chromatography and mass spectrometry were utilized to affinity purify and identify protein phosphatase-associated proteins from isolated rat liver nuclei. Far Western analysis with labeled protein phosphatase 1 (PP1) showed that many more PP1 binding proteins exist in the nucleus than were previously demonstrated. Mass spectrometry confirmed the presence in the nucleus of the mammalian PP1 isoforms alpha1, alpha2, beta, and gamma1, plus the Aalpha and several of the B and B' subunits that are complexed to PP2A. Other proteins enriched on the microcystin matrix include the spliceosomal proteins known as the U2 snRNPs SAP145 and SAP155 and the U5 snRNPs p116 and p200, myosin heavy chain, and a nuclear PP1 myosin-targeting subunit related to M110. The putative RNA binding protein ZAP was also established as a nuclear PP1 binding protein using the criteria of co-purification with PP1 on microcystin-Sepharose, co-immunoprecipation, binding PP1 in an overlay assay, and presence of a putative PP1 binding site (KKRVRWAD). These results further support a key role for protein phosphatases in several nuclear functions, including the regulation of pre-mRNA splicing.  相似文献   

14.
The extracellular signal‐regulated kinase (ERK) signaling pathway controls cell proliferation and differentiation in metazoans. Two hallmarks of its dynamics are adaptation of ERK phosphorylation, which has been linked to negative feedback, and nucleocytoplasmic shuttling, which allows active ERK to phosphorylate protein substrates in the nucleus and cytosol. To integrate these complex features, we acquired quantitative biochemical and live‐cell microscopy data to reconcile phosphorylation, localization, and activity states of ERK. While maximal growth factor stimulation elicits transient ERK phosphorylation and nuclear translocation responses, ERK activities available to phosphorylate substrates in the cytosol and nuclei show relatively little or no adaptation. Free ERK activity in the nucleus temporally lags the peak in nuclear translocation, indicating a slow process. Additional experiments, guided by kinetic modeling, show that this process is consistent with ERK's modification of and release from nuclear substrate anchors. Thus, adaptation of whole‐cell ERK phosphorylation is a by‐product of transient protection from phosphatases. Consistent with this interpretation, predictions concerning the dose‐dependence of the pathway response and its interruption by inhibition of MEK were experimentally confirmed.  相似文献   

15.
RGS proteins comprise a family of proteins named for their ability to negatively regulate heterotrimeric G protein signaling. Biochemical studies suggest that members of this protein family act as GTPase-activating proteins for certain Galpha subunits, thereby accelerating the turn-off mechanism of Galpha and terminating signaling by both Galpha and Gbetagamma subunits. In the present study, we used confocal microscopy to examine the intracellular distribution of several RGS proteins in COS-7 cells expressing RGS-green fluorescent protein (GFP) fusion proteins and in cells expressing RGS proteins endogenously. RGS2 and RGS10 accumulated in the nucleus of COS-7 cells transfected with GFP constructs of these proteins. In contrast, RGS4 and RGS16 accumulated in the cytoplasm of COS-7 transfectants. As observed in COS-7 cells, RGS4 exhibited cytoplasmic localization in mouse neuroblastoma cells, and RGS10 exhibited nuclear localization in human glioma cells. Deletion or alanine substitution of an N-terminal leucine repeat motif present in both RGS4 and RGS16, a domain identified as a nuclear export sequence in HIV Rev and other proteins, promoted nuclear localization of these proteins in COS-7 cells. In agreement with this observation, treatment of mouse neuroblastoma cells with leptomycin B to inhibit nuclear protein export by exportin1 resulted in accumulation of RGS4 in the nucleus of these cells. GFP fusions of RGS domains of RGS proteins localized in the nucleus, suggesting that nuclear localization of RGS proteins results from nuclear targeting via RGS domain sequences. RGSZ, which shares with RGS-GAIP a cysteine-rich string in its N-terminal region, localized to the Golgi complex in COS-7 cells. Deletion of the N-terminal domain of RGSZ that includes the cysteine motif promoted nuclear localization of RGSZ. None of the RGS proteins examined were localized at the plasma membrane. These results demonstrate that RGS proteins localize in the nucleus, the cytoplasm, or shuttle between the nucleus and cytoplasm as nucleo-cytoplasmic shuttle proteins. RGS proteins localize differentially within cells as a result of structural differences among these proteins that do not appear to be important determinants for their G protein-regulating activities. These findings suggest involvement of RGS proteins in more complex cellular functions than currently envisioned.  相似文献   

16.
Glycan-dependent signaling: O-linked N-acetylglucosamine.   总被引:7,自引:0,他引:7  
J A Hanover 《FASEB journal》2001,15(11):1865-1876
  相似文献   

17.
Kim W  Youn H  Seong KM  Yang HJ  Yun YJ  Kwon T  Kim YH  Lee JY  Jin YW  Youn B 《Radiation research》2011,176(5):539-552
Resistance of cancer cells to ionizing radiation plays an important role in the clinical setting of lung cancer treatment. To date, however, the exact molecular mechanism of radiosensitivity has not been well explained. In this study, we compared radioresistance in two types of non-small cell lung cancer (NSCLC) cells, NCI-H460 and A549, and investigated the signaling pathways that confer radioresistance. In radioresistant cells, exposure to radiation led to overexpression of PIM1 and reduction of protein phosphatases (PP2A and PP5), which induced translocation of PIM1 into the nucleus. Increased nuclear PIM1 phosphorylated PRAS40. Consequently, pPRAS40 made a trimeric complex with 14-3-3 and AKT-activated pFOXO3a, which then moved rapidly to the cytoplasm. Cytoplasmic retention of FOXO3a was associated with downregulation of proapoptotic genes and possibly radioresistance. On the other hand, no suppressive effect of radiation on protein phosphatases was detected and, concomitantly, protein phosphatases downregulated PIM1 in radiosensitive cells. In this setting, PIM1-activated pPRAS40, AKT-activated pFOXO3a, and their complex formation with 14-3-3 could be key regulators of the radiation-induced radioresistance in NSCLC cells.  相似文献   

18.
19.
The cell nucleus is a highly dynamic organelle whose function and structure during the cell cycle is tightly controlled. A number of signals triggered by external stimuli or intracellular clocks are relayed to the nucleus by protein kinases and phosphatases. Specificity of action of kinases and phosphatases can be achieved by their recruitment into multiprotein complexes targeted to discrete subcellular or subnuclear loci. One class of molecules targeting signalling units within single complexes are A-kinase anchoring proteins or AKAPs. AKAPs not only target enzymes to their substrate but may also regulate enzyme activity. This chapter highlights the role of nuclear AKAPs in relaying and modulating protein kinase and phosphatase signals to the nucleus or chromosomes.  相似文献   

20.
Previous evidence from independent laboratories has shown that the nucleus contains diacylglycerol kinase (DGK) isoforms, i.e., the enzymes, which yield phosphatidic acid from diacylglycerol, thus terminating protein kinase C-mediated signaling events. A DGK isoform, which resides in the nucleus of PC12 cells, is DGK-theta. Here, we show that nerve growth factor (NGF) treatment of serum-starved PC12 cells results in the stimulation of both a cytoplasmic and a nuclear DGK activity. However, time course analysis shows that cytoplasmic DGK activity peaked earlier than its nuclear counterpart. While nuclear DGK activity was dramatically down-regulated by a monoclonal antibody known for selectively inhibiting DGK-theta, cytoplasmic DGK activity was not. Moreover, nuclear DGK activity was stimulated by phosphatidylserine, an anionic phospholipid that had no effect on cytoplasmic DGK activity. Upon NGF stimulation, the amount and the activity of DGK-theta, which was bound to the insoluble nuclear matrix fraction, substantially increased. Epidermal growth factor up-regulated a nuclear DGK activity insensitive to anti-DGK-theta monoclonal antibody. Overall, our findings identify nuclear DGK-theta as a down-stream target of NGF signaling in PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号