首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
We have analyzed the DNAase I sensitivity of the mouse alpha-fetoprotein and albumin structural genes from fetal liver, adult liver and kidney. The albumin gene shows distinct hypersensitive sites in adult liver in addition to an overall DNAase I sensitivity, but is only slightly nuclease-sensitive in fetal liver. The alpha-fetoprotein gene does not show hypersensitive sites but displays an overall DNAase I sensitivity in fetal liver; however, it is nuclease-insensitive in adult liver. Both genes are insensitive to DNAase I in kidney. The presence of DNAase-I-hypersensitive sites in the albumin structural gene correlates with extensive demethylation of the gene in adult liver.  相似文献   

9.
The enzyme 5-aminolevulinate synthase (ALA-S) catalyzes the first step in heme biosynthesis. In this study, the mouse erythroid gene has been cloned and analyzed in order to investigate the regulation of ALA-S expression during erythroid differentiation. The gene spans approximately kbp and consists of 11 exons and 10 introns. The first exon is 37 bp, non-coding, and followed by a 6kb intron. The mRNA capsite was mapped by primer extension and defines a promoter that contains no apparent TATA element. S1 nuclease analysis detects the presence at low levels of a 45 bp-deleted form of the ALA-S mRNA created by the use of an alternative splice site at the intron 2/exon 3 junction. Five DNAse I hypersensitive sites were detected in chromatin from uninduced and induced MEL cells. One site is at the promoter; the others are in the body of the gene. No significant differences were observed in the patterns or intensity of the hypersensitive sites in the uninduced and induced MEL cells, however, no sites in ALA-S were observed in NIH 3T3 cells or in deproteinized DNA. Thus, these sites are specific for erythroid chromatin but appear to be established at an earlier stage of differentiation than represented by the uninduced MEL cell.  相似文献   

10.
Oligodeoxyribonucleotide excess solution hybridization, Northern blot and in situ hybridization were used to analyze metallothionein gene expression in mouse decidua and placentae during gestation. Metallothionein (MT) -I and -II mRNA levels were constitutively elevated, 11- and 13-fold, respectively, relative to the adult liver, in the deciduum (D8), and decreased coordinately about 6-fold during the period of development when the deciduum is replaced by the developing placenta (D10-16). Coincident with this decline, levels of MT mRNA increased dramatically in the visceral yolk sac endoderm. In situ hybridization established that MT-I mRNA was present at low levels in the uterine luminal epithelium (D4), but was elevated at the site of embryo implantation exclusively in the primary decidual zone by D5, and then in the secondary decidual zone (D6-8). Although low levels of MT mRNA were detected in total placental RNA, in situ hybridization revealed constitutively high levels in the outer placental spongiotrophoblasts. Analysis of pulse-labeled proteins from decidua and placentae established that these tissues are active in the synthesis of MT. The constitutively high levels of MT mRNA in decidua were only slightly elevated following injection of cadmium (Cd) and/or zinc (Zn), whereas in placentae they increased several-fold. MT mRNA levels were equally high in decidua and experimentally induced deciduomata (D8) which establishes that decidual MT gene expression is not dependent on the presence of the embryo or some embryo-derived factor. Although the functional role of MT during development is speculative, these results establish the concept that, from the time of implantation to late in gestation, the mouse embryo is surrounded by cells, interposed between the maternal and embryonic environments, which actively express the MT genes. This suggests that MT plays an important role in the establishment and maintenance of normal pregnancy.  相似文献   

11.
The mouse metallothionein (MT) gene family consists of four known members (MT-I through IV) clustered on chromosome 8. Studies reported herein examine the expression and regulation of the MT-III and MT-IV genes in specific cell types in the maternal reproductive tract, developing embryo, and fetus known to express the MT-I and -II genes. MT-III and MT-IV mRNAs were absent from the visceral yolk sac, placenta, and fetal liver, tissues with high levels of MT-I and MT-II mRNAs. In contrast, MT-III and MT-IV mRNAs were both abundant in the maternal deciduum, and in experimentally induced deciduoma on 7 and 8 days postcoitum (1 dpc = vaginal plug), as are MT-I and -II mRNAs. The abundance of each of these MT mRNAs increased coordinately during development of the deciduum (6–8 dpc), and in situ hybridization localized MT-I, MT-III, and MT-IV mRNAs to the secondary decidual zone of the antimesometrial region on 8 dpc, where in some regions all of the cells were apparently positive. Thus, all of the known mouse MT genes are co-expressed in at least some of the cells in the secondary decidual zone. Electrophoretic analysis of decidual MT suggested that the MT-I, -II, and -III isoforms are abundant proteins in the secondary deciduum. Bacterial endotoxin-lipopolysaccharide (LPS) and Zn are powerful inducers of MT-I and MT-II gene expression in many adult organs, whereas these agents apparently have little effect on MT-III and MT-IV gene expression. Neither of these agents significantly effected levels of decidual MT-III or MT-IV mRNAs in vivo or in primary cultures of decidual cells in vitro, and only modest effects of Zn on MT-I mRNA levels were noted. During 2 days of in vitro culture, decidual cell MT-I and MT-III mRNA levels remained elevated while MT-IV mRNA levels decreased. Thus, expression of the mouse MT gene locus in the deciduum appears to be developmentally regulated, and in this tissue, the MT genes are refractory to induction by Zn or inflammation. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Expression of a mouse metallothionein gene in transgenic plant tissues   总被引:3,自引:0,他引:3  
V Pautot  R Brzezinski  M Tepfer 《Gene》1989,77(1):133-140
  相似文献   

13.
BACKGROUND: The cystic fibrosis transmembrane conductance regulator gene (CFTR) shows a complex pattern of expression. The regulatory elements conferring tissue-specific and temporal regulation are thought to lie mainly outside the promoter region. Previously, we identified DNase I hypersensitive sites (DHS) that may contain regulatory elements associated with the CFTR gene at -79.5 and at -20.5 kb with respect to the ATG and at 10 kb into the first intron. MATERIALS AND METHODS: In order to evaluate these regulatory elements in vivo we examined these DHS in a human CFTR gene that was introduced on a yeast artificial chromosome (YAC) into transgenic mice. The 310 kb human CFTR YAC was shown to restore the pheno-type of CF-null mice and so is likely to contain most of the regulatory elements required for tissue-specific expression of CFTR. RESULTS: We found that the YAC does not include the -79.5 kb region. The DHS at -20.5 kb is present in the chromatin of most tissues of the transgenic mice, supporting its non-tissue-specific nature. The DHS in the first intron is present in a more restricted set of tissues in the mice, although its presence does not show complete concordance with CFTR expression. The intron I DHS may be important for the higher levels of expression found in human pancreatic ducts and in lung submucosal glands. CONCLUSION: These data support the in vivo importance of these regulatory elements.  相似文献   

14.
M Reitman  E Lee    H Westphal 《Nucleic acids research》1995,23(10):1790-1794
We have shown previously that the chicken beta A-globin gene, with its 3' enhancer, is expressed in a copy number-dependent manner in transgenic mice. The expression level was low but increased approximately 6-fold upon inclusion of 11 kb of upstream DNA containing four DNase I hypersensitive sites. To study the effect of the individual upstream hypersensitive sites on transgene expression, we produced lines of mice in which the individual upstream sites were linked to the beta A gene and enhancer. RNA levels were measured in blood from adult animals. With each of these four constructs, the level of transgene RNA per DNA copy varied over a > 20-fold range. These data suggest that addition of a hypersensitive site to the beta A-globin/enhancer region abrogates its position independent expression. The average beta A-globin expression per copy in the lines carrying an upstream site was comparable with that in lines without an upstream site. Thus, no single upstream hypersensitive site accounts for the higher level of beta A-globin expression seen in mice containing the complete upstream region. We had shown previously that control of the chicken beta-globin cluster is distributed between at least two regions, the beta A/epsilon enhancer and the upstream region. Our current results suggest that the control mediated by the upstream DNA is itself distributed and is not due to a single hypersensitive site.  相似文献   

15.
Changes in metallothionein (MT) and leptin under fasting stress were studied. MT content in the liver of mice increased markedly during continuous fasting periods up to 66 h. Hepatic content of MT increased significantly in mice during the first three cycles of alternate daily fasting-feeding, and then the rate of increase gradually decreased with repetition of this cycle. At the end of 10 cycles, the hepatic MT content was still greater in stressed mice than in the control, although the rate of increase decreased. On the other hand, the plasma concentration of leptin decreased dramatically during continuous fasting. The plasma leptin level recovered to the basal level at the end of 10 cycles of fasting-feeding. These data indicate that MT induction was strongly increased, but leptin was scarcely induced under the continuous fasting stress, and that rates of the changes in MT and leptin levels were gradually reduced under the repeated fasting stress, which may result from an inborn tolerance. Fasting presumably causes translocation of zinc from intracellular to extracellular space, from which it is taken into target organs. The increased zinc-bound MT under the continuous fasting may partly result from the need to maintain zinc and protect tissues against oxidative damage.  相似文献   

16.
The major distal regulatory sequence for the beta-globin gene locus, the locus control region (LCR), is composed of multiple hypersensitive sites (HSs). Different models for LCR function postulate that the HSs act either independently or synergistically. To test these possibilities, we have constructed a series of expression cassettes in which the gene encoding the enhanced green fluorescent protein (EGFP) is under the control of DNA fragments containing single and multiple HSs of the LCR. LCR DNA fragments containing only the minimal region needed for position-independent expression (HS cores) or containing cores plus flanking sequences (HS units) were compared to ascertain whether conserved sequences between the HS cores contributed to enhancement. Expression of these constructs was measured after targeted integration into three defined loci in murine erythroleukemia cells using recombinase-mediated cassette exchange. At all three marked loci, synergistic enhancement of expression was observed in cassettes containing a combination of HS2, HS3, and HS4 units. In contrast, HS2, HS3, and HS4 cores (without flanking sequences) give an activity equivalent to the sum of the activities of the individual HS cores. These data suggest a model in which an HS core plus flanking regions, bound by specific proteins, forms a structure needed for interaction with other HS units to confer strong enhancement by the LCR. The three targeted integration sites differ substantially in their permissivity for expression, but even the largest LCR construct tested could not overcome these position effects to confer equal expression at all three sites.  相似文献   

17.
18.
It is well known that treatment of DNA-topoisomerase complexes with SDS induces cleavage of the DNA by trapping a reactive intermediate in which the topoisomerase is covalently linked to the terminal phosphates of the cut DNA. I have used this technique to examine potential topoisomerase binding sites in the histone gene chromatin of Drosophila Kc cells. Treatment of Kc nuclei with SDS induces Mg++-dependent DNA cleavage near the borders of two nuclease-hypersensitive sites located 5' and 3' of histone H4. It is likely that the SDS-induced cleavage at these hypersensitive sites is due to a topoisomerase because protein becomes tightly bound to the ends of the cleaved DNA fragments. Preliminary experiments suggest that a type II topoisomerase may be responsible for the cleavage.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号