首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 886 毫秒
1.
Summary A general procedure, using the commonly employed solid-phase peptide synthesis methodology for obtaining internally quenched fluorogenic peptides with ortho-aminobenzoyl/dinitrophenyl groups as donor-acceptor pairs, is presented. The essential feature of this procedure is the synthesis of an N -Boc or-Fmoc derivative of glutamic acid with the -carboxyl group bound to N-(2,4-dinitrophenyl)-ethylenediamine (EDDnp), which provides the quencher moiety attached to the C-terminus of the substrate. The fluorescent donor group, ortho-aminobenzoic acid (Abz), is incorporated into the resin-bound peptide in the last coupling cycle. Depending on the resin type used, Abz-peptidyl-Gln-EDDnp or Abz-peptidyl-Glu-EDDnp is obtained. Using the procedure described above, substrates for human renin and tissue kallikreins were synthesised. Spectrofluorimetric measurements of Abz bound to the -amino group of proline showed that strong quenching of Abz fluorescence occurs in the absence of any acceptor group.  相似文献   

2.
Summary This paper details the solid-phase synthesis by N -9-fluorenylmethyloxycarbonyl (Fmoc) chemistry of a series of bivalent consolidated ligands, branched peptides with lengths of 22 to 25 residues. The target peptides were designed to, and in fact do, interact with greater specificity and higher affinity with the SH2 and SH3 domains of Abelson kinase in an SH(32) dual domain construct. Fmoc-O-phospho-l-tyrosine[Fmoc-Tyr(PO3H2)-OH] was used to introduce the required phosphotyrosine residues, and Fmoc-N -1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl-l-lysine [Fmoc-Lys(Dde)-OH] was used to introduce a branch point that allowed proper orientation of individual ligands. The resultant product peptides were characterized by amino acid analyses and electrospray mass spectra.This paper is based on a presentation given at the Symposium on Peptide Structure and Design as part of the 31st Annual ACS Western Regional Meeting held in San Diego, CA, USA, October 18–21, 1995.  相似文献   

3.
N -(fluoren-9-ylmethoxycarbonyl)-N -[(7-methoxycoumarin-4-yl)acetyl]-L-lysine[Fmoc-Lys(Mca)-OH] has been conveniently prepared. The copper complex of L-lysine hydrochloride was initially prepared, followed by the addition of the (7-methoxycoumarin-4-yl)acetyl (Mca) group to the -amino group. The copper complex was decomposed, and the Fmoc group was introduced to the -amino group. Fmoc-Lys(Mca)-OH was recrystallized from hexane and could be used directly for the solid-phase synthesis of fluorogenic substrates.  相似文献   

4.
Deltorphin II (Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2, Del II), an endogenous linear heptapeptide, is a highly selective agonist of the -opioid receptor. To study the effect of the position 4 residue (Glu) on the opioid activity of Del II, we designed and synthesized three analogues of Del II by solid-phase peptide synthesis. They were [Val4,Glu5]Del II, [Val4,Glu6]Del II and [Gly4,Glu7]Del II. To study the effect of spin labeling on peptide bioactivities, all the peptides were labeled using a free radical. The labeling material was a stable nitrogen–oxygen free radical which was linked to the N-terminal via an amide bond. We investigated the opioid bioactivities of these analogues both in vivo and in vitro, and concluded that the differences in opioid activity of Del II and its analogues were due to structural differences. When the Glu residue is at position 5 or 6, the internal hydrogen bonds in Del II are affected and there is a change in three-dimensional structure and opioid activity. The antinociceptive activity of all the peptides decreased after spin labeling. This indicates that the stable nitrogen–oxygen free radical is a dual-function spin-labeling molecule.  相似文献   

5.
One area of the search for hormonal signaling systems regulators is development of peptides that correspond to the cytoplasmic regions of G protein-coupled receptors (GPCR). Modification of such peptides with hydrophobic radicals increases their efficiency and selectivity. However, at present it has not been studied how the activity of the peptide depends on the localization of hydrophobic radicals, their number, and chemical nature. The aim of this work consisted in synthesis of peptide 562–572 derivatives modified by fatty-acid radicals and corresponding to the C-terminal region of the luteinizing hormone receptor (LHR) and in the study of regulatory effects of the acylated LHR peptides on the basal and hormone-stimulated activity of adenylyl cyclase (AC) in rat tissues. To elucidate the effects of localization of hydrophobic radicals and of their number, modifications of peptide 562–572 were carried out only at the N-or at the C-terminus or at both ends. To study the effect of hydrophobicity, residues of palmitic (Pal) and decanoic (Dec) acids were chosen. Using a solid-phase strategy synthesis was performed of the unmodified peptide NKDTKIAKK-Nle-A562-572-KA (1) and five of its acylated analogues, N[K(Dec)]DTKIAKK-Nle-A562-572-KA (2), NKDTKIAKK-Nle-A562-572-[K(Dec)]A (3), N[K(Dec)]DTKIAKK-Nle-A562-572-[K(Dec)]A (4), N[K(Pal)]DTKIAKK-Nle-A562-572-KA (5), and NKDTKIAKK-Nle-A562-572-[K(Pal)]A (6). Peptide 6 modified with palmitate at the C-terminus to a large extent increased the basal AC activity and reduced the AC stimulating effect of human chorionic gonadotropin (hCG) in testes of rats; peptides 3 and 4 modified with decanoate at the C-terminus were less effective, but exceeded in activity the unmodified peptide 1; and peptides 2 and 5 acylated at the N-terminus were little active. The action of peptides was characterized by tissue and the receptor specificity. Thus, modification of the LHR peptide 562–572 with fatty-acid radicals at the C-terminus enhances its regulatory effect on the functional activity of the adenylyl cyclase system in rat testes, which indicates a promising modification of GPCR peptides with hydrophobic radicals. These data confirm the hypothesis that the hydrophobic radical is to be localized in the locus of GPCR peptide, where a transmembrane domain is located in the receptor.  相似文献   

6.
Calcitonin gene-related peptide (CGRP) shares about 46% and 20% amino acid sequence homology with islet amyloid polypeptide (IAPP) and salmon calcitonin (sCT). We investigated whether these related peptides could cross-react with the specific binding of125I-[His]hCGRP I to the CGRP receptor in hamster insulinoma cell membranes. A rapid dissociation of membrane bound125I-[His]hCGRP I could be induced in the presence of 1 M chicken CGRP (cCGRP). The specific125I-[His]hCGRP I binding was inhibited by the related peptides and their half-maximal inhibitory concentrations (IC50) were: cCGRP (0.1 nM), rat CGRP I and human CGRP I and II (1.0–2.0 nM), fragment of hCGRP I (8-37) (150 nM), human IAPP (440 nM). The non-amidated form of hIAPP; human diabetes-associated peptide (hDAP) did not inhibit the binding of125I-[His]hCGRP I and sCT was only effective at a high concentration (1 M). Binding of125I-[His]hCGRP I was dose dependently inhibited by guanosine-5-O-(3-thiotriphosphate) or (GTPS) and a 70% reduction of binding was obtained with 0.1 mM GTPS. The IC50 value of cCGRP (0.1 nM) was increased 100-fold in the presence of 0.1 mM GTPS. Human CGRP I and cCGRP at 2.5 M did not stimulate the activity of hamster insulinoma cell membranes adenylate cyclase, while glucagon (1 M) induced a 2-fold increase. Thus, specific CGRP receptors present in hamster cells are associated with G protein (s) and IAPP can interact with these receptors. These results and the observation that cCGRP and hCGRP I did not influence adenylate cyclase activity provide further evidence for CGRP receptor subtypes.Abbreviations CGRP calcitonin gene-related peptide - IAPP islet amyloid polypeptide - IC50 half-maximal inhibitory concentration - GTPS guanosine-5-O-(3-thiotriphosphate) - 125I [His]hCGRP I, (2[125I]iodohistidyl10) human CGRP I  相似文献   

7.
In this paper, we present the detailed synthetic protocol and characterization of Fmoc-Lys(Pac)-OH, its use for the preparation of octapeptides H-Gly-Phe-Tyr-N-MePhe-Thr-Lys(Pac)-Pro-Thr-OH and H-Gly-Phe-Phe-His-Thr-Pro-Lys(Pac)-Thr-OH by solid-phase synthesis, trypsin-catalyzed condensation of these octapeptides with desoctapeptide(B23-B30)-insulin, and penicillin G acylase catalyzed cleavage of phenylacetyl (Pac) group from Nepsilon-amino group of lysine to give novel insulin analogs [TyrB25, N-MePheB26,LysB28,ProB29]-insulin and [HisB26]-insulin. These new analogs display 4 and 78% binding affinity respectively to insulin receptor in rat adipose membranes.  相似文献   

8.
The synthesis of β-casomorphin-5 (Tyr-Pro-Phe-Pro-Gly, H2L) and a number of its peptide fragments is described. Complexes formed between these peptides and Cu(II) have been investigated spectrophotometrically, using CD and EPR spectroscopy, and potentiometrically. Results show that, with tyrosine as the N-terminal residue, the major complex formed at physiological pH is the dimeric species, [Cu2L2], bonded through the phenolic O? of the Tyr residue of one ligand and the N-terminal amine nitrogen of the second ligand molecule. There is no evidence for coordination through the peptide nitrogens unless the terminal Tyr group is removed.  相似文献   

9.
A J Berk  F Lee  T Harrison  J Williams  P A Sharp 《Cell》1979,17(4):935-944
The studies described here demonstrate that the expression of many early adenovirus mRNAs is dependent upon the activity of a pre-early viral product. This viral gene product is defective in adenovirus 5 host range (Ad hr) group I mutants. Adenovirus 5 host range mutants were previously isolated by their ability to replicate in the adenovirus 5-transformed human embryonic cell line 293 and by their inability to replicate efficiently in HeLa cells (Harrison, Graham and Williams, 1977). The group I complementation class of host range mutants has been mapped by marker rescue between 0 and 4.4 units (Frost and Williams, 1978). We have used the S1 nuclease gel technique to examine the expression of early mRNA after infection of HeLa cells with Ad5 hr group I and II mutants. The Ad5 hr group II mutants stimulate the synthesis of a wild-type pattern of early mRNAs. In contrast, infection of HeLa cells with Ad5 hr group I mutants gives rise to only two early mRNAs. These mRNAs map from 1.5–4.4 units, or in the same region as the Ad5 hr group I mutations. Since infection of HeLa cells with Ad5 hr group I mutants was defective for synthesis of cytoplasmic mRNAs complementary to three early regions in the right half of the genome and to the early region 4.5–11.0 units, we also analyzed nuclear RNA from these cells by the S1 nuclease gel technique for the presence of precursor RNA chains. Nuclear precursors were not detected in Ad5 hr group I-infected HeLa cells, suggesting that the gene product defective in these mutants is required for synthesis of stable nuclear RNA from the three early regions in the right half of the genome and from the early region 4.5–11.0 units.  相似文献   

10.
Summary Although fluoride-labile protecting groups and linkers have been developed in solid-phase peptide synthesis to add an extra level of orthogonality, fluoride ions were found to convert -peptides to their corresponding - or -peptides in Glu(OtBu)- and Asp(OtBu)-containing peptidyl resins. Different peptide sequences and fluoride reagents were examined to determine the scope of this side reaction. CZE analysis was found to be a useful analytical technique to characterize peptides with respect to this phenomenon.  相似文献   

11.
Strategies for the preparation of new fluorescent oligopeptide conjugates labeled with 4-ethoxymethylene-2-[1]-naphthyl-5(4H)-oxazolone (naOx-OEt) at the N-terminal on solid support or in solution have been devised. These procedures are simple and easy to carry out by reacting naOx-OEt or N(alpha)-naOx-amino acid with side chain protected peptide chains attached to resins. The integrity of the N-alkyl bond was maintained even after the trifluoracetic acid or HF based cleavages procedures. Our data show that the naOx fluorophore is compatible with both Fmoc/tBu and Boc/Bzl methods and also suggest that naOx-amino acid could be utilized as building blocks for solid phase peptide synthesis. Comparative analysis of fluorescence properties of naOx-conjugates indicated that the spectral properties of the fluorophore do not change after incorporating into peptides. The compact size, the definite chemical reaction for its introduction in combination with the appropriate spectral features (e.g., intense emission, pH independent fluorescent characteristics, and beneficial photobleaching dose constant and rates) and with chemical and spectral stability, naOx-based labeling could be attractive for novel cellular fluorescent techniques (e.g., in laser scanning confocal FRET) to study peptide-protein and protein-protein interactions even in biological matrices.  相似文献   

12.
The aims of our program are to develop coordination complexes that can be used as selective probes, fluorescent agents and inorganic medicinal agents. In order to accomplish this, the design, synthesis, characterization and X-ray structure of new water-soluble monofunctional Pt(II) complexes with useful spectroscopic properties for assessing metal binding to biomolecules were investigated. Two diethylenetriamine (dien) derivatives, 2-(bis(2-aminoethyl)amino)acetic acid (acdien) and N′-[7-(acetamido)-4-(trifluoromethyl)coumarin]diethylenetriamine (atfcdien), were used. The latter was designed to allow the fluorophore group, 7-amino-4-(trifluoromethyl)coumarin (atfc), to be attached to metal centers through the dien moiety. 1H NMR spectroscopy and X-ray crystallography were employed to characterize the [Pt(atfcdien)Br][Pt(Me2SO)Br3] (8a) and [Pt(acdien)Br]Br (9a) complexes. 1H NMR and fluorescence spectroscopic methods were used to characterize the [Pt(atfcdien)Br]Br (8b) and [Pt(acdien)Br]Br (9a) complexes. 1H NMR studies of the monofunctional [Pt(acdien)Br]Br (9a) complex conducted to examine its interaction with guanosine 5′-monophosphate (5′-GMP) in D2O solutions revealed one downfield-shifted H8 and one downfield-shifted H1′ signal, consistent with 5′-GMP binding via N7 and fast rotation about the Pt-N7 bond.  相似文献   

13.
The synthesis, solution conformation, and interaction with DNA of three 8-residue peptides structurally related to the heptad repeat unit found at the C-terminus of RNA polymerase II are reported. Peptides QQ, XQ, and PQ are derived from the parent sequence YSPTSPSY (peptide YY), which was reported to bind to DNA by bisintercalation [M. Suzuki (1990) Nature, Vol. 344, pp. 562–565], and contain either a 2-quinolyl (Q), 2-quinoxolyl (X), or 5-phenanthrolyl (P) group in place of the aromatic side chains of the N- and C-terminal tyrosine residues present in the parent sequence. The combined results of linear dichroism and induced CD measurements of peptides QQ, XQ, and PQ with calf thymus DNA are consistent with weak binding of the peptides to DNA in a preferred orientation in which the chromophores are intercalated. Small increases in the melting temperatures of poly[d(A-T)2] are also consistent with the peptides interacting with DNA. While enzymatic footprinting with DNase I showed no protection from cleavage by the enzyme, chemical footprinting with fotemustine showed that the peptides modify the reactivity of the major groove, presumably via minor groove binding. Peptide QQ inhibited fotemustine alkylation significantly more than either XQ or PQ, and slightly more than YY. In aqueous solution, nmr experiments on QQ, XQ, and PQ show a significant population of a conformation in which Ser2-Pro3-Thr4-Ser5 form both type I and type II β-turn conformations in equilibrium with open chain conformations. Nuclear magnetic resonance titration experiments of PQ with (GCGTACGC)2 showed small changes in chemical shifts, consistent with the formation of a weak nonspecific complex. Analogous experiments, using peptides QQ and XQ with (GCGTACGC)2, and peptide YY with (CGTACG)2, showed no evidence for the interaction of the peptides with these oligonucleotides. These results show that peptides of general structure XSPTSPSZ are weak nonspecific DNA binders that differ significantly from previously characterized S(T)PXX DNA-binding motifs that are generally AT-selective minor groove binders. © 1997 John Wiley & Sons, Inc. Biopoly 42: 387–398, 1997  相似文献   

14.
Protected peptides assembled on a phenolic resin support were cleared by peroxide-catalysed hydrolysis. In genenal peptide phenyl ester resins were more labile to nucleophiles than were corresponding Merrifield resin derivatives; transesterification with dimethylaminoethanol providing on alternative cleavage method for peroxide-sensitive peptides. Losses of radiolabelled peptide from both Merrifield and phenolic resins were determined during acid deprotection, base wash and coupling steps in the synthesis of a tetrapeptide. Using 40% (v/v) trifluoroacetic acid in dichloromethane for Boc-deprotection the phenolic resin gave improved results compared to the Merrifield resin. The merits of the procedure for the preparation of protected peptide acids suitable for subsequent condensation reactions were exemplified by the synthesis of an octapeptide sequence of a modified lysozyme.  相似文献   

15.
The following peptide structure in 3 of 5 coronaro-constrictory peptide factors isolated from bovine hypothalamus was determined by amino acid analysis and Edman degradation: 1) (P1)-Val-Val-Tyr-Pro-Trp; 2) (P2)-Val-Val-Tyr-Pro-Trp-Thr; 3) (P3)-Leu-Val-Val-Tyr-Pro-Trp-Thr. A computer search for these amino acid sequences revealed that these peptides represent fragments 33-37; 33-38; 32-38 of the -chain of bovine hemoglobin. Solid phase peptide synthesis of 2 peptides (P2 and P3) was carried out. It was established that synthetic peptides had the properties of coronaro-constrictory peptides. The possibility of the formation of hypothalamic coronaro-constrictory peptides in vivo is discussed.  相似文献   

16.
Hydroxyproline-rich systemins (HypSys) are small defense signaling glycopeptides found within the Solanaceae family that until recently were thought to only induce defense genes to herbivore attack. The glycopeptides are processed from larger proproteins with up to 3 different glycopeptides being processed out of a single precursor protein. A conserved central hydroxyproline motif within each HypSys is the site of pentose sugar attachment. Recently, it was found that in Petunia hybrida, these defense signaling glycopeptides did not induce protease inhibitor but instead, increased levels of defensin, a gene that is involved in pathogen attack. More recently, a HypSys peptide was isolated from Ipomoea batatas (sweet potato) of the Convolvulaceae family and found to induce sporamin. The proprotein precursor contained six putative peptide signals and had a propeptidase processing region with homology to solanaceous proHypSys. Thus, the HypSys defense peptides are no longer confined to defense against herbivory or exclusivity to the Solanaceae family, redefining both function and dispersion.Key words: systemin, hydroxyproline-rich systemin glycopeptides, HypSys, plant defense, proteinase inhibitorsPlants have evolved an arsenal of defense mechanisms for survival against the wide array of predators and pathogens that they encounter. Each species has evolved within its unique environment and the protective defense mechanisms must evolve and refine over time to allow a plant to compete in its niche.1 Plant peptide signals have recently been discovered that induce defense genes for protection against both herbivores and pathogens.2 This raises the issue of how these peptides, their receptors, signaling pathways, and the downstream regulated defense proteins and compounds have evolved to meet the unique and specific needs of each plant. Our recent papers3,4 reveal that these defense signaling peptides are not confined to a single family of plants and that the end products of the signaling pathway may be more diverse than expected.Systemin was the first peptide signal discovered in plants.5 The 18 amino acid peptide is processed from the C-terminal of a 200 amino acid precursor; prosystemin.6 Although lacking a signal sequence, prosystemin reaches the apoplast and the mature peptide is processed upon insect attack, signaling downstream events leading to the production of defense proteins, such as polyphenol oxidase and protease inhibitors.7 Systemin has only been found in the Solanaceae family and more specifically, only in the subfamily Solanoideae, which contains tomato, potato, nightshade and pepper.The hydroxyproline-rich systemin glycopeptides are similar to systemin in size (18–20 amino acids in length) and, like systemin, are processed from larger precursors.2,8 Both systemin and HypSys induce the production of methyl jasmonate and function to amplify the defense response. Each HypSys peptide contains a hydroxyproline-rich inner core that is the site of glycosylation and both the peptide backbone and the carbohydrate moieties are important for receptor recognition (9,10 Although there is no sequence similarity between prosystemin and hydroxyproline-rich systemins, it has been suggested that because of their size, structure and functional similarities, they should be classified together.11

Table 1

Comparisons of the amino acid sequences of isolated and putative Systemin and HypSys peptides
Open in a separate windowTomato systemin was aligned with the putative homologs from potato (St systemin I and II, Solanum tuberosum), nightshade (Sn systemin, Solanum nigrum), and pepper systemin (Ca systemin, Capsicum annuum). HypSys peptide from tobacco (NtHypSys I and II), tomato (SlHypSys I, II and III), petunia (PhHypSys I, II and III, Petunia hybrida), nightshade (SnHypSys I, II and III), and sweet potato (IbHypSys IV, Ipomoea batatas), and the putative peptides encoded in the precursor protein deduced from the cDNA of sweet potato (IbHypSys I, II, III, V, and VI) were aligned by the hydroxyproline/proline central motif. The poplar (PtHypSys I and II, Populus trichocarpa) sequences were deduced from Map Viewer Gnomon model: hmm3236034, and the coffee (CcHypSys I, II and III, Coffea canephora) sequences were deduced from Unigene SGN-U311058 in the Sol Genomics Network (http://sgn.cornell.edu). The hydroxyproline-rich regions of the isolated peptides are red and the proline-rich regions of the systemins and the putative HypSys peptides are blue. The isolated peptides are marked with a star.A second defense peptide family, the AtPeps, was recently discovered in Arabidopsis and like systemin, the precursors lack a signal sequence but the mature peptide interacts with the extracellular domain of a membrane bound receptor.3,12 The active peptides are 23 amino acids in length and like systemin, processed from the extreme C-terminus. One of the major induced defense genes of the AtPeps is defensin and the AtPeps have been found to protect the plant from pathogen attack.12 AtPep orthologs have been found in many of the major crop plants.The precursors for HypSys peptides, unlike prosystemin, were found in a wider range of Solanaceous plants including the Cestroideae subfamily that includes tobacco and petunia. Each precursor contained multiple peptide signals; for instance, tobacco contained 2 HypSys peptides per precursor,13 tomato with 3 HypSys peptides,14 nightshade with 3 HypSys peptides,15 potato with 3 HypSys peptides,16 and most recently petunia with 3 and possibly 4 HypSys peptides per precursor.5 Surprisingly, the petunia HypSys peptides were found to induce the pathogen defense gene, defensin, like the AtPeps, rather than proteinase inhibitors. This expands the known role of HypSys peptides from exclusive involvement in protection from herbivory to broader defense responses, including pathogen defense.A second major finding was the isolation of the first non-solanaceous HypSys peptide from sweet potato, a member of the Convolvulaceae family.4 The precursor was larger than any found within the Solanaceae (291 amino acids in length), and contained a surprising 6 putative signaling peptides. The precursor contained a signal sequence and a propeptidase splicing region with homology to the Solanaceae precursors. Since the discovery of the sweet potato proHypSys, candidate proHypSys genes have been found in nucleotide data bases of other non-solanaceous plants, including poplar and coffee (相似文献   

17.
The crustacean stomatogastric nervous system (STNS) is a well-known model for investigating neuropeptidergic control of rhythmic behavior. Among the peptides known to modulate the STNS are the C-type allatostatins (AST-Cs). In the lobster, Homarus americanus, three AST-Cs are known. Two of these, pQIRYHQCYFNPISCF (AST-C I) and GNGDGRLYWRCYFNAVSCF (AST-C III), have non-amidated C-termini, while the third, SYWKQCAFNAVSCFamide (AST-C II), is C-terminally amidated. Here, antibodies were generated against one of the non-amidated peptides (AST-C I) and against the amidated isoform (AST-C II). Specificity tests show that the AST-C I antibody cross-reacts with both AST-C I and AST-C III, but not AST-C II; the AST-C II antibody does not cross-react with either non-amidated peptide. Wholemount immunohistochemistry shows that both subclasses (non-amidated and amidated) of AST-C are distributed throughout the lobster STNS. Specifically, the antibody that cross-reacts with the two non-amidated peptides labels neuropil in the CoGs and the stomatogastric ganglion (STG), axons in the superior esophageal (son) and stomatogastric (stn) nerves, and ~ 14 somata in each commissural ganglion (CoG). The AST-C II-specific antibody labels neuropil in the CoGs, STG and at the junction of the sons and stn, axons in the sons and stn, ~ 42 somata in each CoG, and two somata in the STG. Double immunolabeling shows that, except for one soma in each CoG, the non-amidated and amidated peptides are present in distinct sets of neuronal profiles. The differential distributions of the two AST-C subclasses suggest that the two peptide groups are likely to serve different modulatory roles in the lobster STNS.  相似文献   

18.
A simple, efficient strategy for the preparation of fully-protected acylpeptide hydrazides with hydrazine-labile sidechains is described. The method involves controlled hydrazinolytic cleavage of target peptides from assemblies elaborated by solid (gel) phase synthesis on phenolic peptide resins.  相似文献   

19.
Approaches to the synthesis of model compounds based on the tylosin-related macrolides desmycosin and O=mycaminosyltylonolide were developed to study the conformation and topography of the nascent peptide chain in the ribosome tunnel using specially designed peptide derivatives of macrolide antibiotics. A method for selective bromoacetylation of desmycosin at the hydroxyl group of mycinose was developed, which involves preliminary acetylation of mycaminose. The reaction of the 4″-bromoacetyl derivative of the antibiotic with cesium salts of the dipeptide Boc-Ala-Ala-OH and the hexapeptide MeOTr-Gly-Pro-Gly-Pro-Gly-Pro-OH led to the corresponding peptide derivatives of desmycosin. The protected peptides Boc-Ala-Ala-OH, Boc-Ala-Ala-Phe-OH, and Boc-Gly-Pro-Gly-Pro-Gly-Pro-OH were condensed with the C23-hydroxyl group of O-mycaminosyltylonolide.  相似文献   

20.
We have determined the kinetic parameters for the hydrolysis by cathepsin B of peptidyl-coumarin amide and intramolecularly quenched fluorogenic peptides with the general structures NH2-Cap-Leu-X-MCA and Abz-Lys-Leu-X-Phe-Ser-Lys-Gln-EDDnp, respectively. Abz (ortho-aminobenzoic acid) and EDDnp (2,4-dinitrophenyl-ethylenediamine) are the fluorescent donor-acceptor pair, and X was Cys(SBzl), Ser(OBzl), and Thr(OBzl) containing benzyl group (Bzl) at the functional side chain of Cys, Ser, and Thr. The peptidyl-coumarin-containing Cys(SBzl), Ser(OBzl), and Thr(OBzl) have higher affinity cathepsin B, supporting the interpretation of the crystal structure of rat cathepsin B complexed with the inhibitor Z-Arg-Ser(OBzl)-CH2Cl that the benzyl group attached to Ser hydroxyl side chain occupies the enzyme S1 subsite [Jia et al. (1995), J. Biol. Chem. 270, 5527]. A similar effect of benzyl group was also detected in the internally quenched peptides. Finally, the benzyl group in substrates containing Cys(SBzl) amino acid at P1 seems to compensate the absence of adequate S2-P2 interaction in the hydrolysis of the peptides having Pro or Ala at P2 position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号