首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A proteinase from the larval midgut of Vespa orientalis was purified by exchange chromatography on DEAE-Sephadex A-50 and gel filtration on Sephadex G-75. This purified enzyme was proved to be homogeneous by electrophoresis on a cellulose acetate membrane. The molecular weight was calculated to be 27,000 by gel filtration. Optimum pH for the hydrolysis of N-benzoyl-arginine-ethyl ester (BAEE) was 7·5 to 8·5, and optimum temperature with casein as a substrate was 60°C at pH 8·0 for 20 min. According to studies with synthetic inhibitors the hornet protease belongs to the ‘serine proteases’, being inhibited by phenylmethyl sulphonylfluoride (PMSF) and tosyl-lysyl chloromethane (TLCK). The hydrolysis of different amino acid ester bonds and the cleavage specificity on the B chain of oxidized insulin allow us to speak of a trypsin-like protease.  相似文献   

2.
Anagnostakis SL 《Genetics》1982,100(3):413-416
Two conidia can fertilize a single protoperithecium of Endothia parasitica, and reassortment can occur between genes in the male nuclei early in the perithecium development.  相似文献   

3.
A metallo-endopeptidase that catalyzes at near neutral pH the hydrolysis of certain polypeptides was purified from rat kidney microsomes by a simplified procedure using affinity chromatography on Sepharose 4B coupled with insulin B chain. The purified enzyme showed a single component by chromatography on diethylaminoethyl cellulose and by gel filtration on a Sephadex G-200 column. The native enzyme has a molecular weight of approximately 213,000. Studies on its substrate specificity showed that the purified enzyme rapidly degrades insulin B chain, glucagon, adrenocorticotropin, and, at a significantly lower rate, insulin A chain. The enzyme has a very weak or no activity toward ribonuclease and vasopressin. In contrast, the enzyme does not degrade denatured hemoglobin, bovine serum albumin, insulin (nano- or micromolar), oxytocin, furylacryloylglycyl-leucine amide (FAGLA), synthetic substrates of cathepsin C (β-napthalamides of glycine-l-arginine and l-histidine-l-serine), or synthetic substrates of aminopeptidases (l-arginine- or l-glutamic acid-β-napthylamide). The enzyme degrades reduced or oxidized B chain at about the same rate, but S-sulfonated B chain is degraded at a markedly lower rate. The effect of several potential activators and inhibitors on the enzyme's activity was investigated. Activity of the enzyme is markedly inhibited by chelating agents (EDTA and o-phenanthroline) and, modestly, by high concentrations of citrate and histidine. Activity of the enzyme is also markedly inhibited by simple thiol compounds (dithiothreitol, glutathione, and mercaptoethanol), but not by sulfhydryl reagents (N-ethylmaleimide or iodoacetate). The inactive apoenzyme, prepared by treatment of the enzyme with EDTA followed by dialysis, was reactivated by Zn2+ > Ca2+, minimally by Cu2+, but not by Hg2+. Some anions (phosphate, borate, and bicarbonate) were strongly inhibitory, but chloride had no effect. The following agents were found to have no effect: soybean and lima bean trypsin inhibitors, N?-tosyl-l-phenylalanine chloromethyl ketone (TPCK), Nα,?-tosyl-l-lysine chloromethyl ketone (TLCK), aprotinin (Trasylol), phenylmethylsulfonyl fluoride (a serine protease inhibitor), 1-methyl histidine, 3-methyl histidine, histamine, imidazole, and heparin.  相似文献   

4.
1. The velocity of hydrolysis of gelatin by trypsin increases more slowly than the gelatin concentration and finally becomes nearly independent of the gelatin concentration. The relative velocity of hydrolysis of any two substrate concentrations is independent of the quantity of enzyme used to make the comparison. 2. The rate of hydrolysis is independent of the viscosity of the solution. 3. The percentage retardation of the rate of hydrolysis by inhibiting substances, is independent of the substrate concentration. 4. There is experimental evidence that the enzyme and inhibiting substance are combined to form a widely dissociated compound. 5. If the substrate were also combined with the enzyme, an increase in the substrate concentration should affect the equilibrium between the enzyme and the inhibiting substance. This is not the case. 6. The rate of digestion of a mixture of casein and gelatin is equal to the sum of the rates of hydrolysis of the two substances alone, as it should be if the rate is proportional to the concentration of free enzyme. This contradicts the saturation hypothesis. 7. If the reaction is followed by determining directly the change in the substrate concentration, it is found that this change agrees with the law of mass action; i.e., the rate of digestion is proportional to the substrate concentration.  相似文献   

5.
The kinetics of the hydrolysis of 3-(2-furylacryloyl)-glycycl-l-leucine amide by thermolysin has been reinvestigated. It was found that the Km for the enzyme substrate interaction is 2.5 × 10?3m at pH 7.2. This Km is an order of magnitude less than what has been previously assumed to be the Km for the enzyme-substrate interaction. The normally recommended assay has 1–3 × 10?3m substrate and is based on the assumption that the substrate concentration is much less than the Km. Our data indicate that this assumption appears to be invalid. The hydrolysis of 3-(2-furylacryloyl)-glycyl-l-leucine amide results in a maximum decrease in absorbance at 322 nm. The change in absorbance is nearly 10-fold greater at 322 nm than the change in absorbance at 345 nm where the hydrolysis has been customarily followed. By following the hydrolysis of the substrate at 10?4m at 322 nm it is possible to work under conditions where the substrate concentration is much less than the Km.  相似文献   

6.
The role of methionine and α-chymotrypsin-catalysed reactions   总被引:2,自引:2,他引:0  
1. The reaction of α-chymotrypsin with sodium periodate at pH5·0 has been investigated. The enzyme consumes 2 moles of periodate/mole, and there is a concomitant fall in enzymic activity (with respect to l-tyrosine ethyl ester) to 55% of that of the native enzyme. After 3hr. no further change is observed in periodate uptake or in catalytic activity. 2. The oxidized enzyme is a homogeneous preparation of partially active chymotrypsin. 3. In the oxidized enzyme, one of the two methionine residues in the molecule has been converted into its sulphoxide. It is this reaction only that is responsible for the loss of activity. 4. The rate constants for the enzyme-catalysed acylation and deacylation reactions are unaltered by oxidation of the enzyme, both for a non-specific substrate (p-nitrophenyl acetate), and for three specific substrates: N-acetyl-l-tryptophan ethyl ester, N-acetyl-l-tryptophanamide and N-acetyl-l-valine ethyl ester. 5. The Km values for the aromatic substrates with the oxidized enzyme are twice those with the native enzyme. No change in Michaelis constant is seen for the non-aromatic substrate N-acetyl-l-valine ethyl ester. 6. The evidence points to the oxidized methionine residue in the modified enzyme being situated in the locus of the active site at which aromatic (or bulky) side chains of the substrates are bound.  相似文献   

7.
It has been shown for the first time that deacylation is the rate-limiting step in the enteropeptidase-catalyzed hydrolysis of highly effective oligopeptide substrates containing four Asp residues in positions P2–P5. On the other hand, the rate-limiting step in the hydrolysis of low-efficiency peptide substrates containing less than four Asp or Glu residues in positions P2–P5 is acylation, as it has previously been suggested for all amide and peptide substrates of serine proteases on the basis of classical works of Bender et al. The method of introduction of an additional nucleophile or another effector that selectively affects the deacylation step was used to determine the rate-limiting step in the enteropeptidase hydrolysis of N α-benzyloxycarbonyl-L-lysine thiobenzyl ester, the highly efficient amide substrate GlyAsp4-Lys β-naphthyl amide, and the low-efficiency peptide substrate VLSAADK-GNVKAAWG (where a hyphen denotes the hydrolysis site).  相似文献   

8.
The enzymatic properties of phytolacain G, a protease isolated from green fruit of pokeweed, were compared with those of phytolacain R, a protease obtained from ripe fruit. The optimum pH of phytolacain G was 7.5-8.0 at 37°C using casein as the substrate. The enzyme was strongly inhibited by iodoacetic acid and p-chloromercuribenzoic acid, but not by diisopropyl fluorophosphate or EDTA. These results indicated that phytolacain G was a cysteine protease, like phytolacain R. Nine sites of oxidized insulin B-chain were cleaved by phytolacain G during 20 h of hydrolysis. The six sites cleaved by phytolacain G were also cleaved by phytolacain R. The substrate specificity of phytolacain G was broad, but the preference for hydrophobic residues at the P2 position was similar to the substrate specificity of papain. The amino-terminal sequence of phytolacain G was not identical with that of phytolacain R; however, the amino acid residues conserved in the papain family were also conserved in this enzyme.  相似文献   

9.
《BBA》1987,893(2):275-288
The membrane-bound ATP synthase from chloroplasts can occur in different redox and activation states. In the absence of reductants the enzyme usually is oxidized and inactive, Eoxi. Illumination in the presence of dithiothreitol leads to an active, reduced enzyme, Ereda. If this form is stored in the dark in the presence of dithiothreitol an inactive, reduced enzyme Eredi is formed. The rates of ATP synthesis and ATP hydrolysis catalyzed by the different enzyme species are measured as a function of ΔpH (Δψ = 0 mV). The ΔpH was generated with an acid-base transition using a rapid-mixing quenched flow apparatus. The following results were obtained. (1) The oxidized ATP synthase catalyzes high rates of ATP synthesis, voxmax = 400 ATP per CF0F1 per s. The half-maximal rate is obtained at ΔpH = 3.4. (2) The active, reduced ATP synthase catalyzes high rates of ATP synthesis, vredmax = 400 ATP per CF0F1 per s. The half-maximal rate is obtained at ΔpH = 2.7. It catalyzes also high rates of ATP hydrolysis vredmax = −90 ATP per CF0F per s at ΔpH = 0. (3) The inactive species (both oxidized and reduced) catalyze neither ATP synthesis nor ATP hydrolysis. The activation/inactivation of the reduced enzyme is completely reversible. (4) The activation of the reduced, inactive enzyme is measured as a function of ΔpH by measuring the rate of ATP hydrolysis catalyzed by the active species. Half-maximal activation is observed at ΔpH = 2.2. (5) On the basis of these results a reaction scheme is proposed relating the redox reaction, the activation and the catalytic reaction of the chloroplast ATP synthase.  相似文献   

10.
The cleavage of β-cyclodextrin trans-cinnamate (1) was accelerated by amines such as quinuclidine and piperidine by 27- and 13-fold, respectively. The reaction involves complex formation of 1 with the amines, and proceeds via nucleophilic attack by the neutral amine, which was shown by the production of amide in the reaction of 1 with piperidine. Quinuclidine exhibited real catalysis of hydrolysis without production of amide. The present finding indicates that the rates of the rate-determining deacylation step in the cyclodextrin-accelerated hydrolyses of phenyl esters can be made larger than the rates of uncatalyzed hydrolyses by an amine such as quinuclidine, resulting in the use of cyclodextrin as a true catalyst and as a better enzyme model.  相似文献   

11.
The Raman spectra of oxidation products of lysozyme have been investigated. The protein was oxidized by N-bromosuccinimide and dimethyl sulfoxide/HCl. Depending on the experimental conditions one to six tryptophan residues are oxidized to oxindole. The most prominent difference between the spectra of lysozyme and its oxindole derivatives is the strong band at 1017 cm?1 which displaces the tryptophan peak at 1010 cm?1. Other tryptophan bands are also weakened corresponding to the number of the tryptophan side chains destroyed. Shifts are observed in the amide I and in the amide III regions sensitive to conformational changes. These shifts indicate conformational differences in the higher oxidized species and in the native enzyme, although the amide III maxima overlap with a strong oxindole band. Similar effects are observed in the range of the C-C stretching vibrations of the peptide backbone. If more than one tryptophan side chain is oxidized changes have also been found in the S-S stretching range. The evaluation of this effect is difficult because of the strong oxindole vibration appearing in this region. In species oxidized by great excess of N-bromosuccinimide the tyrosine vibrations can no longer be detected, indicating the modification of this amino acid too.  相似文献   

12.
To get insight in the biodegradation and potential read-across of fatty acid amides, N-[3-(dimethylamino)propyl] cocoamide and N-(1-ethylpiperazine) tall oil amide were used as model compounds. Two bacteria, Pseudomonas aeruginosa PK1 and Pseudomonas putida PK2 were isolated with N-[3-(dimethylamino)propyl] cocoamide and its hydrolysis product N,N-dimethyl-1,3-propanediamine, respectively. In mixed culture, both strains accomplished complete mineralization of N-[3-(dimethylamino)propyl] cocoamide. Aeromonas hydrophila PK3 was enriched with N-(1-ethylpiperazine) tall oil amide and subsequently isolated using agar plates containing dodecanoate. N-(2-Aminoethyl)piperazine, the hydrolysis product of N-(1-ethylpiperazine) tall oil amide, was not degraded. The aerobic biodegradation pathway for primary and secondary fatty acid amides of P. aeruginosa and A. hydrophila involved initial hydrolysis of the amide bond producing ammonium, or amines, where the fatty acids formed were immediately metabolized. Complete mineralization of secondary fatty acid amides depended on the biodegradability of the released amine. Tertiary fatty acid amides were not transformed by P. aeruginosa or A. hydrophila. These strains were able to utilize all tested primary and secondary fatty acid amides independent of the amine structure and fatty acid. Read-across of previous reported ready biodegradability results of primary and secondary fatty acid amides is justified based on the broad substrate specificity and the initial hydrolytic attack of the two isolates PK1 and PK3.  相似文献   

13.
Arthrobacter protophormiae produced a high level of extracellular endo-β-N-acetylglucosaminidase when cells were grown in a medium containing ovalbumin. The enzyme was induced by the glycopeptide fraction of ovalbumin prepared by pronase digestion. Production of the enzyme was also induced by glycoproteins such as yeast invertase and bovine ribonuclease B but not by monosaccharides such as mannose, N-acetylglucosamine, and galactose. The enzyme was purified to homogeneity as demonstrated by polyacrylamide gel electrophoresis and has an apparent molecular weight of about 80,000. The enzyme showed a broad optimum pH in the range of pH 5.0 to 11.0. The enzyme hydrolyzed all heterogeneous ovalbumin glycopeptides, although the hydrolysis rates for hybrid type glycopeptides were very low. The substrate specificity of A. protophormiae endo-β-N-acetylglucosaminidase was very similar to that of Endo-CII from Clostridium perfringens. Therefore, the enzyme induction by A. protophormiae seems to have a close relation to the substrate specificity of the enzyme.  相似文献   

14.
The objective of this study was to define how the quality of the buffer/membrane interface influences the activity of bacterial sphingomyelinase acting at the interface. The enzyme reaction was carried out in a zero-order trough using a surface barostat. This approach allowed for proper control of the physico-chemical properties of the substrate molecules. Since the molecular area of ceramide is smaller than that of sphingomyelin, the hydrolysis reaction could be followed `on-line' from the monolayer area decrease at constant surface pressure. The hydrolysis reaction could be divided into two separate phases, the first being the lag-phase (time between enzyme addition and commencement of the monolayer area change), and the second phase being the actual hydrolysis reaction (from which a maximal degradation rate could be determined). The activity of sphingomyelinase (Staphylococcus aureus) toward bovine brain sphingomyelin (bb-SM) was markedly enhanced by Mg2+ (maximal activation at 5 mM). Mg2+ also influenced the lag-phase of the reaction (the lag-time increased markedly when the Mg2+ concentration decreased below 1 mM). Saturated sphingomyelins (bb-SM and N-palmitoyl sphingomyelin [N-P-SM]) were more slowly degraded than the mono-unsaturated N-oleoyl sphingomyelin (N-O-SM). Both bb-SM and N-P-SM monolayers underwent a phase-transition at room temperature, whereas the N-O-SM monolayer did not. The phase-transition (liquid-expanded to liquid-condensed) was observed to greatly increase the lag-time of the hydrolysis reaction. The activity of sphingomyelinase was also sensitive to the lateral surface pressure of the monolayer membrane. Maximal degradation rate was achieved at 20 mN/m (with bb-SM, 30°C); above this pressure the lag-time of the reaction increased sharply. The inclusion of 4 mol% of cholesterol into a [3H]sphingomyelin monolayer markedly increased the extent of [3H]sphingomyelin degradation, and shortened the lag-time of the reaction. The inclusion of 10 mol% of zwitterionic or negatively charged phospholipids to the [3H]sphingomyelin monolayer did not affect the sphingomyelinase reaction significantly. In conclusion, this study has demonstrated that the physico-chemical properties of the substrate molecules have a dominating influence on the activity of a bacterial sphingomyelinase acting at the buffer/membrane interface.  相似文献   

15.
Butyryl cholinesterase from horse and human sera catalyzed the hydrolysis of monoacylglycerols containing fatty acids varying in chain length from 8 to 12 carbons; maximum activity was obtained with rac-glycerol 1-monodecanoate as substrate. Neither the triacylglycerols of these fatty acids nor the monoacylglycerols of longer chain length fatty acids were hydrolyzed at measurable rates in the system used. The enzyme was eserine sensitive and indistinguishable from butyryl cholinesterase as judged by purification, response to the several inhibitors tested, and heat inactivation. Data from mixed substrate experiments suggest a possible effector role for butyryl choline in accelerating the rate of rac-glycerol 1-monodecanoate hydrolysis. Fatty acid released during the course of rac-glycerol 1-monodecanoate hydrolysis may irreversibly inactivate the enzyme.  相似文献   

16.
A peptidase acting on Leu-Gly-Gly and Leu-Tyr at pH 8 to 10 was purified about 670-fold from germinated grains of barley (Hordeum vulgare L.). Gel electrophoretic analyses indicated a purity of about 90%. The purified enzyme is remarkably similar to mammalian leucine aminopeptidases (EC 3.4.1.1) both in chemical and in enzymatic properties. It has a sedimentation constant of 12.7S and a molecular weight of about 260,000. The enzyme has a high activity on leucine amide and di- and tripeptides with N-terminal leucine or methionine; leucyl-β-naphthylamide, in contrast, is hydrolyzed very slowly. The enzyme also liberates N-terminal amino acids from the insulin B chain. The pH optima for the hydrolysis of different substrates depend on the buffers used; highest reaction rates are generally obtained at pH 8.5 to 10.5. Mg2+ and Mn2+ ions stabilize (and probably activate) the enzyme. In contrast to mammalian leucine aminopeptidases, the barley enzyme is inactivated in the absence of reducing sulfydryl compounds.  相似文献   

17.
The Brevibacterium R 312 strain has an amidase with a wide substrate spectrum previously named acetamidase. The study of its activity showed that this enzyme was able to hydrolyze a large number of amides into their corresponding organic acids. The affinity of this enzyme for the substrates varied according to the length of the carbon chain and the spatial crowding of the molecule. The comparison of the specific rates of hydrolysis showed that propionamide was the amide substrate most quickly hydrolyzed.We confirmed the inducible feature of this enzyme and noted that only acetamide and N-methylacetamide were inducers of this enzyme among the compounds tested. Thioacetamide and N-methylpropionamide, both as amide analogues, were shown to inhibit the biosynthesis of acetamidase. Similarly, the organic acids, products of the hydrolysis reaction, showed a strong repression action on the biosynthesis of the enzyme.  相似文献   

18.
Substrate specificity of the bacterial penicillinamidohydrolase (penicillinacylase, EC 3.5.1.11) fromEscherichia coli was determined by measuring initial rates of enzyme hydrolysis of different substrates within zero order kinetics. SomeN-phenylacetyl derivatives of amino acids and amides of phenylacetic acid and phenoxyacetic acid of different substituted amides of these acids or amides, structurally and chemically similar to these compounds, served as substrates. Significant differences in ratios of initial Tates of the enzyme hydrolysis of different substrates were found when using a toluenized suspension of bacterial cells or a crude enzyme preparation, in spite of the fact that the enzyme is localized between the cell wall and cytoplasmic membrane, in the so-called periplasmic space.N-phenylacetyl derivatives are the most rapidly hydrolyzed substrates. Beta-phenylpropionamide and 4-phenylbutyramide were not utilized as substrates. The substrate specificity of the enzyme is discussed with respect to a possible use of certain colourless compounds as substrates, hydrolysis of which yields chromophor products suitable for a simple and rapid assay of the enzyme activity.  相似文献   

19.
The hydrolytic specificity of the recombinant 20S proteasome from the deep-sea thermophile Methanococcus jannaschii was evaluated toward oxidized insulin B-chain across a range of temperatures (35°, 55°, 75°, and 90°C) and hydrostatic pressures (1, 250, 500, and 1,000 atm). Of the four temperatures considered, the same maximum overall hydrolysis rate was observed at both 55° and 75°C, which are much lower than the Topt of 116°C previously observed for a small amide substrate (Michels and Clark 1997). At 35°C the rates of cleavage were highest at the carboxyl side of glutamine and leucine, whereas at the three higher temperatures, the most rapid cleavages occurred after leucine and glutamic acid residues. The distribution of proteolytic fragments and the cleavage sequence also varied between the lowest and higher temperatures. Application of hydrostatic pressure did not increase proteasome activity, as observed previously for the amide substrate (Michels and Clark 1997), but instead significantly reduced the overall conversion of the polypeptide substrate. Overall cleavage patterns observed for the recombinant M. jannaschii proteasome were similar to those reported previously for Thermoplasma acidophilum (Akopian et al. 1997) and human proteasomes (Dick et al. 1991), indicating that proteasome specificity has been conserved despite significant environmental diversity.Communicated by G. Antranikian  相似文献   

20.
A protease, `trypsinogenase', secreted in small amounts by the sea-urchin blastula, is assayed in two steps as an example of enzyme-amplifying kinetics. In reaction 1 the trypsinogenase catalyses the activation of trypsinogen to trypsin. In reaction 2 the trypsin catalyses the hydrolysis of N-α-toluene-p-sulphonylarginine methyl ester, at a rate that is linear with trypsinogenase concentration over a 20-fold range. Results are reproducible within a batch of zymogen, but each batch requires a separate standard curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号