首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutathione specifically labeled with isotopes   总被引:2,自引:0,他引:2  
A procedure for synthesis of glutathione selectivity labeled with isotopes is described. A strain of Escherichia coli enriched in its content of gamma-glutamylcysteine synthetase and glutathione synthetase by recombinant DNA techniques is immobilized in a carrageenan matrix and treated with toluene to render the cells more permeable to the substrates. The immobilized cell matrix is incubated with a mixture containing the appropriately labeled amino acid, the other amino acid constituents of glutathione, ATP, and acetylphosphate. The radiolabeled product is isolated by column chromatography.  相似文献   

2.
A variety of strategies to incorporate unnatural amino acids into proteins have been pursued, but all have limitations with respect to technical accessibility, scalability, applicability to in vivo studies, or site specificity of amino acid incorporation. The ability to selectively introduce unnatural functional groups into specific sites within proteins, in vivo, provides a potentially powerful approach to the study of protein function and to large-scale production of novel proteins. Here we describe a combined genetic selection and screen that allows the rapid evolution of aminoacyl-tRNA synthetase substrate specificity. Our strategy involves the use of an "orthogonal" aminoacyl-tRNA synthetase and tRNA pair that cannot interact with any of the endogenous synthetase-tRNA pairs in Escherichia coli. A chloramphenicol-resistance (Cm(r)) reporter is used to select highly active synthetase variants, and an amplifiable fluorescence reporter is used together with fluorescence-activated cell sorting (FACS) to screen for variants with the desired change in amino acid specificity. Both reporters are contained within a single genetic construct, eliminating the need for plasmid shuttling and allowing the evolution to be completed in a matter of days. Following evolution, the amplifiable fluorescence reporter allows visual and fluorimetric evaluation of synthetase activity and selectivity. Using this system to explore the evolvability of an amino acid binding pocket of a tyrosyl-tRNA synthetase, we identified three new variants that allow the selective incorporation of amino-, isopropyl-, and allyl-containing tyrosine analogs into a desired protein. The new enzymes can be used to produce milligram-per-liter quantities of unnatural amino acid-containing protein in E. coli.  相似文献   

3.
Amino acid sequence of rat kidney gamma-glutamylcysteine synthetase   总被引:8,自引:0,他引:8  
gamma-Glutamylcysteine synthetase catalyzes the first step in the synthesis of glutathione. The enzyme isolated from rat kidney has two subunits (heavy, Mr 73,000; and light, Mr 27,700) which may be dissociated by treatment with dithiothreitol. The heavy subunit exhibits all of the catalytic activity of the isolated enzyme and also feedback inhibition by glutathione. The light subunit has no known function and may not be an integral part of the enzyme. cDNA clones encoding rat kidney gamma-glutamylcysteine synthetase were isolated from a lambda gt11 cDNA library by immunoscreening with antibody against the isolated enzyme and further screening with oligonucleotide probes derived from several peptides whose sequences were determined by the Edman method. The nucleotide sequence of the mRNA for the heavy subunit was deduced from the sequences of the cDNA of three such clones. The sequence, which codes for 637 residues (Mr 72,614), contains all four of the independently determined peptide sequences (approximately 100 residues). This amino acid sequence shows extremely low overall similarity to that of gamma-glutamylcysteine synthetase isolated from Escherichia coli.  相似文献   

4.
Azim MK  Budisa N 《Biological chemistry》2008,389(9):1173-1182
Abstract Non-canonical amino acids (N(AA)), as building blocks for peptides and proteins during ribosomal translation, represent a nearly infinite supply of novel functions. The specific selection, activation and tRNA-charging of amino acids by aminoacyl-tRNA synthetases (AARS) in the aminoacylation reaction are essential steps. In most cases, aminoacylation of N(AA) is a good indication that the related amino acid will participate in ribosomal translation as well. However, testing the translational capacity of amino acid analogs has technical limitations. Therefore, a rapid and reliable in silico test for N(AA) recognition by AARS would be advantageous in experimental design. We chose tryptophanyl-tRNA synthetase from Escherichia coli as a model system for docking studies with various tryptophan analogs using the FlexX-Pharm strategy. We were able to calculate relative binding energies for Trp analogs in TrpRS that correlate well with their translational activities in E. coli. In particular, FlexX-Pharm predicted the binding sites of fluoro-, amino-, hydroxyl- and aza-containing Trp analogs within 1.5 A of Trp in the homology model of E. coli TrpRS. Therefore, the use of ligand docking prior to N(AA) incorporation experiments might provide a straightforward means for determining N(AA) that can be efficiently incorporated into a protein.  相似文献   

5.
Liu W  Brock A  Chen S  Chen S  Schultz PG 《Nature methods》2007,4(3):239-244
We developed a general approach that allows unnatural amino acids with diverse physicochemical and biological properties to be genetically encoded in mammalian cells. A mutant Escherichia coli aminoacyl-tRNA synthetase (aaRS) is first evolved in yeast to selectively aminoacylate its tRNA with the unnatural amino acid of interest. This mutant aaRS together with an amber suppressor tRNA from Bacillus stearothermophilus is then used to site-specifically incorporate the unnatural amino acid into a protein in mammalian cells in response to an amber nonsense codon. We independently incorporated six unnatural amino acids into GFP expressed in CHO cells with efficiencies up to 1 mug protein per 2 x 10(7) cells; mass spectrometry confirmed a high translational fidelity for the unnatural amino acid. This methodology should facilitate the introduction of biological probes into proteins for cellular studies and may ultimately facilitate the synthesis of therapeutic proteins containing unnatural amino acids in mammalian cells.  相似文献   

6.
The alpha-methyl and alpha-ethyl analogs of methionine sulfoximine, like methionine sulfoximine, induce convulsions in mice and inhibit glutamine synthetase irreversibly; alpha-ethylmethionine sulfoximine is approximately 50% as inhibitory as methionine sulfoximine and alpha-methylmethionine sulfoximine. However, whereas alpha-methylmethionine sulfoximine and methionine sulfoximine inhibit gamma-glutamylcysteine synthetase markedly, alpha-ethylmethionine sulfoximine does not, nor does administration of the alpha-ethyl analog produce the decrease in tissue glutathione levels found after giving methionine sulfoximine or its alpha-methyl analog. The findings strongly indicate that methionine sulfoximine-induced convulsions are closely associated with inhibition of glutamine synthetase rather than with inhibition of gamma-glutamylcysteine synthetase. The alpha-alkyl methionine sulfoximine analogs cannot be catabolized via the corresponding alpha-keto or alpha-imino acids, and, like other alpha-substituted amino acids, are probably not metabolized to a significant extent in vivo; this suggests that the amino acid sulfoximine molecules themselves, rather than their metabolites, are directly involved in the induction of convulsions. Possible explanations for the reported lack of correlation between the occurrence of convulsions and the levels of glutamine synthetase activity (and its substrates and product) are considered. The findings suggest that studies on the mechanism of induction of convulsions may be extended significantly and refined in biochemical terms by the use of other structurally modified convulsant molecules.  相似文献   

7.
Buthionine sulfoximine (S-n-butyl homocysteine sulfoximine), the most potent of a series of analogs of methionine sulfoximine thus far studied (Griffith, O.W., Anderson, M.E., and Meister, A. (1979) J. Biol. Chem. 254, 1205-1210), inhibited gamma-glutamylcysteine synthetase about 20 times more effectively than did prothionine sulfoximine and at least 100 times more effectively than methionine sulfoximine. The findings support the conclusion that the S-alkyl moiety of the sulfoximine binds at the enzyme site that normally binds the acceptor amino acid. Thus, the affinity of the enzyme for the S-ethyl, S-n-propyl, and S-n-butyl sulfoximines increases in a manner which is parallel to those of the corresponding isosteric acceptor amino acid substrates, i.e. glycine, alanine, and alpha-aminobutyrate. Buthionine sulfoximine did not inhibit glutamine synthetase detectably, nor did it produce convulsions when injected into mice. Injection of buthionine sulfoximine into mice decreased the level of glutathione in the kidney to a greater extent (less than 20% of the control level) than found previously after giving prothionine sulfoximine. alpha-Methyl buthionine sulfoximine was also prepared and found to be almost as effective as buthionine sulfoximine; this compound would not be expected to undergo substantial degradative metabolism. Buthionine sulfoximine and alpha-methyl buthionine sulfoximine may be useful agents for inhibition of glutathione synthesis in various experimental systems.  相似文献   

8.
In order to improve the biotechnological potentials of Escherichia coli cells to produce glutathione, S-D-lactoylglutathione and other gamma-glutamyl compounds, the genes for enzymes [gamma-L-glutamyl-L-cysteine synthetase (GSH A) in E. coli B, glutathione synthetase (GSH B) in E. coli B, glyoxalase I (GLO I) in Pseudomonas putida] were cloned and amplified in E. coli. E. coli B cells transformed with both GSH A and GSH B genes exhibited a high activity in the synthesis of glutathione and other gamma-glutamyl compounds in bioreactor systems containing immobilized cells. E. coli C600 cells transformed with GLO I gene of P. putida showed a high GLO I activity and were used for the preparation of S-D-lactoylglutathione and other glutathione thiol esters.  相似文献   

9.
In order to identify amino acids involved in binding the co-substrate glutathione to the human glutathione S-transferase (GST) pi enzyme, we assembled three criteria to implicate amino acids whose role in binding and catalysis could be tested. Presence of a residue in the highly conserved exon 4 of the GST gene, positional conservation of a residue in 12 glutathione S-transferase amino acid sequences, and results from published chemical modification studies were used to implicate 14 residues. A bacterial expression vector (pUC120 pi), which enabled abundant production (2-26% of soluble Escherichia coli protein) of wild-type or mutant GST pi, was constructed, and, following nonconservative substitution mutation of the 14 implicated residues, five mutants (R13S, D57K, Q64R, I68Y, L72F) showed a greater than 95% decrease in specific activity. A quantitative assay was developed which rapidly measured the ability of wild-type or mutant glutathione S-transferase to bind to glutathione-agarose. Using this assay, each of the five loss of function mutants showed a greater than 20-fold decrease in binding glutathione, an observation consistent with a recent crystal structure analysis showing that several of these residues help to form the glutathione-binding cleft.  相似文献   

10.
B?ck, August (Purdue University, Lafayette, Ind.), Lia Eidlic Faiman, and Frederick C. Neidhardt. Biochemical and genetic characterization of a mutant of Escherichia coli with a temperature-sensitive valyl ribonucleic acid synthetase. J. Bacteriol. 92:1076-1082. 1966.-To test our conclusion that Escherichia coli mutant I-9 possesses a valyl soluble ribonucleic acid (sRNA) synthetase that functions in vivo at 30 C but not at 37 C, measurements were made by use of the periodate method, of the level of charged valyl sRNA in this strain. A shift of temperature from 30 to 40 C resulted in a rapid discharging of valyl sRNA coordinate with the cessation of protein synthesis; at the same time, other species of sRNA, such as those for leucine, became fully charged. Identical results were obtained with a derivative of I-9 with relaxed ribonucleic acid (RNA) control. When P1 phage were grown on wild cells and then used at low multiplicities of infection to transduce temperature-resistant growth into I-9, complete cotransduction of normal valyl sRNA synthetase occurred. By means of the interrupted-mating technique, the structural gene for valyl sRNA synthetase was located on the E. coli chromosome map and found to be near thr, one-fifth of the length of the chromosome removed from the structural genes for the isoleucine-valine biosynthetic enzymes. Therefore, (i) the major valyl sRNA synthetase activity of I-9 appears to be temperature-sensitive in vivo, (ii) relaxed amino acid control over RNA synthesis does not appear to be a consequence of a normal charging of sRNA with a substitute molecule, and (iii) one structural gene for valyl sRNA synthetase is located on the E. coli chromosome not closely linked to the cistrons for the valine-biosynthetic enzymes.  相似文献   

11.
12.
The analogs of rhizobitoxine, aminoethoxyvinylglycine (AVG) (l-2-amino-4-2'-aminoethoxy-trans-3 butenoic acid) and methoxyvinylglycine (MVG) (l-2-amino-4-methoxy-trans-3-butenoic acid), that are potent inhibitors of ethylene biosynthesis at 0.1 millimolar also inhibited protein synthesis and charging of tRNA especially at 1 millimolar and higher concentrations. The saturated analog of MVG inhibited ethylene synthesis while the saturated analog of AVG did not. Both saturated AVG and MVG inhibit methionyl- and leucyl-amino acyl-tRNA synthetase. Because of the inhibition of amino acid metabolism in plant tissues by these rhizobitoxine analogs caution is advised in interpreting the results obtained with concentrations of compounds above 0.1 millimolar.  相似文献   

13.
Glutamine synthetase is encoded by the glnA gene of Escherichia coli and catalyzes the formation of glutamine from ATP, glutamate, and ammonia. A 1922-base pair fragment from a cDNA containing the glnA structural gene for E. coli glutamine synthetase has been sequenced. An open reading frame of 1404 base pairs encodes a protein of 468 amino acid residues with a calculated molecular weight of 51,814. With few exceptions, the amino acid sequence deduced from the DNA sequence agreed very well with the amino acid sequences of several peptides reported previously. The secondary structure predicted for the E. coli enzyme has approximately 36% of the residues in alpha-helices which is in agreement with calculations of approximately 39% based on optical rotatory dispersion data. Comparison of the amino acid sequences of glutamine synthetase from E. coli (468 amino acids) and Anabaena (473 amino acids) (Turner, N. E., Robinson, S. T., and Haselkorn, R. (1983) Nature 306, 337-342) indicates that 260 amino acids are identical and 80 are of the same type (polar or nonpolar) when aligned for maximum homology. Several homologous regions of these two enzymes exist, including the sites of adenylylation and oxidative modification, but the regulation of each enzyme is different.  相似文献   

14.
Chiral bias in the unnatural translation and 'sticky' mussel proteins. The residue-specific in vivo incorporation of hydroxylated amino acids as well as other synthetic analogs, such as fluoroprolines, emerges as the method of choice for recombinant synthesis of Pro-rich mussel adhesive protein congeners. Chemical diversifications introduced in this way provide a general route towards bio-adhesive congeners endowed with properties not developed by natural evolution. Most importantly, we have found that the co-translational incorporation of (4R)-, and (4S)-hyroxylated and fluorinated analogs into mussel proteins presented a chiral bias: the expressed protein was only detectable in samples incubated with analogs with (4R)-substituents. Possible relationship of these stereochemical preferences for (4R)-stereoisomers in the translation to intracellular tRNA concentrations, ribosomal editing and proofreading or structural effects such as preorganization remains to be addressed in future studies. These studies will generally provide a mechanistic framework for the flexibility of the translational machinery and establish the boundaries of the unnatural translation.  相似文献   

15.
Starvation for a required amino acid of normal or RC(str)Escherichia coli infected with T-even phages arrests further synthesis of phage deoxyribonucleic acid (DNA). This amino acid control over phage DNA synthesis does not occur in RC(rel)E. coli mutants. Heat inactivation of a temperature-sensitive aminoacyl-transfer ribonucleic acid (RNA) synthetase similarly causes an arrest of phage DNA synthesis in infected cells of RC(str) phenotype but not in cells of RC(rel) phenotype. Inhibition of phage DNA synthesis in amino acid-starved RC(str) host cells can be reversed by addition of chloramphenicol to the culture. Thus, the general features of amino acid control over T-even phage DNA synthesis are entirely analogous to those known for amino acid control over net RNA synthesis of uninfected bacteria. This analogy shows that the bacterial rel locus controls a wider range of macromolecular syntheses than had been previously thought.  相似文献   

16.
The gltX gene, coding for the glutamyl-tRNA synthetase of Rhizobium meliloti A2, was cloned by using as probe a synthetic oligonucleotide corresponding to the amino acid sequence of a segment of the glutamyl-tRNA synthetase. The codons chosen for this 42-mer were those most frequently used in a set of R. meliloti genes. DNA sequence analysis revealed an open reading frame of 484 codons, encoding a polypeptide of Mr 54,166 containing the amino acid sequences of an NH2-terminal and various internal fragments of the enzyme. Compared with the amino acid sequence of the glutamyl-tRNA synthetase of Escherichia coli, the N-terminal third of the R. meliloti enzyme was strongly conserved (52% identity); the second third was moderately conserved (38% identity) and included a few highly conserved segments, whereas no significant similarity was found in the C-terminal third. These results suggest that the C-terminal part of the protein is probably not involved in the recognition of substrates, a feature shared with other aminoacyl-tRNA synthetases.  相似文献   

17.
Initiation of in vivo protein synthesis with non-methionine amino acids   总被引:8,自引:0,他引:8  
Methionine is the universal amino acid for initiation of protein synthesis in all known organisms. The amino acid is coupled to a specific initiator methionine tRNA by methionyl-tRNA synthetase. In Escherichia coli, attachment of methionine to the initiator tRNA (tRNA(fMet)) has been shown to be dependent on synthetase recognition of the methionine anticodon CAU (complementary to the initiation codon AUG), [Schulman, L. H., & Pelka, H. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6755-6759]. We show here that alteration of the anticodon of tRNA(fMet) to GAC or GAA leads to aminoacylation of the initiator tRNA with valine or phenylalanine. In addition, tRNA(fMet) carrying these amino acids initiates in vivo protein synthesis when provided with initiation codons complementary to the modified anticodons. These results indicate that the sequence of the anticodon of tRNA(fMet) dictates the identity of the amino acid attached to the initiator tRNA in vivo and that there are no subsequent steps which prevent initiation of E. coli protein synthesis by valine and phenylalanine. The methods described here also provide a convenient in vivo assay for further examination of the role of the anticodon in tRNA amino acid acceptor identity.  相似文献   

18.
The regulation of synthesis of valyl-, leucyl-, and isoleucyl-transfer ribonucleic acid (tRNA) synthetases was examined in strains of Escherichia coli and Salmonella typhimurium. When valine and isoleucine were limiting growth, the rate of formation of valyl-tRNA synthetase was derepressed about sixfold; addition of these amino acids caused repression of synthesis of this enzyme. The rate of synthesis of the isoleucyl- and leucyl-tRNA synthetases was derepressed only during growth restriction by the cognate amino acid. Restoration of the respective amino acid to these derepressed cultures caused repression of synthesis of the aminoacyl-tRNA synthetase, despite the resumption of the wild-type growth rate.  相似文献   

19.
The poplar hybrid Populus tremula X P. alba was transformed with the Escherichia coli gene for glutathione synthetase ( gsh II ) targetted to the cytosol. Leaves of five lines of transgenic plants exhibited glutathione synthetase activities 15- to 60-fold higher than those of wild-type plants. Total glutathione levels and GSH/GSSG ratios were similar in transgenic and wild-type plants. Precursor feeding experiments with cysteine and γ-glutamylcysteine suggest that glutathione synthesis in the cytoplasm is controlled by a multistep procedure that includes (i) the availability of cysteine, (ii) the availability of γ-glutamylcysteine, and (iii) regulation of the activities of both γ-glutamylcysteine synthetase and glutathione synthetase. However step (ii) may set an upper limit for the cellular glutathione content.  相似文献   

20.
P R Rosevear 《Biochemistry》1988,27(20):7931-7939
A procedure for the rapid purification of a truncated form of the Escherichia coli methionyl-tRNA synthetase has been developed. With this procedure, final yields of approximately 3 mg of truncated methionyl-tRNA synthetase per gram of cells, carrying the plasmid encoding the gene for the truncated synthetase [Barker, D.G., Ebel, J.-P., Jakes, R., & Bruton, C.J. (1982) Eur. J. Biochem. 127, 449], can be obtained. The catalytic properties of the purified truncated synthetase were found to be identical with those of the native dimeric and trypsin-modified methionyl-tRNA synthetases. A rapid procedure for obtaining milligram quantities of the enzyme is necessary before the efficient incorporation of stable isotopes into the synthetase becomes practical for physical studies. With this procedure, truncated methionyl-tRNA synthetase labeled with [methyl-13C]methionine was purified from an Escherichia coli strain auxotrophic for methionine and containing the plasmid encoding the gene for the truncated methionyl-tRNA synthetase. Both carbon-13 and proton observe-heteronuclear detect NMR experiments were used to observe the 13C-enriched methyl resonances of the 17 methionine residues in the truncated synthetase. In the absence of ligands, 13 of the 17 methionine residues could be resolved by carbon-13 NMR. Titration of the synthetase, monitoring the chemical shifts of resonances B and M (Figure 3), with a number of amino acid ligands and ATP yielded dissociation constants consistent with those derived from binding and kinetic data, indicating active site binding of the ligands under the conditions of the NMR experiment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号